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ABSTRACT
One of the main sources of uncertainty in the analysis of the risk and return properties of a 
portfolio of fixed-income securities is the stochastic evolution of the shape of the yield curve. 
The authors have estimated a model that fits the South African yield curve, using a Kalman filter. 
The model includes four latent factors and three observable macroeconomic variables (capacity 
utilisation, inflation and the repo rate). The goal is to capture the dynamic interactions between the 
macroeconomy and the yield curve in such a way that the resulting model can be used to generate 
interest-rate scenario trees that are suitable for fixed-income portfolio optimisation. An important 
input into the scenario generator is the investor’s view on the future evolution of the repo rate. 
In this paper, details of the model are provided and the results of the estimation and scenario 
generation are reported.
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1. INTRODUCTION
1.1 One of the main sources of uncertainty in the analysis of the risk and return 
properties of a portfolio of fixed-income securities is the stochastic evolution of the 
shape of the yield curve. Many yield-curve models (e.g. Knez et al., 1994, Duffie & Kan, 
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1996 and Dai & Singleton, 2000) consider models in which unobserved factors explain 
the entire set of yields. (In this paper ‘yield’ means the yield to maturity on a zero-coupon 
bond.) These factors are often given the labels ‘level’, ‘slope’ and ‘curvature’. The 
factors in these models are however not linked to macroeconomic variables. Examples 
where a latent-factor model is used to characterise the yield curve and that explicitly 
include macroeconomic factors can be found in Ang & Piazzesi (2003), Hördahl et 
al. (unpublished) and Wu (unpublished). These examples, however, only consider a 
unidirectional linkage between the macroeconomy and the yield curve. Kozicki & 
Tinsley (2001), Dewachter & Lyrio (unpublished) and Rudebusch & Wu (unpublished) 
allow for implicit feedback. Tilley (1992) provides an actuarial layperson’s guide to 
building stochastic interest-rate generators.

1.2 Bernaschi et al. (2008) shows that, besides the relation with the official interest 
rate of the European Central Bank, it is extremely difficult to find, using simple linear 
regression analysis, a convincing relation among the parameters that describe the Italian 
yield curve and macroeconomic variables that drive the dynamics of the yield curve 
itself. Bernaschi et al. (op. cit.) concludes that a possible solution is to resort to more 
complex interaction models based on non-linear impulse-response functions. Ang & 
Piazzesi (op. cit.) further argue the importance of describing the joint behaviour of the 
yield curve and macroeconomic variables for bond pricing, investment decisions and 
public policy. They state that although many yield-curve models use latent factors to 
explain yield-curve movements and may afford some interpretation of the meaning of 
these factors (e.g. level, slope and curvature), the factors do not correspond explicitly to 
macroeconomic variables. These models describe the effect the latent factors have on the 
yield curve rather than describing the economic sources of the shocks. Ang & Piazzesi 
(op. cit.) consider a unidirectional linkage between the macroeconomy and the yield 
curve.

1.3 De Pooter et al. (unpublished) argues that models that include macroeconomic 
variables seem more accurate in sub-periods where there is substantial uncertainty about 
the future path of interest rates. Furthermore, models that do not include information 
about the macroeconomy perform well in sub-periods where the yield curve has a more 
stable pattern.

1.4 Inspired by the research of Diebold, Rudebusch & Aruoba (2006), the authors 
estimate a model that fits the South African yield curve, using a Kalman filter approach. 
Diebold, Rudebusch & Aruoba (op. cit.) characterise the yield curve using three latent 
factors, namely level, slope and curvature. To model the dynamic interactions between 
the macroeconomy and the yield curve, they also included observable macroeconomic 
variables, specifically real activity, inflation and a monetary-policy instrument.

1.5 To capture the dynamics of the yield curve, Diebold, Rudebusch & Aruoba (op. 
cit.) do not use a no-arbitrage factor representation such as the typically used affine 
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no-arbitrage models (see e.g. Duffee, 2002 and Brousseau, unpublished) or canonical 
affine no-arbitrage models (see e.g. Rudebusch & Wu, op. cit.). Instead of using a no-
arbitrage representation Diebold, Rudebusch & Aruoba (op. cit.) suggest using a three-
factor yield-curve model based on the yield-curve model of Nelson & Siegel (1987), as 
used in Diebold & Li (2006), and interpret these factors as level, slope and curvature. 
Diebold & Li (op. cit.) propose a two-step procedure to estimate the dynamics of the yield 
curve. The procedure firstly estimates the three latent factors and secondly estimates 
an autoregressive model for these factors. Diebold & Li (op. cit.) use these models to 
forecast the yield curve. Diebold, Rudebusch & Aruoba (op. cit.) propose a one-step 
approach by introducing an integrated state-space modelling approach which is preferred 
over the two-step Diebold–Li approach. This Kalman-filter approach allows for a 
bidirectional linkage between the macroeconomy and the yield curve and simultaneously 
fits the yield curve and estimates the underlying dynamics of these factors. The model 
also incorporates the estimation of the macroeconomic factors and the link between the 
macroeconomy and the latent factors driving the yield curve.

1.6 In the South African yield curve context, Maitland (2002) provides principle-
component analysis to interpolate the South African yield curve. The method proposed 
by Maitland (op. cit.) provides a way in which the yield curve can be interpolated from 
a restricted number of modelled yields, and at the same time minimises the number of 
yields from which to estimate the remainder of the curve. Given the first and second 
principal components, Maitland (op. cit.) shows that the short rate and the long-bond 
yield could be used to reconstruct the South African yield curve. Stander (unpublished) 
discusses bond indices in South Africa. Using a survey, Stander (op. cit.) establishes 
inadequacies in the indices as well as possible changes that should be considered. 
Stander (op. cit.) further addresses criticism of the Bond Exchange–Actuaries yield 
curve and presents alternative empirical yield-curve models and equilibrium models. 
These contributions focus on the characterisation of the yield curve and do not consider 
forecasting or scenario generation.

1.7 In Section 2, the authors describe Kalman-filter state-space modelling for the 
basic three-factor ‘yields-only model’ (YO3F) proposed by Diebold, Rudebusch & 
Aruoba (op. cit.). Their model uses only three latent factors of the yield curve and does 
not include macroeconomic factors. The model estimation for the South African yield 
curve is described and a four-factor model (YO4F) based on the Svensson (1994) yield 
curve model is introduced. It is shown that the Nelson & Siegel (op. cit.) model is not 
flexible enough to get an acceptable fit to the South African yield curve and a four-factor 
model is therefore introduced.

1.8 In Section 3, macroeconomic variables (capacity utilisation, inflation and repo-
rate) are incorporated into the ‘yields-macro model’ (YM4F). The goal is to capture the 
dynamic interactions between the macroeconomy and the yield curve in such a way that 
the resulting model can be used to generate interest-rate scenario trees that are suitable 
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for fixed-income portfolio optimisation. Section 4 describes the approach adopted. An 
important input into the scenario generator is the investor’s view on the future evolution 
of the repo rate. In practice these views are produced by means of an economic scenario 
generator (ESG) or expert opinion. The existence of arbitrage in the scenario trees is 
discussed and a method to eliminate arbitrage opportunities is proposed. Concluding 
remarks are offered in Section 5.

2.	 YIELDS-ONLY	MODEL
 In this section the factor model representation of the yield curve is introduced. 
Following Diebold, Rudebusch & Aruoba (op. cit.), the discussion starts with the YO3F 
model using the three-factor representation of Nelson & Siegel (op. cit.) and this is used 
as a benchmark for the four factor representation of Svensson (op. cit.). By using the 
more flexible four-factor model, a better cross-sectional fit of the South African yield 
curve is obtained. Since all the models that are described in this section are fitted using a 
Kalman filter, this section starts with an overview of the Kalman filter.

2.1 THE KALMAN FILTER
2.1.1 The Kalman filter, introduced by Kalman (1960), is a popular 

technique used in signal processing, control engineering and other fields. The main 
idea is to represent a dynamic system in terms of states (the unobserved underlying 
Markov process). The ‘state equation’ (or ‘transition equation’) describes the dynamics 
of this process while the ‘observation equation’ (or ‘measurement equation’) relates the 
observables to the unobserved states. The advantage of using a state-space representation 
(defined below) is that it allows the modeller to infer the properties of the unobserved 
yield-curve drivers from the observed yields.

2.1.2 Following Hamilton (1994: Chapter 13), let yt denote a vector of 
variables (yields in our case) observed at date t that can be described in terms of ft, a 
vector of unobservable states. The ‘state-space representation’ of the dynamics of y is 
then given by the following system of equations:
    ft = Aft–1+ t (1)
    yt = Bxt + Λft + εt (2)

where the matrices A, B and Λ have appropriate dimensions and xt is a vector of exogenous 
variables. Equation (1) is the transition equation and equation (2) is the measurement 
equation. The disturbances t and εt are vector white-noise processes such that:
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where the matrices Q and H have appropriate dimensions. The disturbances t and εt are 
also assumed to be uncorrelated at all lags:
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	 2.1.3	 The	Kalman	filter	is	a	sequential	algorithm	that	calculates	the	best	pre-
dictor	of	the	unobserved	states,	given	all	previous	observations—see	details	below.

2.2	 FACTOR	REPRESENTATION
2.2.1	 The	main	aim	of	 the	 factor	model	 is	 to	 represent	 the	yield	curve	 (a	

large	set	of	yields	with	various	maturities)	as	a	function	of	a	smaller	set	of	unobservable	
factors.	 The	Nelson–Siegel	 (op. cit.)	 representation	 produces	 reliable	 and	 reasonable	
estimation	 results	 and	 has	 become	one	 of	 the	 popular	 approaches	 adopted	 by	 central	
banks	for	yield	curve	estimation.1	The	Nelson–Siegel	model,	derived	from	a	parametric	
functional	form	for	the	forward	rates,	uses	only	four	parameters	to	define	a	parsimonious	
and	stable	representation	of	the	whole	yield	curve:
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where	y(τ)	is	the	yield	with	maturity	τ	and	β1,	β2,	β3	and	λ	are	the	model	parameters.	As	
demonstrated	by	Diebold	&	Li	 (op. cit.),	 the	parameters	β1,	β2	and	β3	of	 the	Nelson–
Siegel	representation	of	the	yield	curve,	can	be	interpreted	as	level,	slope	and	curvature;	
the	 terms	 that	multiply	 these	 factors	are	called	 the	 ‘factor	 loadings’.	The	parameter	λ	
determines	the	shape	of	the	curve	and	does	not	have	a	direct	economic	interpretation.	
To	 give	meaning	 to	 the	 parameters	β1,	β2	and	β3,	Diebold	&	Li	 (op. cit.)	 rewrite	 the	
representation	as
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where	Lt ,	St	and	Ct	are	 the	 time-varying	parameters,	and	β1,	β2	and	β3	are	considered	
unobserved	factors.

2.2.2	 Diebold,	 Rudebusch	 &	 Aruoba	 (op. cit.)	 describe	 the	 state-space	
system	as	follows.	The	dynamics	of	the	unobservable	factors	Lt ,	St	and	Ct	are	modelled	
as	a	vector	autoregressive	process	of	the	first	order	(a	‘VAR(1)’	process),	which	forms	
a	state-space	system.	The	autoregressive	moving-average	state-vector	dynamics	may	be	
of	any	order,	but	the	VAR(1)	assumption	is	maintained	for	transparency	and	parsimony.	
The	dynamics	of	the	state	vector	is	governed	by	the	transition	equation:
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where	t	=	1,…,T.

1	 	Zero-coupon	yield	curves:	technical	documentation.	Bank	for	International	Settlements,	
Switzerland,	1999
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2.2.3	 For	a	fixed	value	of	the	parameter	λ	(specified	below),	the	measurement	
equation,	which	relates	a	set	of	N	yields	of	the	yield	curve,	with	maturities	τ1,…τN,	to	the	
three	unobserved	factors,	are:

	 	 	 	 	 	 	 	 	 	 	 ;
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where	t	=	1,…,T.	The	state-space	system	can	be	written	in	matrix	notation	as
	 	 	 	 	 	 	 	 	 	 	 	 	,
	 	 	

   1t t tf f     A  

	 	 	 	 yt =	Λft +	εt .
The	white-noise	disturbances	in	the	transition	and	measurement	equations	are	required	to	
be	orthogonal	to	each	other	and	to	the	initial	state	for	the	linear	least-squares	optimality	
of	the	Kalman	filter:
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2.2.4	 Diebold,	Rudebusch	&	Aruoba	(op. cit.)	assume	that	the	Q	matrix	is	
non-diagonal	to	allow	the	shocks	to	the	three	yield-curve	factors	to	be	correlated.	The	
H	matrix	is	assumed	to	be	diagonal,	which	implies	that	the	deviations	of	the	yields	of	
various	maturities	from	the	yield	curve	are	uncorrelated.	This	is	quite	standard	and,	as	
in	estimating	no-arbitrage	yield	curve	models,	independently	and	identically	distributed	
(i.i.d.)	‘measurement	errors’	are	added	to	the	observed	yields.	Given	the	large	number	
of	 observed	 yields,	 this	 is	 required	 for	 computational	 tractability	 as	 well	 (Diebold,	
Rudebusch	&	Aruoba,	op. cit.).

2.3	 THREE-FACTOR	MODEL	ESTIMATION
2.3.1	 We	use	 the	‘perfect	fit	bond	curves’,	one	of	 the	five	BEASSA	zero-

coupon	yield-curve	series,2	with	maturities	1,	2,	3,	6,	9,	12,	15,	18,	21,	24,	36,	48,	60,	
72,	84,	96,	108,	120,	132,	144,	156,	168,	180,	192,	204,	216	and	228	months.	The	yields	

2	 	An	introduction	to	the	BEASSA	zero	coupon	yield	curves.	Bond	Exchange	of	South	Africa,	
Johannesburg,	2003
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curves are compounded semi-annually. For the purposes of analysis the yields are 
converted to continuously compounded yields. The curves are derived from government-
bond data.3 End-of-month data are used from August 1999 to February 2009. Figure 1 
plots the yield-curve data.

2.3.2 The variation in the level of the yield curve is visually apparent, as 
is the variation in its slope and curvature. Descriptive statistics for the yields (mean, 
standard deviation, minimum, maximum and autocorrelations for 1, 12 and 30 months) 
are provided in Table 1. It is clear that the typical yield curve is hump-shaped with a 
negative hump at about 20 months and a positive hump at about 120 months. The short 
rates are less volatile than the long rates but comparison of the autocorrelation with a lag 
of 12 months shows that they are less persistent. This is opposite to the U.S. yield curve 
(see Diebold & Li, op. cit.). The level is persistent and varies moderately relative to its 
mean and the slope and the curvature are the least persistent. The slope is highly variable 
relative to its mean, as is its curvature. In Figure 2 the median yield curve together with 
point-wise interquartile ranges are displayed. The hump-shaped pattern, with short rates 
less volatile than long rates, is apparent.

3  For technical specifications, see The BEASSA zero coupon yield curves: technical 
specifications. Bond Exchange of South Africa, Johannesburg, 2003

Figure 1: Yields curves, August 1999 to February 2009
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Table 1: Descriptive statistics of the yield curve
Maturity Mean 

(%)
Standard 
deviation 

(%)

Minimum 
(%)

Maximum 
(%) ( )ˆ 1ρ ( )ˆ 12ρ ( )ˆ 30ρ

1 9,225 1,835 6,542 12,437 0,974 0,272 –0,335
2 9,215 1,806 6,554 12,383 0,975 0,271 –0,337
3 9,199 1,774 6,565 12,329 0,974 0,269 –0,334
6 9,127 1,672 6,604 12,223 0,968 0,268 –0,301
9 9,054 1,586 6,574 12,092 0,956 0,268 –0,242
12 9,003 1,533 6,531 12,058 0,945 0,272 –0,175
15 8,981 1,509 6,509 12,024 0,936 0,280 –0,113
18 8,977 1,499 6,385 11,989 0,931 0,293 –0,058
21 8,987 1,498 6,347 11,954 0,928 0,309 –0,011
24 9,005 1,502 6,295 11,918 0,927 0,327 0,030
36 9,108 1,546 6,638 12,107 0,930 0,403 0,142
48 9,219 1,606 6,912 12,615 0,937 0,463 0,194
60 9,311 1,660 6,980 12,959 0,943 0,501 0,219
72 9,381 1,702 7,026 13,190 0,946 0,524 0,232
84 9,432 1,733 7,055 13,350 0,948 0,538 0,237
96 9,466 1,756 7,072 13,466 0,949 0,548 0,236
108 9,483 1,773 7,076 13,553 0,950 0,554 0,231
120 9,481 1,789 7,069 13,621 0,950 0,560 0,225
132 9,462 1,805 7,051 13,676 0,950 0,565 0,216
144 9,427 1,823 7,023 13,721 0,951 0,570 0,207
156 9,380 1,842 6,987 13,759 0,951 0,574 0,197
168 9,325 1,863 6,945 13,792 0,952 0,579 0,186
180 9,266 1,885 6,898 13,820 0,952 0,583 0,174
192 9,204 1,907 6,847 13,845 0,953 0,588 0,162
204 9,141 1,931 6,794 13,866 0,953 0,591 0,150
216 9,077 1,956 6,698 13,886 0,954 0,594 0,138
228 9,015 1,981 6,581 13,903 0,954 0,597 0,126
Level 9,232 1,571 6,818 12,821 0,958 0,575 0,138
Slope 0,184 2,140 –3,760 4,093 0,965 0,261 –0,336
Curvature –0,204 1,376 –5,409 2,847 0,852 0,016 –0,102

2.3.3 As in Diebold, Rudebusch & Aruoba (op. cit.), the YO3F model forms 
a state-space system, with a VAR(1) transition equation summarising the dynamics of the 
vector of latent variables, and a linear measurement equation relating the observed yields 
to the state vector as described above. In the entire model there are 46 parameters that 
need to be estimated by the numerical optimisation of the relevant likelihood function. 
Let ψ be the vector of all parameters that need to be estimated. These parameters are the 
nine parameters contained in transition matrix A, the three parameters contained in the 
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mean state vector μ, and the one parameter λ contained in the measurement matrix Λ. 
Furthermore, the transition-disturbance covariance matrix Q contains six parameters, 
and the measurement-disturbance covariance matrix H contains 27 parameters (one 
variance for each of the 27 yields). Given that the matrices A and Λ are affine and 
assuming that the distributions of t , εt and f0 are normal, the model is referred to as 
a ‘linear Gaussian state-space model’ (Lemke, 2006). The Kalman-filter algorithm is 
provided in Appendix A.

2.3.4 The parameters are estimated by maximising the log-likelihood 
function (see Appendix A), using either the Nelder–Mead simplex or Newton–Raphson 
algorithm. For more details on Kalman filtering see Harvey (1989) and Lemke (op. cit.). 
Non-negativity constraints are imposed on all the variances. As in Diebold, Rudebusch 
& Aruoba (op. cit.), starting parameters are obtained using the two-step Diebold–Li 
method and initialising the variances to 1,0. As in Diebold & Li (op. cit.) the value of 
λ is initialised at 0,0609 to maximise the loading on the curvature factor at exactly 30 
months, i.e. the maturity at which the hump occurs in the yield curve.

2.3.5 Tables 2 and 3 show the estimation results for the YO3F model. In 
those tables bold entries denote parameters estimates significant at 5% and standard 
errors appear in parentheses. In Table 2 the estimate of the A matrix indicates the highly 
persistent dynamics of Lt , St and Ct , the estimated own-lag coefficients being 0,945, 
0,987 and 0,953 respectively. Cross-factor dynamics between St and Lt  and between 
St and Ct appear to be important with statistically significant effects. The mean of the 
level is approximately 8,5%. The means of the slope and of the curvature do not seem 
statistically significant different from zero and appear to be reasonable in comparison 
with the mean values of the empirical estimates in Table 1. The largest eigenvalue of the 
A matrix is 0,96, which ensures the stationarity of the system. In Table 3 the estimates 

Figure 2: Median yield curve with the point-wise interquartile range
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of the Q matrix indicate that transitional shock volatility increases as we move from Lt 
to St to Ct as measured by the diagonal elements. There are no significant covariance 
terms in the Q matrix. The estimate for λ is 0,0916, which implies that the loading on 
the curvature factor is maximised at a maturity of 19,85 months. This can be seen in 
Figure 2, where the first (inverted) hump occurs near the maturity of 20 months.

Table 2: YO3F: model estimates

Lt–1 St–1 Ct–1 μ
Lt 0,945

(0,026)
0,007

(0,020)
–0,022
(0,014)

8,568
(0,886)

St 0,091
(0,033)

0,987
(0,025)

0,110
(0,018)

0,039
(0,723)

Ct –0,137
(0,078)

–0,213
(0,059)

0,953
(0,043)

–0,988
(0,597)

Table 3: YO3F: estimated Q matrix

Lt St Ct 

Lt 0,161
(0,021)

–0,163
(0,024)

0,003
(0,046)

St 0,265
(0,035)

–0,015
(0,059)

Ct 1,476
(0,196)

2.3.6 Table 4 shows the means and standard deviations of the predicted 
errors (also called measurement errors, which are measured as the excess of the actual 
yields over the predicted model yields) for the yields-only model and the yields-macro 
model (presented in section 3 below). The YO3F model fits the yield curve reasonably 
well in the short maturities but less so in the longer maturities, the standard deviation 
also increasing for longer maturities. The results are similar to the yields-only model of 
Diebold, Rudebusch & Aruoba (op. cit.).

2.3.7 The Kalman-filter fixed-interval smoothing algorithm (see Appendix A) 
is used to obtain optimal extractions of the latent level, slope and curvature factors. 
Figure 3 plots the three smoothed estimated factors together and Figures 4 to 6 plot 
the three factors together with various empirical proxies and related macroeconomic 
variables. The level factor in Figure 3 is in the neighbourhood of 8% and displays 
persistence. The slope and the curvature factors vary around zero with positive and 
negative values and appear less persistent. The slope factor is more persistent than the 
curvature factor but has a lower variance. This seems consistent with the mean and 
autocorrelation values of the empirical estimates in Table 1.
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Table 4: Summary of statistics for predicted errors of yields (%)

Maturity
YO3F YO4F YM3F YM4F

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

1 –0,052 0,377 –0,048 0,491 0,000 0,431 –0,008 0,399
2 –0,011 0,358 –0,008 0,449 0,004 0,438 0,003 0,410
3 0,017 0,359 0,020 0,430 0,010 0,317 0,021 0,311
6 0,047 0,385 0,054 0,431 –0,011 0,338 0,030 0,318
9 0,037 0,407 0,051 0,462 0,006 0,323 0,026 0,313

12 0,023 0,432 0,044 0,499 0,016 0,321 0,022 0,315
15 0,018 0,456 0,045 0,528 0,026 0,337 0,013 0,336
18 0,019 0,476 0,048 0,550 0,020 0,357 0,009 0,362
21 0,023 0,493 0,052 0,566 0,015 0,377 0,009 0,383
24 0,030 0,506 0,055 0,576 0,014 0,393 0,011 0,400
36 0,064 0,537 0,049 0,594 0,016 0,408 0,014 0,415
48 0,104 0,551 0,027 0,596 0,019 0,421 0,017 0,428
60 0,141 0,556 0,002 0,597 0,024 0,432 0,019 0,440
72 0,168 0,557 –0,018 0,604 0,049 0,466 0,023 0,475
84 0,186 0,558 –0,028 0,612 0,083 0,487 0,017 0,493
96 0,195 0,560 –0,028 0,619 0,118 0,496 0,010 0,498

108 0,192 0,560 –0,021 0,623 0,149 0,500 0,006 0,499
120 0,174 0,560 –0,013 0,627 0,170 0,501 0,007 0,499
132 0,141 0,559 –0,007 0,629 0,180 0,502 0,013 0,498
144 0,095 0,560 –0,005 0,632 0,177 0,503 0,020 0,499
156 0,038 0,565 –0,005 0,634 0,159 0,504 0,026 0,501
168 –0,025 0,574 –0,005 0,636 0,128 0,505 0,029 0,503
180 –0,091 0,589 –0,005 0,638 0,085 0,509 0,030 0,506
192 –0,160 0,608 –0,004 0,639 0,033 0,518 0,030 0,509
204 –0,229 0,633 –0,002 0,641 –0,024 0,532 0,029 0,511
216 –0,298 0,661 0,000 0,644 –0,085 0,553 0,028 0,514
228 –0,365 0,693 0,004 0,647 –0,146 0,579 0,029 0,517

2.3.8 Figure 4 displays the estimated level factor and two related comparison 
series. The first one is a commonly used empirical proxy for the level factor, namely the 
average of the short-, medium- and long-term yields:
  

  
( ) ( ) ( )( )3 24 228 / 3y y y+ + .

The second is the annual percentage change in the consumer price index. There is a high 
correlation of 0,89 between the level factor and the empirical proxy. The correlation 
between the level factor and the inflation rate is 0,51. As stated by Diebold, Rudebusch & 
Aruoba (op. cit.) this is consistent with the Fisher equation, which suggests a link between 
the level of the yield curve and inflation expectations.
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2.3.9	 In	 the	 estimates	 of	 the	 empirical	 level,	 slope	 and	 curvature	 the	
228-month	yield	was	used	and	not	 the	120-month	yield	as	 in	Diebold,	Rudebusch	&	
Aruoba	(op. cit.).	This	has	very	little	effect	on	the	results.

2.3.10	 Figure	 5	 also	 displays	 the	 estimated	 slope	 factor	 and	 two	 related	
comparison	series.	The	first	is	the	empirical	proxy	for	the	slope	factor,	namely	the	excess	
of	the	short-term	yield	over	the	long-term	yield:

	 	 	 	 y(3)–y(228).
The	second	is	an	indicator	of	macroeconomic	activity,	namely	the	demeaned	manufac-
turing	capacity	utilisation.	There	is	a	high	correlation	of	0,97	between	the	slope	factor	
and	the	empirical	proxy.	The	correlation	between	the	slope	factor	and	capacity	utilisation	

Figure	3:	YO3F	model:	estimates	of	the	level,	slope	and	curvature	factors

Figure	4:	YO3F	model:	level	factor	and	empirical	estimates
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is 0,31. Diebold, Rudebusch & Aruoba (op. cit.) suggest that, as with the level factor, 
there is a connection between the yield curve and the cyclical dynamics of the economy.

2.3.11 Figure 6 shows the curvature factor and the empirical proxy for the 
curvature of the yield curve, viz.:
    2y(24)–y(3)–y(228).
There is a correlation of 0,79 between the curvature factor and the empirical proxy. 
Diebold, Rudebusch & Aruoba (op. cit.) report no reliable macroeconomic links to the 
curvature factor.

Figure 5: YO3F model: slope factor and empirical estimates

Figure 6: YO3F model: curvature factor and empirical estimates
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2.4	 FOUR-FACTOR	MODEL	ESTIMATION
2.4.1	 Table	4	 shows	 that	 the	YO3F	model	fits	 the	yield	 curve	 reasonably	

well	in	the	short	maturities	but	less	well	at	the	longer	maturities.	The	YO3F	model	is	
extended	to	a	four-factor	model	using	the	Svensson	(op. cit.)	representation	of	the	yield	
curve:

( )
1 1 2

1 2
1 2 3 4

1 1 2

1 1 1e e ey e e
λ τ λ τ λ τ

λ τ λ ττ β β β β
λτ λτ λ τ

− − −
− −     − − −

= + + − + −     
     

;

where	y(τ)	is	the	yield	to	maturity	τ	and	β1,	β2,	β3,	β4,	λ1	and	λ2	are	model	parameters.	Figure	7	illustrates	a	fit	of	both	the	Nelson–Siegel	curve	and	the	Svensson	curve	on	an	
arbitrary	yield	curve	in	the	dataset.	It	is	clearly	visible	that	the	Svensson	curve	is	more	
flexible	and	provides	a	better	fit	to	the	South	African	yield	curve	than	the	Nelson–Siegel	
curve.

2.4.2	 As	for	the	Nelson–Siegel	parameterisation,	the	Svensson	representa-
tion	may	be	rewritten	as:

( )
1 1 2

1 21 2

1 1 2

1 1 1
t t t t t

e e ey L S C e C e
λ τ λ τ λ τ

λ τ λ ττ
λτ λτ λ τ

− − −
− −     − − −

= + + − + −     
     

;

where	Lt ,	St ,	
1
tC 	and	 2

tC 	are	the	time-varying	parameters	β1,	β2,	β3	and	β4	respectively.	The	factors	Lt ,	St ,	
1
tC 	and	 2

tC 	are	interpreted	as	level,	slope,	curvature	1	and	curvature	2	
respectively.	The	state-space	system	can	be	extended	as:
	 	 	   	 	 	 	 	 	 	 ;
	 	 	

   t t tf f     A  

	 	 	 	 yt =	Λft +	εt , and

Figure	7:	Nelson–Siegel	fit	versus	Svensson	fit	of	the	yield	curve

8.0

8.5

9.0

9.5

10.0

10.5

11.0

0 50 100 150 200 250

pe
r	c
en
t

maturity	(months)

actual
Nelson–Siegel
Svensson



SAAJ 10 (2010)

GENERATING INTEREST-RATE SCENARIOS FOR FIXED-INCOME PORTFOLIO OPTIMISATION | 15

  
0 0

~ ,
0 0

t

t

WN
η
ε

      
      
      

Q
H

;

where ( )1 2, , ,t t t t tf L S C C ′= . The dimensions of A, μ, t and Q are increased as appropriate. 
Λ is changed to be

           .

  

1 1 1 1 1 2
1 1 1 2

2 1 2 1 2 2
2 1 2 2

1 1 2
1 2

1 1 1 1 1 2

2 1 2 1 2 2

1 1 2

1 1 11

1 1 11

1 1 11
N N N

N N

N N N

e e ee e

e e ee e

e e ee e

     
   

     
   

     
   

     

     

     

  
 

  
 

  
 

   
  

 
   

  
  
 
 
   

  
 

Λ
   

 

2.4.3 Tables 5 and 6 show the estimation results for the YO4F model. As 
before, bold entries denote parameters estimates significant at 5% and standard errors 
appear in parentheses. In Table 6 the estimate of the A matrix indicates high persistent 
dynamics of Lt, St, 

1
tC  and 2

tC , the estimated own-lag coefficients being 0,981, 1,019, 
0,809 and 0,992 respectively. Some cross-factor dynamics seem significantly important. 
As with the YO3F model (see Table 2) the level of persistence is higher in St than in Lt 
and 1

tC . Also we see that the level of persistence is higher in 2
tC  than in Lt and 1

tC .  The 
mean of the level is approximately 5.9 percent and is statistically significant different 
from zero. The mean of the slope is 2.612 percent, the mean of the first curvature factor 
is –0.529 percent, which is not statistically significant different from zero. The mean of 
the second curvature factor 8.009 percent and is statistically significant different from 
zero. The largest eigenvalue of the A matrix is 0.986 and ensures the stationarity of the 
system. In Table 6 the estimates indicate an increase in the transitional shock volatility 
as we move from Lt to St to 1

tC  to 2
tC . The estimate for λ1 is 0.088 which implies that the 

loading on the first curvature factor is maximised at a maturity of 20.38 months and the 
estimate for λ2 is 0.015 which implies that the loading on the second curvature factor is 
maximised at a maturity of 119.55 months. Again in Figure 2 it can be seen that the first 
hump is at about 20 months and the second hump at 120 months.

2.4.4 As shown in Table 4, the YO4F model improves on the means of the 
predicted errors, especially for the long maturities. Figures 8 and 9 plot the estimated 
smoothed level and slope factors against empirical proxies and macroeconomic factors. 
The curvature factors are omitted as there is no reliable macroeconomic link to them. 
Figure 8 plots the estimated level factor against the empirical proxy and annual percentage 
change in the inflation index. There is a correlation of 0,67 between the estimated level 
factor and the empirical proxy. The correlation between the estimated level and the 
inflation rate is 0,28, which again suggests that inflation is linked to the dynamics of the 
yield curve. Figure 9 shows the estimated slope curve together with the empirical proxy 
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Figure 8: YO4F model: level factor and empirical estimates

Table 5: YO4F: model estimates

Lt–1 St–1
1

1tC −
2

1tC − μ

Lt
0,981

(0,044)
0,045

(0,025)
–0,026
(0,018)

0,000
(0,005)

5,871
(1,588)

St
0,004

(0,037)
1,019

(0,026)
0,102

(0,021)
–0,043
(0,015)

2,612
(1,336)

1
tC

–0,202
(0,039)

–0,223
(0,047)

0,809
(0,039)

0,046
(0,012)

–0,529
(0,348)

0,284
(0,055)

0,275
(0,023)

–0,081
(0,031)

0,992
(0,041)

8,009
(2,855)

Table 6: YO4F: estimated Q matrix

Lt St
1
tC 2

tC

Lt
0,547

(0,096)
–0,057
(0,131)

0,036
(0,054)

–0,007
(0,071)

St
0,490

(0,076)
–0,102
(0,057)

–0,021
(0,011)

1
tC 1,538

(0,084)
0,077

(0,090)

2
tC 4,545

(0,382)

2
tC
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and demeaned manufacturing capacity utilisation. There is a 0,84 correlation between 
the estimated slope factor and the empirical proxy, and a 0,30 correlation between the 
estimated slope factor and capacity utilisation. This also suggests a link between capacity 
utilisation and the dynamics of the yield curve.

3.  MACROECONOMIC MODEL
 In this section we relate the four unobserved factors, level, slope and the 
two curvature factors, which provide a good representation of the yield curve, to 
macroeconomic variables. This can be done by extending the state-space model in the 
previous section. We also present out-of-sample forecasting results to assess how well 
the YM4F model forecast the dynamics of the yield curve.

3.1 YIELDS-MACRO MODEL
3.1.1 The following three macroeconomic variables are included:

 –  manufacturing capacity utilisation (CUt), which represents the level of real economic 
activity relative to potential;

 –  the annual percentage change in the inflation index (IFt), which represents the inflation 
rate; and

 – the repo rate (RRt), which represents the South African monetary-policy instrument.
According to Diebold, Rudebusch & Aruoba (op. cit.) these three macroeconomic 
variables are considered to be the minimum set of fundamentals needed to capture the 
basic macroeconomic dynamics (see also Rudebusch & Svensson, 1999 and Kozicki & 
Tinsley, op. cit.).

3.1.2 We extend the YO4F model, to the YM4F model, to incorporate the 
three macroeconomic variables. This is done by adding the macroeconomic variables to 
the set of state variables. The state-space system is extended as follows:

Figure 9: YO4F model: slope factor and empirical estimates
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where	 ( )1 2, , ,t t t t tf L S C C ′= 	and	xt	=	(CUt ,  IFt ,  RRt)'.	Where	A11,	A12,	A21,	A22,	μ,	ν,	t ,	
γt ,	Q,	K	and	J	have	appropriate	dimensions.	Λ	stays	unchanged.	This	is	consistent	with	
the	view	 that	only	 four	 factors	are	needed	 to	distil	 the	 information	 in	 the	yield	curve	
(Diebold,	Rudebusch	&	Aruoba,	op. cit.).	In	the	YM4F	model	the	matrix

	 	 	 	

 
 ′ 

Q K
K J

is	assumed	to	be	non-diagonal	and	H	is	assumed	to	be	diagonal.
3.1.3	 The	 extension	 of	 the	Kalman-filter	 algorithm	 to	 include	 the	macro-

economic	variables	is	presented	in	Appendix	B.
3.1.4	 Tables	7	and	8	show	the	estimation	results	for	the	YM4F	model.	The	

estimate	of	the	A	matrix	again	indicates	high	persistent	dynamics	for	St ,	
1
tC ,	 2

tC ,	CUt	
and	IFt .	Some	of	the	cross-factor	dynamics	are	significantly	important	for	most	factors.	
The	estimates	also	indicate	an	increase	in	the	transitional	shock	volatility	as	we	move	
from	Lt	to	St	to	

1
tC 	to	 2

tC 	all	being	statistically	significantly	different	from	zero,	and	a	
decrease	in	the	transitional	shock	volatility	as	we	move	from	CUt 	to	IFt  	to	RRt ,	all	being	
statistically	 significantly	different	 from	zero.	There	are	 small	 changes	 in	 the	mean	of	
the	slope	and	the	two	curvature	factors	in	comparison	with	the	yields-only	model.	The	
largest	eigenvalue	of	the	A	matrix	is	0,98,	which	ensures	the	stationarity	of	the	system.	
None	of	the	covariance	terms	in	the	Q	matrix	are	significantly	different	from	zero.

3.1.5	 As	 shown	 in	Table	 4	 the	YM4F	model	 reduces	most	 of	 the	means	
slightly	or	not	at	all,	but	it	does	reduce	the	standard	deviations	of	the	predicted	errors,	
indicating	a	better	fit.	The	means	and	standard	deviations	of	the	predicted	errors	for	the	
YM3F	model	are	also	shown;	again	the	YM4F	model	fits	the	yield	curve	better	than	the	
three-factor	yields-macro	model.	The	estimates	 for	 the	 level,	slope	and	 two	curvature	
factors	of	the	YM4F	model	are	very	similar	to	those	of	the	YO4F	model.

3.1.6	 Figure	10	 shows	 the	mean	predicted	 error	 and	 the	 associated	upper	
and	 lower	95%	confidence	bands	 for	 the	YO4F	and	 the	YM4F	models.	Here	we	can	
clearly	see	that	there	is	little	difference	in	the	means	of	the	two	models.	But	as	mentioned	
before,	there	is	less	variance	in	the	yields-macro	model,	especially	in	longer	maturities,	
indicating	a	better	fit.	The	analysis	below	uses	the	YM4F	model.
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Table 7: YM4F: model estimates

Lt–1 St–1 C1t–1 C2t–1 CUt–1 IFt–1 RRt–1 μ

Lt
0,516

(0,036)
–0,369
(0,034)

0,002
(0,033)

–0,020
(0,024)

0,044
(0,061)

0,109
(0,092)

0,288
(0,097)

6,427
(2,318)

St
0,503

(0,114)
1,303

(0,084)
0,116

(0,040)
0,018

(0,028)
–0,046
(0,071)

–0,018
(0,109)

–0,353
(0,060)

2,746
(2,535)

C1t 
0,250

(0,079)
0,217

(0,044)
0,867

(0,066)
0,030

(0,048)
–0,045
(0,116)

–0,037
(0,161)

–0,303
(0,177)

0,785
(1,546)

C2t
1,622

(0,045)
1,534

(0,102)
0,098

(0,082)
0,907

(0,079)
–0,533
(0,168)

–0,245
(0,303)

–1,543
(0,298)

7,747
(3,771)

CUt
0,163

(0,120)
0,108

(0,091)
0,014

(0,023)
0,019

(0,016)
0,938

(0,041)
–0,086
(0,062)

–0,119
(0,048)

83,127
(1,067)

IFt
0,416

(0,037)
0,261

(0,045)
0,057

(0,023)
0,032

(0,014)
0,053

(0,038)
0,953

(0,060)
–0,206
(0,075)

6,387
(1,427)

RRt
0,503

(0,062)
0,324

(0,060)
0,130

(0,019)
0,019

(0,012)
–0,029
(0,033)

0,103
(0,050)

0,534
(0,071)

10,013
(1,091)

Table 8: YM4F: estimated Q matrix

Lt St C1t C2t CUt IFt RRt

Lt
0,525
0,005

–0,001
0,036

0,000
0,087

0,000
0,112

0,000
0,077

0,000
0,019

0,000
0,042

St
0,633
0,096

0,000
0,060

0,000
0,171

0,000
0,036

0,000
0,051

0,000
0,011

C1t
1,512
0,148

0,000
0,167

0,000
0,097

0,000
0,198

0,000
0,150

C2t
4,932
1,249

0,000
0,100

0,000
0,195

0,000
0,165

CUt
0,210
0,031

0,000
0,021

–0,001
0,011

IFt
0,199
0,036

0,001
0,010

RRt
0,101
0,013

3.2 OUT-OF-SAMPLE TESTING
3.2.1 For scenario generation it is important not only to capture the dynamics 

of the yield curve well in-sample, but also to forecast the dynamics of the yield curve well 
out-of-sample. For this reason the YM4F model is estimated on truncated or curtailed 
datasets. Using the estimated parameters the yield curve is forecast repeatedly for one, 
two, three and four years ahead over the period of February 2004 to February 2009, 
using monthly intervals. For the purpose of asset and liability management it would be of 
importance to use longer periods for out-of-sample testing, but the lack of data for model 
fitting restricts this period. Diebold & Li (op. cit.) model and forecast the Nelson–Siegel 
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factors as univariate AR(1) processes for one month, six months and twelve months 
ahead. The model proposed by Diebold & Li (op. cit.) outperforms other models for 
yield-curve forecasting at all maturities. Thus the Svensson factors are modelled and 
forecast as univariate AR(1) processes in order to compare their model against the YM4F 
model in this paper.

3.2.2 Tables 9 to 12 show the out-of-sample forecasting results for maturities 
3, 12, 36, 60, 120, 180 and 288 months. The forecast errors at time t + h are defined to be:

    ( ) ( )ˆt h t hy yτ τ+ +− ;
where t is the time of parameter estimation and h the length of the period forecast. 
The mean and standard deviation of the forecast errors are reported. The YM4F model 
outperforms the AR(1) model. The standard deviations for the AR(1) model are also 
larger than those of the YM4F model. In particular, the four-year-ahead forecast of the 
YM4F model is better than that of the AR(1) model.

3.2.3 In practice most financial institutions have views on the macro-
economy. These views are produced by means of an ESG or expert opinion. These 
ESGs produce forecasts only for macroeconomic variables, for example the repo rate, 
and not a complete yield curve. By using the Kalman filter to model the yield curve 
bidirectionally, as mentioned in the introduction, it is possible to close this loop and 
to produce a full yield curve given a set of macroeconomic forecasts. This is done by 
including the macroeconomic forecasts produced by such an ESG in the forecasting of 
the yield curve rather than the forecast macroeconomic variables of the model. Either all 
three macroeconomic variables or only a selection of them can be replaced. Because of 
the lack of real ESG forecasts for the repo rate the actual repo rate is included. Tables 9 
to 12 out-of-sample forecasting results are also shown, where the actual repo rate was 
included in the forecasting instead of the forecast repo rate from the model. As can be 

Figure 10: Mean predicted errors and confidence bands at 5% and 95%
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seen, the forecasting error reduces, especially for the longer maturities, in comparison 
with the other models. Thus, by including these forecasts, a better yield-curve forecast 
can be made.

Table 9: One-year out-of-sample forecast results

Maturity
Four-factor Svensson – AR(1) Four-factor with repo rate

mean standard 
deviation mean standard 

deviation mean standard 
deviation

3 –1,053 1,562 –1,338 2,213 –0,395 1,164
12 –0,686 1,103 –1,281 1,909 –0,021 0,742
36 –0,706 0,605 –1,666 1,417 –0,046 0,408
60 –0,929 0,593 –2,036 1,166 –0,276 0,573
120 –1,009 0,741 –2,277 0,972 –0,364 0,837
180 –0,932 0,649 –2,292 0,969 –0,291 0,752
228 –0,854 0,524 –2,274 1,022 –0,217 0,621

Table 10: Two-year out-of-sample forecast results

Maturity
Four-factor Svensson – AR(1) Four-factor with repo rate

mean standard 
deviation mean standard 

deviation mean standard 
deviation

3 0,710 1,973 0,451 2,350 0,804 1,505
12 0,342 1,411 –0,091 1,734 0,466 1,212
36 –0,430 1,081 –1,075 1,520 –0,288 1,000
60 –0,914 1,032 –1,652 1,653 –0,773 0,846
120 –1,243 1,129 –2,085 1,828 –1,106 0,931
180 –1,110 1,085 –2,010 1,795 –0,982 0,869

 228 –0,941 1,004 –1,880 1,706 –0,820 0,792

Table 11: Three-year out-of-sample forecast results 

Maturity
Four-factor Svensson – AR(1) Four-factor with repo rate

mean standard 
deviation mean standard 

deviation mean standard 
deviation

3 1,489 2,187 0,939 1,805 1,451 1,988
12 0,727 1,503 –0,019 1,218 0,703 1,482
36 –0,283 1,131 –1,233 1,710 –0,305 1,189
60 –0,782 1,200 –1,811 2,182 –0,806 1,189
120 –1,169 1,521 –2,284 2,681 –1,199 1,488
180 –1,019 1,395 –2,171 2,570 –1,055 1,354
228 –0,858 1,251 –2,031 2,416 –0,899 1,214
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Table 12: Four-year out-of-sample forecasting results 

Maturity
Four-factor Svensson – AR(1) Four-factor with repo rate

mean standard 
deviation mean standard 

deviation mean standard deviation

3 2,134 4,279 1,506 3,075 1,993 4,016
12 0,794 2,236 –0,074 1,614 0,660 2,141
36 –0,338 1,603 –1,430 3,183 –0,472 1,830
60 –0,639 1,576 –1,814 3,708 –0,775 1,859
120 –0,875 1,879 –2,142 4,294 –1,013 2,170
180 –0,721 1,598 –2,015 4,046 –0,863 1,891
228 –0,634 1,458 –1,933 3,891 –0,778 1,752

3.2.4 Figure 11 shows the quantile-quantile plots for maturities 3, 60, 120 
and 228 months. The quantiles of the empirical distribution are set against the quantiles 
obtained by averaging over a set of scenarios generated by the YM4F model. The 5th and 
95th percentiles are also plotted. The YM4F model reproduces the empirical distribution 
in the medium-term rates better than in the short and long rates. In Figure 12 the quantile-
quantile plots for 3, 60, 120 and 228 maturities are shown, but here the scenarios were 
generated by sampling from the residuals instead of using normal errors. As can be seen, 
little improvement is gained by sampling from the residuals as opposed to using normal 
errors.

4. SCENARIO GENERATION
In this section the scenario generation algorithm that we use to generate yield-

curve scenario trees for fixed-income portfolio optimisation problems is described. The 
YM4F model is used to generate yield-curve scenarios. The existence of arbitrage in 
the scenario trees is discussed and a method of eliminating arbitrage opportunities is 
proposed. By means of back-testing it is also demonstrated that the scenarios are stable.

4.1 YIELD-CURVE SCENARIO GENERATION
4.1.1 This section starts with a description of a procedure based on the 

parallel simulation and randomised clustering approach proposed by Gülpinar et al. 
(2004) to generate a scenario tree, which is the input for financial optimisation problems. 
The basic data structure is the scenario-tree node, which contains a cluster of yield-
curve scenarios. One of these is designated the ‘centroid’ or ‘representative’. The final 
tree consists of the centroid of each node, and its branch probabilities. Gülpinar et al. 
(op. cit.) introduced a randomised clustering algorithm. This differs from the approach 
proposed by Dupacova et al. (2000), which determines clusters that are optimal by some 
measure. The approach here is to assign the scenarios to equal groups in preference to a 
clustering approach, as the latter may necessitate a very large number of scenarios to be 
generated at the root node to ensure sufficient scenarios at the leaf nodes.

4.1.2 The scenario tree here is a yield-curve scenario tree. A T-period 
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scenario tree structure is represented as a ‘tree string’, which is a string of integers 
specifying for each stage s = 1,2,…,T the number of branches (or branching factors) for 
each node in that stage (see Dempster et al., 2006). This gives rise to balanced scenario 
trees, in which each sub-tree in the same period has the same number of branches. Let ks 
denote the branching factor for stage s. Then Figure 13 illustrates a scenario tree with a 
(3, 2) tree string, i.e. k1 = 3 and k2 = 2.

4.1.3 The generated trees are non-recombining. Given that four latent factors 
and three macroeconomic factors are used in the yield-curve model, it is very difficult to 
construct a recombining tree. Even with only three latent factors it is notoriously difficult 

Figure 11: Quantile-quantile plots for maturities 3, 60, 120 and 228 months
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to construct a recombining tree. Furthermore, non-recombining trees are used in fixed-
income portfolio optimisation problems as the portfolio composition is path-dependent.

4.1.4 Figure 14 illustrates the methods of scenario simulation, namely 
parallel and sequential. The parallel method for simulation is used here as this method 
produces more realistic extreme events in the scenario tree. The reason for this is that, 
with the number of simulations growing smaller down the tree in the parallel method, the 
centroids that eventually represent the scenario groups are drawn from a smaller sample 
size. In the sequential method, at every stage the simulated scenarios in all of the clusters 

Figure 12: Quantile-quantile plots for maturities 3, 60, 120 and 228 months, 
sampling from errors
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Figure 14: Two methods of simulating scenarios
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are discarded, and the next simulation restarted from the centroid, which will prevent any 
extreme variation (Gülpinar et al., op. cit.).

4.1.5 In order to group the scenarios a measure of relative position is used. 
The ‘distance’ between the discounting factors of the yield curve and that of the average 
is calculated as:

                ;
   ( )( ) ( )( )

1 1
1 1 M

D
y y

τ ττ τ τ

 
 = −
 + + 

∑

where y(τ) is the yield to maturity τ and yM(τ) the average yield to maturity τ. Note that 
the relative distance D can be negative or positive, which means that a yield curve can be 
positioned to the left or to the right of the average yield curve. This is to ensure realistic 
extreme events. Chueh (2002) discusses several other distance methods for interest-rate 
sampling. The relative distance method used here relates closely to the relative present 
value distance method in that paper.

4.1.6 It is necessary to represent each group of scenarios with a single 
point, which becomes the datum in the scenario tree. Gülpinar et al. (op. cit.) argue that 
to prevent the scenario tree from containing scenarios that are not consistent with the 
simulation parameters, the centroid should not be taken to be the centre of the group, but 
rather the simulated scenario closest to the centre. The mean of the group is used here as 
the notion of the centre; other notions of the centre that can be used are the median and 
the mode.

4.1.7 The main steps of the algorithm used are as follows:
Step 1:  At s = 0 create a root node group containing N scenarios. Generate all the 

scenarios using Monte Carlo simulation and the YM4F model. Each scenario 
is equally likely and consists of T + 1 sequential yield curves with the same 
starting point, the current yield curve (in total (T + 1) × N yield curves are 
generated).

Step 2:  Set s = s + 1 and for each group in the previous stage, calculate the average 
scenario and calculate the distance (i.e. the relative position as defined above) of 
each scenario with respect to the average.

Step 3:  For each group, sort the scenarios in descending order by the distance and group 
them into ks equal-sized groups.

Step 4:  For each new group, find the scenario closest (in absolute value) to the average 
of the group, and designate it as the centroid. To each centroid assign the 
probability:

     ( ) 11

1

s
ii

k
−−

=∏ .

Step 5:  If s < T, go to step 2; otherwise stop.

4.2	 ARBITRAGE
4.2.1 Filipović (1999) and other researchers such as Diebold, Rudebusch 

& Aruoba (op. cit.) show that the Nelson–Siegel family of yield-curve models does 
not impose absence of arbitrage, although these models estimate and forecast the yield 
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curve better than arbitrage-free models. (Duffee (op. cit.) noted that canonical affine 
arbitrage-free models demonstrate poor out-of-sample performance.) In light of this, 
the scenarios generated are not arbitrage-free. Klaassen (2002) shows that arbitrage 
opportunities can either be detected ex post by checking for solutions to a set of linear 
constraints, or be excluded by including non-linear constraints in the scenario generation 
process. Christensen et al. (unpublished a, unpublished b) derive a class of arbitrage-
free affine dynamic yield-curve models that approximate the Nelson–Siegel yield-
curve specification. They extend these models to include the Svensson extension of the 
Nelson–Siegel yield curves.

4.2.2 In this article the authors propose a method of reducing the presence 
of arbitrage ex post, without extending their models to the class of arbitrage-free models. 
They reduce the presence of arbitrage ex post, as opposed to excluding it by means of 
including non-linear constraints during the scenario generation process. This approach 
has no additional effect on the computational difficulty of the model estimation process 
and the data requirements. As the scenario generation process is a discrete approximation 
of the continuous evolution of the yield curve, the extension of the models, used in the 
simulation process, to a class of arbitrage-free models would not ensure the exclusion of 
arbitrage in the generated scenarios.

4.2.3 Klaassen (op. cit.) proposes linear constraints for two types of 
arbitrage. Ingersoll (1987) distinguishes these two types of arbitrage. The first type is an 
opportunity to construct a zero-investment portfolio that has non-negative payoffs in all 
states of the world, and a strictly positive payoff in at least one state. The second type is 
an opportunity to construct a negative investment portfolio (i.e. providing an immediate 
positive cash flow) that generates a non-negative payoff in all future states of the world.

4.2.4 Following the notation of Klaassen (op. cit.), let , 1
n

k tr +  
be the return on 

asset class k (k = 1,…,K)
 
between times t and t + 1 if state n (n = 1,…,N )  of the world 

materialises at time t + 1. Klaassen (op. cit.) mentions a useful result, that if the set of 
equations
   ( ), 11

1 1N n
n k tn

v r +=
+ =∑  for all k = 1,…,K

has a strictly positive solution vn for all n, then no arbitrage opportunities of the first or 
second type exist (see also Ingersoll, op. cit.). Taking , 1

n
trτ +  to be the yield to maturity 

k = τ, then:
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is the price at time t of a zero-coupon bond with maturity τ. Thus if the set of equations
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=∑  for all maturities τ,

has a strictly positive solution vn for all n, then no arbitrage opportunities of the first or 
second type exist in these yield-curve scenarios.
 4.2.5 The class of arbitrage-free affine dynamic yield-curve models that 
Christensen et al. (unpublished a, unpublished b) derive, for the Nelson–Siegel family 
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of yield curves, differs from the Diebold, Rudebusch & Aruoba (op. cit.) models only in 
the inclusion of an additional yield-adjustment term, which depends only on the maturity 
of the zero-coupon bond. As this term is dependent on the maturity of the bond, it can be 
seen as a shift in the slope of the yield curve. Now let

         for all n (n = 1,…,N ) .
    

( )1ty

n
ev

N

−

=
 

Then, if we can find yield curve shifts ct+1(τ) such that
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then no arbitrage opportunities exist in the yield-curve scenarios. Thus, if, for every 
maturity τ, the mean of the calculated values of a zero-coupon bond with that maturity, 
using different scenarios, equals the price, then no arbitrage opportunity exists in the 
yield-curve scenarios. (This is consistent with the no-arbitrage literature.)

4.2.6 Given the small size of the branching factors of the scenario trees 
generated it may not be possible to find realistic solutions to the yield-curve shifts ct+1(τ). 
Thus, to eliminate most of the arbitrage opportunities in the scenario trees the following 
algorithm is proposed:
Step 1:  At the root node create a group of N scenarios. Generate all the scenarios using 

Monte Carlo simulation and the YM4F model (as for the scenario tree). Each 
scenario is equally likely and consists of T sequential yield curves.

Step 2:  At each branching time of the scenario tree calculate the average of the N 
generated scenarios (at the root node the current yield curve is used).

Step 3:  Then for each average yield curve and the corresponding one-period-ahead 
scenarios solve
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 for all maturities, to obtain the yield curve shifts ct+1(τ).
Step 4:  Add the amount ct+1(τ) to the original scenario-tree yield curves.

4.2.7 The described method removes most of the arbitrage opportunities in 
the scenario tree, with a few opportunities left in sub-trees. For scenario trees with a 
short horizon all opportunities may be removed. This reduction of arbitrage opportunities 
is considered sufficient, since portfolio constraints in optimisation problems, such as 
the restriction of short-selling and the inclusion of bid–ask spreads, will eliminate the 
remaining arbitrage opportunities.

4.3	 BACK-TESTING
4.3.1 To test their scenario generation method, the authors implemented 

the multi-stage stochastic optimisation problem described by Dempster et al. (op. cit.). 
In that paper an asset- and liability-management framework is proposed and numerical 
results are given for a simple example of a closed-end guaranteed fund where no 
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contributions are allowed after the initial cash outlay. The design of investment products 
with a guaranteed minimum rate of return focusing on the liability side of the product is 
demonstrated in that paper. A detailed discussion of the asset- and liability-management 
framework is beyond the scope of this paper. The multi-period stochastic programming 
model of Dempster et al. (op. cit.) is included in Appendix C. In this paper the authors’ 
scenario generation approach is used to generate the input scenarios for the optimisation 
problem. The YM4F model is fitted to market data up to an initial decision time t and 
scenario trees are generated from time t to some chosen horizon t + T. The optimal first-
stage or root node decision is then implemented at time t and the success of the portfolio 
implementation is measured by its performance with historical data up to time t + 1. 
This whole procedure is rolled forward for T trading times. At each decision time t, 
the parameters of the YM4F model are re-estimated using the historical data up to and 
including that time.

4.3.2 Back-tests were performed over a period of five years, from February 
2004 to February 2009, and different tree structures were used with approximately the 
same number of scenarios. The tree structures are defined in Table 13. Bonds with 5, 7, 
10, 15 and 19 year maturities as well as the FTSE–JSE Top-40 index are included in the 
portfolio. (Dempster et al. (op. cit.) include bonds with different maturities and an equity 
index.) In order to generate scenarios for the Top-40 index, the index is modelled using 
a simple linear regression model incorporating the three macroeconomic variables. The 
expected average shortfall is minimised for an annual guarantee of 9% and transaction 
costs are included.

Table 13: Tree structure for different back-tests

Year Set 1 Set 2 Set 3
April 2003 5.5.5.5.5 = 3 125 13.4.4.4.4=3 328 200.2.2.2.2 = 3 200
April 2004 8.8.8.8 = 4 096 15.6.6.6 = 3 240 400.2.2.2 = 3 200
April 2005 15.15.15 = 3 375 30.10.10 = 3 000 400.3.3 = 3 600
April 2006 56.56 = 3 136 160.20 = 3 200 800.4 = 3 200
April 2007 3 125 3 328 3 200

4.3.3 Figure 15 illustrates the back-testing portfolio values and the minimum 
guarantee for all three scenario sets. The results are consistent with those in Dempster et 
al. (op. cit.). In that paper the expected average shortfall is minimised and the expected 
terminal wealth of the portfolio is maximised, optimality being achieved with reference 
to a risk-aversion parameter. The model performs well, staying above the guarantee at 
all times, although the system involves the inclusion of transaction costs, which puts 
downward pressure on the portfolio wealth.

4.3.4 Table 14 shows back-testing stability statistics. The model was solved 
for 100 different scenario sets, with a tree string of 40,3 (120 scenarios) using all 
available data for model fitting. The table shows the mean, standard deviation, minimum 
and maximum of the objective function and the first-stage portfolio allocations. The first-
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stage portfolio allocation seems consistent with low standard deviation. The objective 
function also has low standard deviations, and the minima and maxima show no outliers, 
further indicating the stability of the scenario generation.

Table 14: Macroeconomic portfolio allocation: stability statistics

 Objective 
function Top-40 5-year bond 7-year bond 10-year 

bond
17-year 

bond
19-year 

bond

Mean –0,3246 0,0135 0,9619 0,0018 0,0000 0,0000 0,0051

Standard 
deviation 0,0024 0,0000 0,0003 0,0001 0,0000 0,0000 0,0000

Maximum –0,4970 0,0057 0,8945 0,0000 0,0000 0,0000 0,0000

Minimum –0,2143 0,0248 0,9990 0,0808 0,0000 0,0000 0,0228

4.3.5 The scenario generation is further tested by again solving the model 
for 100 different scenario sets and for different number of final nodes, 120, 500, 1000 and 
2000. Dempster et al. (op. cit.) minimises the expected average shortfall and maximises 
the expected terminal wealth of the portfolio, and distinguishes between them using 
a risk aversion parameter (‘alpha’). For each scenario set the model is solved ranging 
the risk aversion parameter from 0 to 1 in steps of 0,1 (1 being the most risk-averse). 
Table 15 shows the mean and standard deviation for each number of final nodes. Figure 16 
shows the mean frontier, derived by averaging the objective function obtained over the 
100 different scenario sets, and the confidence bands covering 95% of the results. (Kaut 

Figure 15: Scenario back-test results
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et al. (2007) and Consiglio & Staino (unpublished) display similar results for scenario 
and model stability testing.) The frontier is a decreasing function of the risk-aversion 
parameter alpha. If the value of alpha is closer to 1, more importance is given to the 
shortfall of the portfolio and less to the expected wealth, and hence a more risk-averse 
portfolio allocation strategy will be taken, and vice versa. In the extreme case where 
alpha is 1, only the shortfall will be minimised and the expected wealth will be ignored, 
and where alpha is 0, the unconstrained case only maximises the wealth. For 1000 final 
nodes the 95% region, at its maximum (alpha at 0), is 4,9% wide (a reduction of 2% 
from 500 final nodes), ensuring that the randomisation error is bounded enough. From 
Table 15 it may also be observed that the standard deviation reduces as the number of 
final nodes increases. The reduction is less or none at all when the number of final nodes 
is increased from 1000 to 2000, again ensuring that the randomisation error is bounded 
enough, and achieves stability.

Table 15: Macroeconomic efficient frontier: stability statistics

Alpha
120 scenarios 500 scenarios 1000 scenarios 2000 scenarios

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation Mean Standard 

deviation

0,0 377,92 8,11 376,75 7,58 377,27 5,38 377,17 5,51

0,1 339,80 7,35 338,75 6,87 339,22 4,88 339,13 4,99

0,2 301,69 6,59 300,74 6,16 301,17 4,38 301,09 4,48

0,3 263,58 5,83 262,73 5,45 263,12 3,88 263,06 3,96

0,4 225,47 5,07 224,73 4,74 225,08 3,38 225,02 3,45

0,5 187,36 4,31 186,72 4,04 187,03 2,88 186,98 2,94

0,6 149,26 3,56 148,72 3,33 148,99 2,39 148,95 2,42

0,7 111,16 2,81 110,72 2,63 110,95 1,90 110,92 1,91

0,8 73,08 2,05 72,73 1,94 72,91 1,41 72,89 1,41

0,9 35,21 1,11 34,90 1,10 34,97 0,84 34,94 0,80

1,0 –0,32 0,05 –0,37 0,05 –0,37 0,04 –0,39 0,03

4.3.6 Although back-testing assumes that the past describes the future and 
can in no means guarantee the success of the outcomes of these models in practice, it 
provides a way to assess the algorithm proposed. Through back-testing it may be seen 
that the proposed scenario generation algorithm performs well on a portfolio optimisation 
problem in the literature; similar results are obtained to those of Dempster et al. (op. cit.). 
It may also be seen that stability in the objective is obtained by increasing the number of 
scenarios. The amount of the final number of scenarios necessary to achieve this stability 
may depend on the optimisation problem in question.
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5. CONCLUSION
5.1 In this paper the estimation and characterisation of the South African yield curve 
with respect to macroeconomic variables is considered, as well as its use in scenario 
generation for fixed-income portfolio optimisation. A yield-curve model that incorporates 
four yield-curve factors (level, slope and two curvature factors) and three macroeconomic 
variables (real activity, inflation and the stance of monetary policy) has been estimated. 
The estimated model fits the yield curve reasonably well in-sample as shown in the 
results. The model was tested on out-of-sample forecasting for horizons up to four years. 
For the purpose of asset and liability management it would be of importance to use 
longer periods for out-of-sample testing, but the lack of data for model fitting restricts 
this period. The model also performs reasonably well in out-of-sample forecasting. It 
has been shown that better performance can be realised by including forecasts for the 
macroeconomic variables generated by an ESG. For lack of such forecasts the actual 
repo rate was used.

5.2 A parallel simulation approach for yield-curve scenario tree generation has also 
been proposed. The procedure was tested and the performance was measured by out-
of-sample back-testing in terms of the value of a fixed-income portfolio-optimisation 
problem described in the literature. Although back-testing assumes that the past describes 
the future and can in no means guarantee the success of the outcomes of these models 
in practice, it provides a way to assess the algorithm proposed. Through back-testing 
it has been shown that the proposed scenario generation algorithm performs well on 
a portfolio-optimisation problem in the literature. It has also been shown that stability 
is obtained by increasing the number of scenarios. The amount of the final number of 

Figure 16: Average efficient frontier with 5% and 95% confidence bands.
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scenarios necessary to achieve this stability may depend on the optimisation problem in 
question.

5.3 The existence of arbitrage in the scenario trees has been discussed and a method 
of eliminating arbitrage opportunities ex post has been proposed. Consideration may be 
given to other methods of eliminating arbitrage opportunities either during simulation or 
ex post. This is left to future research.
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APPENDIX A

THE KALMAN-FILTER ALGORITHM

A.1	 In	this	appendix	the	Kalman-filter	algorithm	and	its	assumptions	are	presented.

A.2	 It	 follows	 by	 assumption	 that	 the	 transition	 density	 ( )1 |t tp f f+ 	 and	 the	
measurement	density	 ( )|t tp y f 	are	jointly	normal.	This	implies	that	the	prediction	and	
filtering	densities	are	normal;	i.e.:
	 	 	 ( )1 | 1 | 1

ˆ| Y ~ ,t t t t t tf N f− − −Σ ;

	 	 	 ( )| |
ˆ| Y ~ ,t t t t t tf N f Σ ;	and

	 	 	 ( )1 | 1ˆ| Y ~ ,t t t t ty N y F− − ;

where	Yt	=	{y1,…,yt}	is	taken	to	be	the	sequence	of	observations	available	for	estimation	
and	ft|t–1,	 t̂f ,	 | 1ˆt ty − 	and	 | 1t t−Σ ,	 |t tΣ ,	Ft are	the	sequences	of	conditional	means	and	covariance	
matrices.	These	quantities	can	be	obtained	by	employing	the	Kalman	filter	for	a	given	
set	of	parameters	ψ.

A.3	 The	Kalman-filter	algorithm	may	be	described	as	follows	(see	Lemke,	op. cit.):

Step	1:	 	Set	 0|0 0f̂ f= ,	 0|0 0Σ = Σ 	and	t	=	0.

Step	2:	 	 1| 1t̂ tf − − 	and	 1| 1t t− −Σ 	are	given	values,	but	yt	has	not	been	observed	yet.	Compute:
	 	 	 	 ( ) ( )| 1 1| 1

ˆ ˆ
t t t tf fµ µ− − −− = −A ;

	 	 	 	
| 1 1| 1t t t t− − − ′Σ = Σ +A A Q

	 	 	 	 | 1 | 1
ˆˆt t t ty f  Λ  ;	and

	 	 	 	 Ft	=	ΛΣt|t–1	Λ' + H.

Step	3:	 	yt	has	been	observed.	Compute:
	 	 	 	 1

| 1t t t tK F −
− ′= Σ Λ ;

	 	 	 	 ( )| | 1 | 1
ˆ ˆ ˆt t t t t t t tf f K y y− −= + − ;	and

	 	 	 	 | | 1 | 1t t t t t t tK− −Σ = Σ − ΛΣ .

Step	4:	 	If	t	<	T,	set	t	=	t +	1,	and	go	to	step	2;	otherwise,	stop.
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A.4	 Hence	the	Kalman	filter	delivers	the	sequence	of	means	and	covariance	matrices	
for	the	conditional	distributions	of	interest	for	a	given	set	of	parameters	ψ.	The	Kalman	
filter	 is	 initialised	 by	 setting	 0f 	 and	 0Σ 	 to	 the	 unconditional	mean	 and	 unconditional	
covariance	matrix	of	the	state	vector	respectively.	Under	the	normality	assumption,	the	
distribution	of	yt	conditional	on	Yt–1	is	the	N-dimensional	normal	distribution	with	mean	

| 1ˆt ty − 	and	covariance	matrix	Ft .	The	conditional	density	of	yt	given	Yt–1	and	ψ	can	be	
written	as	(see	Lemke,	op. cit.):

	        
1/ 2 11

1 | 1 | 12 ˆ ˆ| Y ; 2 expN
t t t t t t t t t tp y F y y F y y 




  
          

 .

Accordingly,	the	log-likelihood	function	becomes

	
( ) 1

1 1

1 1ln log 2 log
2 2 2

T T
t t t tt t

NTL F v F vψ π −
= =

′= − − −∑ ∑ ,

where	 ( )| 1ˆt t t tv y y −= − 	is	the	vector	of	prediction	errors.

A.5	 For	a	given	set	of	parameters	ψ,	the	Kalman	filter	is	used	to	compute	the	prediction	
errors	 vt	 and	 their	 covariance	 matrix	 Ft,	 after	 which	 the	 log-likelihood	 function	 is	
computed.

A.6	 The	Kalman-filter	fixed-interval	smoothing	algorithm	is	used	to	obtain	optimal	
extractions	of	the	latent	level,	slope	and	curvature	factors.	The	algorithm	consists	of	a	set	
of	recursions,	which	start	with	the	final	quantities	given	by	the	Kalman	filter	and	work	
backwards	(Harvey,	op. cit.).	The	equations	are

	 	 	
( )*

| | 1| 1|
ˆ ˆ ˆ ˆ
t T t t t t T t tf f f f+ += + Σ − ;	and

	 	 	 ( )* *
| | 1| 1|t T t t t t T t t t+ +

′Σ = Σ +Σ Σ −Σ Σ ;

where	 * 1
| 1|t t t t tA −

+′Σ = Σ Σ .
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APPENDIX B

EXTENDED KALMAN-FILTER ALGORITHM 
INCLUDING MACROECONOMIC VARIABLES

B.1	 In	 this	 appendix	 the	 extension	 of	 the	 Kalman	 filer	 algorithm	 to	 include	
the	 macroeconomic	 variables	 is	 presented.	 The	 extension	 of	 the	 algorithm	 is	 not	
straightforward	and	is	omitted	in	many	articles.	It	is	for	this	reason	that	the	extension	is	
here	included.

B.2	 As	stated	above	it	follows	by	assumption	that	the	transition	density	 ( )1 |t tp f f+ 	
and	 ( )1 |t tp x x+ 	and	the	measurement	density	 ( )|t tp y f 	are	jointly	normal.	This	implies	
that	the	prediction	and	filtering	densities	are	normal,	i.e.:

	 	

| 1 | 1 | 1 | 1

1 | 1 | 1 | 1 | 1

| 1 | 1 | 1 | 1

ˆ

ˆ~ ,
ˆ

ff fx fy
t t t t t t t t t

xf xx xy
t t t t t t t t t t

yf yx yy
t t t t t t t t t

f f
x G N x
y y

− − − −

− − − − −

− − − −

    Σ Σ Σ
    Σ Σ Σ   
    Σ Σ Σ    

;	and

	 	 	 	
( )| |
ˆ| ~ , ff

t t t t t tf G N f Σ ;

where	Gt	=	{y1,…,yt,x1,…xt}	is	taken	to	be	the	sequence	of	observations	available	for	
estimation.	These	quantities	can	be	obtained	by	employing	the	Kalman	filter	for	a	given	
set	of	parameters	ψ.

B.3	 The	Kalman-filter	algorithm	is	updated	as	follows:

Step	1:	 Set	 0|0 0f̂ f= ,	 0|0 0
ffΣ = Σ 	and	t	=	0.	

Step	2:	 	
1| 1t̂ tf − −

	 and	 1| 1
ff
t t− −Σ 	 are	 given	 values,	 but	 yt	 and	 xt	 has	 not	 been	 observed	 yet.

	
Compute:	

	 	 	 ( ) ( ) ( )| 1 11 1| 1 12 1
ˆ ˆ
t t t t tf f xµ µ ν− − − −− = − + −A A ;

	

	 	 	
( ) ( ) ( )| 1 11 1| 1 12 1

ˆˆt t t t tx f xµ µ ν− − − −− = − + −A A
	
;

	 	 	 	 	 	 	 | 1 | 1
ˆˆt t t ty f  Λ  ;

	 	 	 	 | 1 11 1| 1 11
ff ff
t t t t− − − ′Σ = Σ +A A Q;

	 	 	 	 | 1 21 1| 1 21
xx ff
t t t t− − − ′Σ = Σ +A A J;	

	 	 	 	 | 1 | 1
yy ff
t t t t     Λ Λ H  ;	
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    | 1 11 1| 1 21
fx ff
t t t t− − − ′Σ = Σ +A A K ;

     | 1 | 1
fy ff
t t t t     Λ  

 
; and

      | 1 | 1
xy fx
t t t t     Λ  

 
.

Step 3:  yt and xt have been observed. Compute:

  
( )

1
| 1| 1 | 1

| | 1 | 1 | 1
| 1| 1 | 1

ˆˆ ˆ
ˆ

xx xy
t t tt t t tfx fy

t t t t t t t t yx yy
t t tt t t t

y y
f f

x x

−

−− −
− − −

−− −

− ∑ ∑  
= + ∑ ∑      −∑ ∑   

; and

    

( )
1

| 1 | 1 | 1
| | 1 | 1 | 1

| 1 | 1 | 1

xx xy fx
t t t t t tff ff fx fy

t t t t t t t t yx yy fy
t t t t t t

−

− − −
− − −

− − −

   ∑ ∑ ∑
Σ = Σ − ∑ ∑       ∑ ∑ ∑   

.

Step 4: If t < T, set t = t + 1, and go to step 2; otherwise, stop.

B.4 Accordingly, the log-likelihood function becomes:

( )
1

| 1 | 1 | 1 | 1
1 1

| 1 | 1 | 1 | 1

1 1ln log 2 log ;
2 2 2

xx xy xx xy
T Tt t t t t t t t

t tyx yy yx yyt t
t t t t t t t t

NTL v vψ π
−

− − − −

= =
− − − −

   ∑ ∑ ∑ ∑′= − − −      ∑ ∑ ∑ ∑   
∑ ∑

where | 1

| 1

ˆ
ˆ

t t t
t

t t t

y y
v

x x
−

−

− 
=  − 

 is the vector of prediction errors.
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APPENDIX C

MINIMUM GUARANTEE 
STOCHASTIC PROGRAMMING FORMULATION

In this appendix the multi-period stochastic programming model of Dempster et al. 
(op. cit.) for minimum guarantees is presented. Given a set of scenarios the stochastic 
program results in a large linear program.

C1. VARIABLE PARAMETERS OF THE MODEL

The variable parameters of the model are defined as shown in Tables C.1 to C.4

Table C.1: Time sets

 1 2
12 120, , , ,totalT T   

 

: set of all times considered in the stochastic program;

 0,1,2, , 1dT T    : set of decision times;

\i total dT T T= : set of intermediate times;

 31 1
2 2 2, , ,cT T    : set of coupon payment time between decision times;

Table C.2: Instruments

: Stock index level at time t in scenario ω;

( )T
tB ω : Treasury security with maturity T at time t in scenario ω;

( )TB
tδ ω : coupon rate of Treasury security with maturity T at time t in scenario ω;

TBF : face value of Treasury security with maturity T 

( )tZ ω : zero-coupon Treasury security price at time t in scenario ω;

( )tS ω
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Table C.3: Risk-management barrier

( ),ty τ ω : zero-coupon Treasury yield with maturity T at time t in scenario ω;

G : annual guaranteed return;

( )tL ω : barrier at time t in scenario ω;

Table C.4: Portfolio evolution

A : set of all assets;

P Pt a

buy

t a

sell

, ,( (� �� � �
 

: buy/sell price of asset a  A at time t in scenario ω;

f / g : transaction costs of buying and selling;

xt,a (ω) :  quantity held of asset a  A between time t and t + 1 in 
scenario ω;

x+t,a (ω) / x–t,a (ω) : quantity bought/sold of asset a  A at time t in scenario ω;

s
tW : portfolio wealth at time t  T total in scenario  ω;

( ) ( ) ( )( ): max 0,t t th L Wω ω ω= − : shortfall at time t in scenario ω;

C2. MODEL FORMULATION

The model is formulated as:

( ) ( ) ( )
{ }

( ) ( ) ( )
{ }

( ) ( )
{ }, , ,, , :

, ,

max 1
d dt a t a t a

d

t
t totalx x x t T T t T T

a A t T T

h
p W p

Tω ω ω ω ω
ω

ω
α ω ω α ω

+ −   ∈Ω ∈Ω∈ ∪ ∈ ∪ 
∈ ∈Ω ∈ ∪  

     − −          
∑ ∑ ∑ ∑

subject to:
( ) ( ) ( )0, 0, 0 for buy

a a
a A

fP x Wω ω ω ω+

∈

= ∈Ω∑ ;

( ) ( )
{ }

( ) ( ) ( ) ( ) { }1
1 , , , , 0,2

\
 for , \ 0 ;a a sell buy d

t t a t a t a t a a
a A S a A a A

F x gP x fP x t Tδ ω ω ω ω ω ω ω− − +
−

∈ ∈ ∈

+ = ∈Ω ∈∑ ∑ ∑

 ( ) { }
( ) { }
( ) { }

,

,

,

0 for , , \ ;

0 for , , \ ;

0 for , , \ 0 ;

total
t a

total
t a

total
t a

x a A t T T

x a A t T T

x a A t T

ω ω

ω ω

ω ω

+

−

≥ ∈ ∈Ω ∈

≥ ∈ ∈Ω ∈

≥ ∈ ∈Ω ∈
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( ) ( ) ( ) { }, ,  for , \buy total
t t a t a

a A
W fP x t T Tω ω ω ω

∈

= ∈Ω ∈∑ ;

( ) ( ) ( ) ( )
{ }

1 1
12 12

1
, 1, ,2

\
 for sell a a

T T a TT a T a
a A a A S

W gP x F xω ω ω δ ω ω−− −
∈ ∈

= + ∈Ω∑ ∑ ;

( ) ( )0, 0,  for ,a ax x a Aω ω ω+= ∈ ∈Ω ;

( ) ( ) ( ) ( ) { }1
12, , ,, for , , \ 0total

t a t a t at ax x x x a A t Tω ω ω ω ω+ −
−= + − ∈ ∈Ω ∈ ;

( ) ( ), , 0 for , , \i c
t a t ax x a A t T Tω ω ω+ −= = ∈ ∈Ω ∈ ;

( )
( ) ( )

( ) { }

( ) { }
( ) ( ) { }

1
12

1
2 ,

,
,

,

, ,

 for \ , , ;

0 for \ , , ;

0 for \ , , ;

a a
t t a c

t a buy
t a

c
t a

c
t S t S

F x
x a A S t T

fP

x a A S t T

x x a A S t T

δ ω ω
ω ω

ω

ω ω

ω ω ω

−+

−

+ −

= ∈ ∈Ω ∈

= ∈ ∈Ω ∈

= = ∈ ∈Ω ∈

( ) ( ) ( )
( )

 for , ;

0 for , ;

total
t t t

total
t

h W L t T

h t T

ω ω ω ω

ω ω

+ ≥ ∈Ω ∈

≥ ∈Ω ∈

( ) ( ) ( )
( ) ( )( ),

0

0

 1 Z

1   for , ;  andt T

T
t t

T y T t total

L W G

W G e t Tω

ω ω

ω− −

= +

= + ∈Ω ∈
0 1α≤ ≤ .


