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ABSTRACT
In this paper we price a zero coupon bond under a Cox–Ingersoll–Ross (CIR) two-factor model using 
various numerical schemes. To the best of our knowledge, a closed-form or explicit price functional 
is not trivial and has been less studied. The use and comparison of several numerical methods to 
determine the bond price is one contribution of this paper. Ordinary differential equations (ODEs) , 
finite difference schemes and simulation are the three classes of numerical methods considered. These 
are compared on the basis of computational efficiency and accuracy, with the second aim of this paper 
being to identify the most efficient numerical method. The numerical ODE methods used to solve 
the system of ODEs arising as a result of the affine structure of the CIR model are more accurate 
and efficient than the other classes of methods considered, with the Runge–Kutta ODE method being 
the most efficient. The Alternating Direction Implicit (ADI) method is the most efficient of the finite 
difference scheme methods considered, while the simulation methods are shown to be inefficient. Our 
choice of considering these methods instead of the other known and apparently new numerical methods 
(eg Fast Fourier Transform (FFT) method, Cosine (COS) method, etc.) is motivated by their popularity 
in handling interest rate instruments.
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1. INTRODUCTION

1.1 Equilibrium term-structure models like the ones we consider in this paper (two-factor 
Cox–Ingersoll–Ross (CIR) models) are common in non-defaultable bond pricing. Since a 
coupon-paying bond can be stripped into sums of zero-coupon bonds, the focus has always 
been on pricing zero-coupon bonds. With affine term structures, the expectation is to get an 
affine yield curve whose components can be explicitly obtained. There are other cases where 
closed-form pricing solutions of such bonds may not be either easy to obtain (like in our 
case) or almost impossible to get using classical methods. Our paper will not concentrate 
on justifying the right term-structure model, but on comparison of numerical methods 
used to price the zero coupon bond given a CIR two-factor model structure. To the best of 
our knowledge this is the first time such rigorous numerical comparison and subsequent 
simulation using real-life data has been done.

1.2 The model considered in this paper is a time-homogeneous short-rate equilibrium 
two-factor model. The two most prominent short-rate models are arguably the single-factor 
models proposed by Vasicek (1977) and Cox et al. (1985). Arguments for more than one 
factor models can be found, for example, in Stambaugh (1988) and Chen & Scott (2003) who 
argue that two- or three-factor models are required to adequately represent market dynamics. 
Litterman & Scheinkman (1991) propose the use of three-factor models while Jamshidian & 
Zhu (1996) argue that a single factor explains approximately 70 per cent of the variation in 
yield curves, with a second factor explaining approximately 15 per cent. The focus of this 
paper is on pricing a zero-coupon bond in a two-factor extension of the CIR model by means 
of numerical methods.

1.3 As mentioned, to the best of our knowledge, a closed-form solution to the price of 
the non-defaultable zero-coupon bond in this term-structure setup has not been dealt with 
adequately. We fill the gap by showing that several numerical methods adequately give best 
approximations and this is shown in the numerical results provided. The use of numerical 
methods by Duffie & Kan (1996) to estimate the solution of a partial differential equation 
(PDE) of a similar form to that presented in this paper and the argument by Brennan & 
Schwartz (1979) that no closed-form solution exists for a similar PDE is reason to believe 
that a closed-form solution does not exist. This allows for the identification of efficient 
methods that can be used to construct yield curves.

1.4 Literature comparing some of the numerical methods used in this paper is considered 
in section 3, although few comparisons of applications similar to those presented in this paper 
were found. One of the contributions of this paper is the comparison of several numerical 
methods across three different classes of methods: ordinary differential equation (ODE) 
methods used to solve the system of ODEs arising as a result of the affine structure of the 
CIR model; finite difference scheme methods applied to the PDE of the CIR model; and 
simulation methods applied to the equation of the bond price. A second contribution of this 
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paper is the identification of the most efficient numerical method of all those considered. The 
results in this paper may also be relevant to other short-rate models, although not all classes 
of numerical methods are applicable to other short-rate models.

1.5 This paper begins with a description of the two-factor CIR model in section 2. This 
section also contains the derivation of three equations, any of which can be solved to obtain 
the price of zero-coupon bonds in the two-factor CIR model. Section 3 describes the numerical 
methods considered in this paper, after which a description of the methodology used for the 
comparison is described in section 4. Section 5 contains the results of the comparison, with 
section 6 containing the conclusions.

2. THE BLACK–SCHOLES EQUATION FOR THE PRICE

2.1 Without loss of generality, the two-factor CIR model considered in this paper is the 
specification of the model according to Shreve (2004), and is given by the short rate under 
the risk neutral measure Q, where

 ( ) ( ) ( )0 1 1 2 2R t Y t Y tδ δ δ= + + ; ( )0 0R ≥ ; 0 1 20; 0; 0δ δ δ≥ > >  and

  ( )1Y t  and ( )2Y t  are two-factor CIR models satisfying the stochastic differential 
equations:

  ( ) ( ) ( )( ) ( ) ( )1 1 11 1 12 2 1 1dY t Y t Y t dt Y t dB tµ λ λ= − − +   and

  ( ) ( ) ( )( ) ( ) ( )2 2 21 1 22 2 2 2dY t Y t Y t dt Y t dB tµ λ λ= − − +  ,

where ( )1B t  and ( )2B t  are independent standard Brownian motions under Q and 1 0,µ ≥  

2 0,µ ≥  11 22 12 210, 0, 0, 0,λ λ λ λ> > ≤ ≤  ( )1 0 0Y ≥ . The processes ( ) ( )1 2,Y t Y t  and ( )R t  are 
adapted to the natural filtration ( ) ( )( )0 1 2,t s t Y s Y sσ ≤ ≤= . By construction, we expect that in 
probability, ( ) 0R t ≥  for all 0t ≥ , ensuring consistency with the market dynamic of positive 
interest rates. The above CIR model is in canonical form (specified such that it contains the 
least number of parameters), from which more complex two-factor affine yield models can 
be derived (Shreve, 2004).

2.2 Throughout this paper it is assumed the non-defaultable zero-coupon bond (simply 
referred to as bond in this paper) will mature at time T with redemption of 1, with the 
bond price being calculated at the current time t T≤ . The remaining time to maturity is 

T tτ = − . The bond price is denoted as ( ),P t T  and since the price process is Markovian, we 
have ( ) ( )1 2, , ,P t T f t y y=  for some measurable function f.

2.3 In the rest of the paper, we shall use the notation fx to imply 
f
x
∂
∂

. Then the Black–
Scholes partial differential equation (PDE) for the price
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  ( ) ( ) ( )( )1 2 1 2, , | ;   , , 1
T
t R s ds

Q tf t y y e f T y y− ∫ = =  
   (1)

is given by:

 
[ ] ( ) ( ) ( )[ ]

( )[ ] ( ) ( )
2 1 1 2 2

0 1 1 2 2 1 2 1 2 1 2 1 11 1 12 2

1 2 2 21 1 22 2 1 2 1 1 2 2

, , , , , ,

1 1, , , , , , 0
2 2

t y

y y y y y

y y f t y y f t y y f t y y y y

f t y y y y f t y y y f t y y y

δ δ δ µ λ λ

µ λ λ

− + + + + − − +

− − + + =
 (2)

with boundary condition ( )1 2, , 1f T y y =  for all y1 ≥ 0, y2 ≥ 0 and for all 0 t T≤ < . The above 
PDE is linear and of order two in three variables. The bond price ( )1 2, ,f t y y  (assuming 
( )1 1Y t y=  and ( )2 2Y t y= ) can be calculated directly (where possible) by finding closed-

form solutions to this PDE given the unique boundary condition. Where that is not easy or 
possible, like in this case, we use numerical solutions to PDEs applied to eq. (2). We shall be 
using finite difference methods as part of solution methods in the next section.

2.4 Pricing this bond could be done in many different ways. One way is through simulation 
(eg Monte Carlo simulation) of eq. (1). As stated before, if a closed-form solution to the price 
exists, we could, as another method, explicitly solve the PDE eq. (2). That could easily be 
achieved, seeing that the bond price can be specified as:

  ( ) ( ) ( ) ( )1 1 2 2
1 2, , y C y C Af t y y e τ τ τ− − −=  (3)

for some functions ( ) ( )1 2,C Cτ τ  and ( )A τ  to be determined, so that eq. (2) subsequently 
becomes:

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1 11 2 21 1 1 1 1

2
2 2 0 2 2 1 12 2 22 2 2

1 ( ) (
2

1) ( ) 0
2

C C C C y f A C

C f C C C C y f

δ τ τ λ τ λ τ τ τ µ

τ µ δ δ τ τ λ τ λ τ

 ′ ′− + + + + + − − 
 

 ′− + − + + + + = 
 

which must hold for all 1 20, 0y y≥ ≥ .

2.5 Solving for ( ) ( )1 2,C Cτ τ  and ( )A τ  leads to the following system of three ODEs:

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 1 2 2

2
1 1 1 11 2 21 1

2
2 2 1 12 2 22 2

0
1 ( ) 0
2
1 ( ) 0
2

A C C

C C C C

C C C C

δ τ τ µ τ µ

δ τ τ λ τ λ τ

δ τ τ λ τ λ τ

′− + − − =

′− + + + + =

′− + + + + =

 (4)

The initial conditions are ( ) ( ) ( )1 20 0; 0 0; 0 0C C A= = = .

2.6 We posit that the non-linear system of ODEs given by eq. (4) are not trivial in finding 
explicit solutions. We are less interested in the resulting phase planes and thus we in part 
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use the ODE class of numerical methods to estimate the bond price apart from the finite 
difference methods proposed before. We show that our choice of numerical methods works 
perfectly because all give good approximations to at least three decimal places.

3. NUMERICAL METHODS

3.1 Simulation methods, finite difference scheme (FD) methods and ODE methods 
are the three categories of numerical methods considered in this paper. Multiple methods 
within each category are considered. The two simulation methods considered are Monte 
Carlo simulation and antithetic variates. The five FD methods considered are the alternating 
direction implicit (ADI) method, the explicit method, the Hopscotch method, the implicit 
method and the Crank–Nicolson (CN) method. The five numerical methods considered for 
ODE are the implicit method, the Euler/explicit method, the Runge–Kutta method, the Taylor 
method (second order) and the Crank–Nicolson (CN) method. Note that the last group target 
the nonlinear system of ODEs (4) while the FD methods are used for the PDE boundary value 
eq. (2). The simulation methods are used in eq. (1). We show by way of results for chosen 
parameters how the three sets of methods give approximate values for ( )1 2, ,f t y y .

3.2 Little prior research has been found on the comparison of numerical methods in 
pricing non-defaultable zero-coupon bonds across the three classes of methods considered, 
with this comparison being one of the contributions of this paper. An immediate comparison 
between FD methods and simulation methods can be found in Boyle (1977) who proposes 
that simulation methods are computationally inefficient but have the advantage of flexibility 
while Wilmott (2006) argues that for models containing less than four random factors, finite 
difference schemes are more efficient than simulation methods. We shall look more closely 
into these comparisons in section 5.

3.3 Few examples have been found in prior research of comparisons of some of the FD 
methods considered in this paper in an application that is similar to the one in this paper. 
Geske & Shastri (1985) compare the computational efficiency of the implicit and explicit 
methods when used to solve the Black–Scholes PDE, showing the explicit method to take 
roughly 60 per cent of the computation time taken by the implicit method. Hull & White 
(1990) argue that the explicit scheme uses between 40 and 70 per cent of the computation 
time of the implicit method. Although not in an application similar to that in this paper, 
previous results when using these methods (see eg Cairns, 2004) show that the CN method 
converges more quickly than the explicit and implicit methods, while the rate of convergence 
of the implicit method may be quicker than the explicit method in certain applications, but 
not all. Duffie & Kan (1996) argues that the ADI method is less computationally intensive 
than the standard implicit method and the Crank–Nicolson method, but is not guaranteed to 
result in stable solutions. They further showed that the errors resulting from the ADI method 
are small when used to solve a three dimensional PDE similar to that in this paper. The results 
from some of theses papers are compared to the results in this paper in section 5.
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3.4 Simulation methods
3.4.1 We briefly summarise the Monte Carlo simulation. For more detailed 

treatment, the reader can refer, for example, to Cairns (2004:185) and references therein.

3.4.2 The time interval ( )0,T t−  is divided into 
t

T tn −
=

∆
 equally spaced intervals 

1k kt t+ − , where k
kt
n

=  and 0 k n≤ ≤ . A simulated path of the short rate is obtained as

  ( ) ( ) ( )0 1 1 2 2k k kR t Y t Y tδ δ δ= + + , using:
  ( ) ( ) ( ) ( )( ) ( )1 1 1 1 11 1 1 12 2 1 1 1 1k k k k t k t kY t Y t Y t Y t Y t zµ λ λ− − − −= + − − ∆ + ∆  and

  ( ) ( ) ( ) ( )( ) ( )2 2 1 2 21 1 1 22 2 1 2 1 2k k k k t k t kY t Y t Y t Y t Y t zµ λ λ− − − −= + − − ∆ + ∆ ,

where 1kz  and 2kz  are independent random simulations of the standard normal distribution. 
The integral ( )T

t R s∫  is estimated as ( )1
0

n
i t k kRI t−

=∑= ∆ , from which ( )T
t R s dse− ∫  is 

estimated as iI
iA e−=  and Ai is estimated for i = 1, …, N. The sample expectation 

( ) ( )1 2 1
1, , ,ˆ N

k iP t T f t y y A
N == = ∑  is the estimated bond price.

3.4.3 The antithetic variates method is a variance reduction method using a 
similar procedure to that specified above. Each iteration involves two simulated paths ( )1 kR t  
and ( )2 kR t . Two estimates of ( )T

t R s dse− ∫  are obtained, labelled Ai1 and Ai2. The first simulated 
path uses the values z1i and z2i as specified above, the second uses –z1i and –z2i. The estimate 
Ai in each iteration is calculated as the average of Ai1 and Ai2.

3.4.4 There are two causes of error in the estimated price ( )ˆ ,P t T . The first is 
the variation in the sample estimate of the expectation, reduced as the number of simulations 
increases. The second is the discretisation error of the short rate and the error in estimating 
an integral with a discrete sum, reduced as Δt→0. The antithetic variates method is expected 
to result in a lower variance of the estimated price than Monte Carlo simulation (Cairns, 
2004). Boyle et al. (1997), however, argues that the antithetic variates method is inefficient in 
reducing the variance of the estimated price, and suggests the alternatives of control variates, 
Latin hyper cube sampling and moment matching. Joy et al. (1996) suggests quasi-Monte 
Carlo methods as an additional alternative. These alternative methods are not considered in 
this paper.

3.5 Finite difference scheme (FD) methods
3.5.1 ovErviEW

3.5.1.1 In order to specify eq. (2) in terms of bounded variables for easier 
application of the FD methods, y1 and y2 were transformed to the variables θ1 and θ2. The 
bond price is subsequently represented as ( )1 2, ,f t θ θ . The common transformation used (see 
for example, Brennan & Schwartz (1979: 152)) is:

  1 2 1 2
1 1 2 2

1 1;           0 , 1
1 1k y k y

θ θ θ θ= = ⇒ ≤ ≤
+ +

. (5)
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3.5.1.2 The following notation is used in describing the FD methods:

  

( )
( )

0 0 1 1 2 2
2 3 2

1 1 1 1 1 1 1 11 1 12 2
2 3 2

2 2 2 2 2 2 2 21 1 22 2
2 4

1 1 1 1
2 4

2 2 2 2

a y y

a y k k y y

a y k k y y

b y k

b y k

δ δ δ

θ θ µ λ λ

θ θ µ λ λ

θ

θ

= + +

= − − −

= − − −

=

=

3.5.1.3 Using the transformation in eq. (5), eq. (2) becomes (details are given in 
Appendix B1):
  

1 2 1 1 2 20 1 2 1 2
1 1 0
2 2ta f f a f a f b f b fθ θ θ θ θ θ− + − − + + =  (6)

3.5.1.4 The FD methods used in this paper numerically estimate ( )1 2, ,f t θ θ  by 

discretising eq. (6). An ( )1n +  × ( )1n +  grid of ( 1 2,i jθ θ ) points, where 
1 2

1
nθ θ∆ = ∆ =  and 

1 2j j
j
n

θ θ= =  for 0 ,i j n≤ ≤ , is created. It is assumed that the time interval (t,T) is divided 

into 
t

T tx −
=

∆
 equal steps for some Δt. The FD method estimate of ( )1 2, ,i jf t θ θ  is denoted 

t
ijU . The FD methods iteratively calculate s

ijU  using the values of ts
ijU +∆  (input grid) for all 

0 ,i j n≤ ≤  and s = t, t + Δt, …, T – Δt, starting with 1T
ijU =  for all ,i j . A higher value for k1 

and k2 results in the grid being more concentrated around smaller values of y1 and y2. The 

values used for k1 and k2 differed for each set of parameters considered, but were the same 
for each of the five FD methods for a given set of parameters.

3.5.1.5 The initial conditions used were 00 0 0 0s s s
i jU U U= = =  for 0 ,i j n< ≤  and 

t s T≤ < . The initial conditions for 1 1θ =  and/or 2 1θ =  are found by substituting 1 0y =  

and/or 2 0y =  into the discretised equations (described below). The values of ( )1
t
n jU +  and 

( )1
t
i nU +  were therefore not required. A detailed discussion of the initial conditions is available 

in Appendix B2.

3.5.2 implEmEntation of tHE fD mEtHods
3.5.2.1 The following five paragraphs will summarise each of the five FD methods 

used in this paper. We refer the reader to eg to Wilmott (2006: 1260) and references therein 
for a more elaborate treatment.

3.5.2.2 The explicit method involves discretising eq. (6) using the approximations 
in Appendix B4 as:
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( ) ( )

( ) ( ) ( ) ( )

1 2

21

1 1
0 1 2

1 1 1 1
1 22 2

2 21 1 0.
2 2

t t t tt
t

t t t t t t

t t t tt t
ij iji j i jij ijt

ij
t

t t t t t t
ij iji j i j i j i j

U U U UU U
a U a a

U U U U U U
b b

θ θ

θ θ

+∆ +∆ +∆ +∆+∆
− −+∆

+∆ +∆ +∆ +∆ +∆ +∆
+ − + −

−
+ + + +

∆ ∆ ∆

− + − +
+

∆

−
−

=
∆

−

 (7)

The value of t
ijU  is the only unknown in eq. (7) and subsequently easily found, detailed in 

Appendix B5. Solving t
ijU  for all 0 < i, j ≤ n defines the new grid for each iteration. For the 

scheme  to work, we must check  that  the  ‘probabilities’ given by  the parameters  in eq. (6) 
connecting  t

ijU  with the three known values ( )1 ,t t t t
iji jU U+∆ +∆

−  and ( )1
t t
i jU +∆

+  are always non-negative.
3.5.2.3  The implicit method involves discretising eq. (6) using the approximations 

in Appendix B4 as:

  

( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 1
0 1 2

1 1 1 1
1 22 2

2 21 1 0
2 2

t t t t tt t
ij iji j i jij ijt

ij
t

t t t t t t
ij iji j i j i j i j

U U U UU U
a U a a

U U U U U U
b b

θ θ

θ θ

+∆
− −

+ − + −

− −−
− + + + +

∆ ∆ ∆

− + − +
+ =

∆ ∆

 (8)

The values of t
ijU , ( ) ( ) ( )1 1 1, ,t t t

i j i j i jU U U+ − +  and ( )1
t
i jU −  are unknown in eq. (8) above. A set of 

n2 equations is obtained using eq. (8) for 0 < i, j ≤ n. The equations are solved simultaneously 

to find  t
ijU , 0 < i, j ≤ n in each iteration, with more detail in Appendix B6.

3.5.2.4  The discretised version of eq. (6) used in implementing the CN method is 

an average of eq. (7) and eq. (8). As with the implicit method, n2 equations containing  t
ijU ,

( ) ( ) ( )1 1 1, ,t t t
i j i j i jU U U+ − +  and ( )1

t
i jU −  for 0 < i, j ≤ n are solved simultaneously in each iteration, 

with more detail in Appendix B7.
3.5.2.5  When using the Hopscotch method, each iteration consists of two stages. In 

the first stage,  t
ijU  is calculated as was done in the explicit method using eq. (7) for all the odd 

or even points (a point is odd or even depending on whether its grid reference  i j+  is odd or 
even). The remaining grid points are then calculated in stage two as was done in the explicit 
method using eq. (7), but where the input grid is updated with the values from stage one (i.e. 

( ) ( ) ( )1 1 1, ,t t tt t t
i j i j i jU U U+∆ +∆ +∆
+ − +  and ( )1

tt
i jU +∆

−  are replaced by the values calculated in stage one). The odd 

points are calculated in stage one and even points in stage two in the first iteration. The stages 
in which the odd and even points are calculated swap for each subsequent iteration. More 
detail is found in Appendix B8.

3.5.2.6  The ADI method  also  consists  of  two  stages  in  each  iteration. The first 

stage calculates a new grid at  1
2 tt + ∆  by solving θ1 implicitly and θ2 explicitly. The values of 
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1
2 tt

ijU
+ ∆

 
 for 0 < i, j < n are found using the grid containing tt

ijU +∆  for 0 < i, j ≤ n. The  second 
stage calculates a new grid at time t by solving θ2 implicitly and θ1 explicitly, using the 
grid from stage one as an input. Each stage results in n independent sets of n simultaneous 
equations, the solution of which is the new grid. More detail is found in Appendix B9.

3.5.3 Comparisons of tHE fd mEtHods
3.5.3.1 Finite difference methods should preferably be stable, consistent and 

convergent. An FD method is stable if an error arising in any iteration remains bounded. An 
FD method is consistent if the truncation error ( )1 2, , t

i i ijf t Uθ θ −  approaches zero as 
1 2
,θ θ∆ ∆  

and Δt approach zero for all iterations. An FD method is convergent if the estimated bond 
price approaches the true solution of the PDE as 

1 2
,θ θ∆ ∆  and Δt approach zero.

3.5.3.2 The explicit method is stable if Δt is sufficiently small. The implicit and CN 
methods are expected to be stable for larger values of Δt. The ADI and Hopscotch methods 
attempt to retain the stability of the implicit method while increasing the rate of convergence 
of the implicit method. Both, however, are not guaranteed to result in stable solutions.

3.6 ODE methods
3.6.1 Five ODE methods used to estimate the solution to eq. (3) using eq. (4) are 

considered. Comparison of additional methods such as those proposed by Bulirsch & Stoer 
(1966) and Bashforth & Adams (1883) is an avenue for further research. The ODE methods 
involve iteratively calculating the values of ( ) ( )1 2,C Cτ ττ τ+ ∆ + ∆  and ( )A ττ + ∆  for some 
τ∆  time step using ( ) ( )1 2,C Cτ τ  and ( )A τ  as inputs, starting with ( ) ( ) ( )1 20 0 0 0C C A= = =  

and ending when T tτ = −  (Shampine, 1994). The bond price is estimated as ( )ˆ ,P t T =  
( )1 2

ˆ , ,f t y y = ( ) ( ) ( )1 1 2 2y C T t y C T t A T te− − − − − − . The true bond price is ( ) ( )1 2, , ,P t T f t y y= .
3.6.2 An explicit method uses ( ) ( )1 2,C Cτ τ  and ( )A τ  in the formulation of 

each iteration, while an implicit method uses ( ) ( )1 2,C Cτ ττ τ+ ∆ + ∆  and ( )A ττ + ∆ . A 
Crank–Nicolson method uses the average of the functions at τ and ττ + ∆ . The first method 
considered is the explicit Euler (or Euler/explicit) method. The implicit method considered 
is an implicit implementation of the Euler method and the CN method is an average of the 
explicit and implicit Euler methods. The Taylor method is explicit, although implicit and CN 
versions can be developed. The Runge–Kutta method considered is explicit, with implicit 
examples found in Alexander (1977).

3.6.3 The following functions of C1 and C2 are used for the ODE methods:

2
1 1 1 11 2 21 1

1
2

r C C Cδ λ λ= − − − ; 2
1 2 1 12 2 22 2

1
2

s C C Cδ λ λ= − − − ; 1 0 1 1 2 2u C Cδ µ µ= + + ;

1 1 11 1 21 1 1f r s r Cλ λ= − − − ; 2 1 12 1 22 1 2f r s s Cλ λ= − − − ; 3 1 1 1 2f r sµ µ= + ;

1 1 1 2 1
1 1,
2 2i i ir r C r C sτ τ− −

 = + ∆ + ∆ 
 

; 1 1 1 2 1
1 1,
2 2i i is s C r C sτ τ− −

 = + ∆ + ∆ 
 

;

1 1 1 2 1
1 1,
2 2i i iu u C r C sτ τ− −

 = + ∆ + ∆ 
 

 for 2,3i = ;
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( )4 1 1 3 2 3,r r C r C sτ τ= + ∆ + ∆ ; ( )4 1 1 3 2 3,s s C r C sτ τ= + ∆ + ∆  and ( )4 1 1 3 2 3,u u C r C sτ τ= + ∆ + ∆ .

3.6.4 For the Euler method we use a first order Taylor expansion in each iteration 
as follows:
 ( )1 1 1C C rτ ττ + ∆ = + ∆ ; ( )2 2 1C C sτ ττ + ∆ = + ∆ ; and ( ) 1A A uτ ττ + ∆ = + ∆ .

3.6.5 For the second order Taylor method we use a second order expansion in 
each iteration as follows:

  ( ) 2
1 1 1 1

1
2

C C r fτ τ ττ + ∆ = + ∆ + ∆ ; ( ) 2
2 2 1 2

1
2

C C s fτ τ ττ + ∆ = + ∆ + ∆ ; and

  ( ) 2
1 3

1
2

A A u fτ τ ττ + ∆ = + ∆ + ∆ .

3.6.6 For the fourth order explicit Runge–Kutta method each iteration is 
calculated as:

 ( ) ( )1 1 1 2 3 42 2
6

C C r r r rτ
ττ ∆

+ ∆ = + + + + ; ( ) ( )2 2 1 2 3 42 2
6

C C s s s sτ
ττ ∆

+ ∆ = + + + + ; and

  ( ) ( )1 2 3 42 2
6

A A u u u uτ
ττ ∆

+ ∆ = + + + + .

3.6.7 The implicit method requires ( )1C ττ + ∆  and ( )2C ττ + ∆  to be solved for 
simultaneously using the two equations:

  
( ) ( ) ( )

( ) ( ) ( )

2
11 1 2 21 1 1 1

2
22 2 1 12 2 2 2

1 1 1( ) and
2

1 1 1( ) .
2

C C C C

C C C C

τ τ τ
τ τ

τ τ τ
τ τ

λ τ τ λ τ δ τ

λ τ τ λ τ δ τ

 
+ + ∆ + + ∆ + + ∆ = + ∆ ∆ 

 
+ + ∆ + + ∆ + + ∆ = + ∆ ∆ 

The value for 

 

( )A ττ + ∆  in each iteration is then calculated as:

  ( ) ( ) ( ) ( )( )0 1 1 2 2A A C Cτ τ τ ττ τ δ τ µ τ µ+ ∆ = + ∆ + + ∆ + + ∆ .

3.6.8 The CN method requires ( )1C ττ + ∆  and ( )2C ττ + ∆  to be solved for 
simultaneously using the two equations:

  
( ) ( ) ( )

( ) ( ) ( )

11 21 2
1 2 1 1 1 1

2
22 2 1 12 2 2 2 2

an1 1 1 1( )
2 2 4 2

1 1 1 1( ) .
2

d

2

C C C C f

C C C C f

τ τ τ
τ τ

τ τ τ
τ τ

λ λ
τ τ τ δ τ

λ τ τ λ τ δ τ

 
+ + ∆ + + ∆ + + ∆ = + + 

∆ ∆ 
 

+ + ∆ + + ∆ + + ∆ = + + ∆ ∆ 

The value for ( )A ττ + ∆  in each iteration is then calculated as:
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 ( ) ( ) ( ) ( )( ) ( ) ( )( )0 1 1 1 2 2 2
1 1
2 2

A A C C C Cτ τ τ ττ τ δ τ τ µ τ τ µ + ∆ = + ∆ + + ∆ + + + ∆ + 
 

.

3.6.9 The implicit and CN methods are expected to be more stable for larger τ∆  
than the explicit method (Granville, 1988). The local truncation error, defined as

  ( ) ( )1 2 1 2, ,ˆ , ,LTE P t y y P t y y= −  given ( )1 2, ,tP t y y− ∆ ,

measures accuracy for each iteration. As 0t∆ → , LTE converges to 0 slower for the Taylor 
series than the Runge–Kutta method and even slower for the Euler method (Shampine, 1994).

4. METHODOLOGY
Without loss of generality, the numerical methods are compared for the sets of 

parameters in Table 1 below and the six times to maturity (in years) τ = 2, 5, 10, 15, 20, 30. 
To stress test the results, further comparisons are made for selected numerical methods across 
a broader random selection of fifty sets of parameters at all times to maturity τ = 1, 2, …, 30.

4.1 Selection of parameters
4.1.1 Five sets of parameters were selected to ensure generality across different 

yield curve shapes and different average bond yields. Increasing, decreasing and humped 
yield curves are represented within these sets of parameters, as well as average bond yields 
ranging from 0,02i =  p.a. to 0,13i =  p.a. The yield curves obtained from the five parameter 
sets are found in Appendix A.

4.1.2 Three of the five sets of parameters were chosen to roughly represent yield 
curves based on data obtained from Bloomberg for government bonds in the countries of 
South Africa, Brazil and the United States of America (USA) on 1 June 2016. Since the 
focus of this paper is not parameter estimation, the parameters are chosen only to roughly 
represent the market yield curves. There exists a substantial amount of literature on estimation 
procedures that could be used for more accurate estimates, including the papers by Chen & 
Scott (2003) and Pearson & Sun (1994).

4.1.3 We posit that the choice of the three countries was motivated by the fact 
that South Africa and Brazil are developing BRICS countries while the USA is a developed 
country. What is evident in all cases, as expected, is that zero-coupon bond prices decrease 
with term.

4.1.4 The other two sets of parameters were chosen to obtain a humped yield curve 
(the arbitrary set of parameters) and a decreasing yield curve (the check set of parameters).

4.1.5 The majority of the analysis is based on the five sets of parameters 
specified in Table 1. As previously mentioned, further analysis is done for selected numerical 
methods at all integer times to maturity τ = 1, 2, …, 30 based on an additional fifty sets of 
parameters. The additional sets of parameters are chosen randomly and used only for the 
methods appearing computationally efficient for the parameters in Table 1. The use of random 
parameters is based on the method used by Broadie & Detemple (1996), with these additional 
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random parameters being selected as follows: The values for δ0, δ1 and δ2 are selected from 
a uniform distribution with range ( )0;0,04  randomly and independently . The values for μ1, 
μ2, λ11 and λ22 are selected randomly and independently from a uniform distribution with 
range ( )0;0,5 . The values for λ12 and λ21 are selected randomly and independently from a 
uniform distribution with range ( )0,5;0− . Y1 and Y2 are set equal to 1. The random parameter 
selection is used to stress test the results and ensure generality of the results.

TABLE 1. Sets of parameter values used for comparison of numerical methods

 South Africa Brazil USA Arbitrary Check

Y1 1 1 1 1 1

Y2 1 1 1 1 1

δ0 0,04334 0,06251 0,00469 0,04663 0,02500

δ1 0,01705 0,06910 0,00220 0,02200 0,02500

δ2 0,01114 0,00799 0,00230 0,00636 0,02500

μ1 0,20342 0,08955 0,62433 0,01304 0,10000

μ2 0,26024 0,89128 1,55256 0,00854 0,10000

λ11 0,36545 0,54832 0,04106 0,86828 0,10000

λ22 0,25620 0,28266 0,46624 0,01275 0,10000

λ12 –0,17552 –0,12509 –0,00576 0,18118 0,00000

λ21 –0,37807 –0,03003 –0,01812 –0,779155 0,00000

k1
1
7

1
9

1
9

6
34

1
19

k2
1
7

1
9

1
9

6
34

1
19

4.2 Criteria used for comparison
4.2.1 The numerical methods are compared in this paper based on the two criteria 

of accuracy and computational efficiency.
4.2.2 The price of bonds considered in this paper assume a face value of USD1. 

Accuracy, however, is measured in dollars and cents for a bond with a face value of $100 (i.e. 
accuracy is measured to four decimal places for a bond with face value of USD1). Accuracy 
error is defined as ( ) ( )10 ,ˆ0 ,ie P t T P t T= −  where ( ),P t T  is the true bond price and ( )ˆ ,P t T  
is the estimated price. For example, the accuracy for a bond with price of $0,8575 is measured 
assuming the face value is $100 and the price is $85,75. Two additional measures of accuracy 
are further used in this paper, with these being the root mean square relative error (RMS) and 

the mean absolute error (MAE). The RMS is defined as ( ) ( )
( )

2

1

,ˆ ,1
,

n i i
i

i

P t T P t T
n P t T=

 −
  
 

∑ . The 

MAE is defined as ( ) ( )1
ˆ1 , , ,n

i i iP t T P t T
n =∑ − . The RMS penalises large errors more than 

the MAE, and defines the error relative to the true bond price (Broadie & Detemple, 1996).
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4.2.3 Computational efficiency is measured as the number of seconds taken to 
obtain the estimated bond price. Computational efficiency depends largely on the efficiency 
of the computer code used in implementing the numerical method, and is also influenced by 
the computer used to run the code. An effort was made to ensure the efficiency of the code, 
but the results may be impacted by inefficiencies in the code.

4.3 Determining a baseline for comparison of accuracy
4.3.1  The absence of a closed-form solution results in complexity in determining 

a true value to be used as a baseline for comparison of accuracy. The restriction of 12 21 0λ λ= =  
in eq. (4), however, results in a system of ODEs for which a closed-form solution can be 
found. The check set of parameters was chosen with this restriction (last column of 
parameters), for which the closed-form solution (as calculated using WolframAlpha (2016)) 
is ( ) ( ) ( ) ( )1 1 2 2

1 2, , y C T t y C T t A T tP t y y e− − − − − −= , where

  ( ) ( )
0,244949

1 2 0,244949
10,144949

0,420204
eC C

e

τ

ττ τ −
= =

+
, and

  ( ) ( ) ( )0 1 1 2 20
A C s C s ds

τ
τ δ τ µ µ= − + +∫ .

4.3.2 The five ODE methods all converge to the true solution (based on accuracy 
to seven decimal places) for the check set of parameters. For the remaining four sets of 
parameters and all additional random sets of parameters for which λ12<0 and λ21<0, the value 
to which the ODE methods converge (using sufficiently small Δτ) is used as the true value. It 
is further shown in the results that the other numerical methods converge to this value.

5. RESULTS
The results begin with comparisons across the three categories of methods, followed 

by detailed comparisons of the methods within each category.

5.1 Overview
5.1.1 The accuracy and computational efficiency of the numerical methods used 

to estimate the bond prices in Table 2 is summarised in Table 3. RMS and MAE are used as 
accuracy measures, calculated across the estimated bond prices for the six times to maturity 
for each parameter set and method. The total computational time required to estimate the six 
prices for each parameter set and method is used as the measure of efficiency.

5.1.2 The ODE methods have higher levels of accuracy while maintaining 
quicker computational times than the FD and simulation methods. The least efficient ODE 
method is a minimum of 14,7 times more computationally efficient than the most efficient 
of the FD and simulation methods over the five sets of parameters, while maintaining an
RMS of 0 (rounded to four decimal places – referred to as 0 in the remainder of this paper). 
The simulation and FD methods are unable to achieve this level of accuracy in a reasonable 
computation time (explored further below). The ODE methods are clearly preferred on the 
basis of accuracy and efficiency but are only applicable to affine short-rate models.
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TABLE 2. Estimated bond prices using various numerical methods for the five sets of 
parameters in Table 1 at six specific times to maturity1

 SA Brazil
τ τ

2 5 10 15 20 30 2 5 10 15 20 30
Runge 0,8595 0,6674 0,4199 0,2579 0,1569 0,0576 0,7735 0,5333 0,2765 0,1404 0,0710 0,0181
Euler 0,8595 0,6674 0,4199 0,2579 0,1569 0,0576 0,7735 0,5333 0,2765 0,1404 0,0710 0,0181
Taylor 0,8595 0,6674 0,4199 0,2579 0,1569 0,0576 0,7735 0,5333 0,2765 0,1404 0,0710 0,0181
Implicit 
(ODE) 0,8595 0,6674 0,4199 0,2579 0,1569 0,0576 0,7735 0,5333 0,2765 0,1404 0,0710 0,0181

CN (ODE) 0,8595 0,6674 0,4199 0,2579 0,1569 0,0576 0,7735 0,5333 0,2765 0,1404 0,0710 0,0181
Explicit 0,8594 0,6673 0,4199 0,2578 0,1568 0,0574 0,7736 0,5331 0,2762 0,1403 0,0709 0,0181
Implicit 0,8594 0,6673 0,4198 0,2577 0,1567 0,0574 0,7738 0,5334 0,2765 0,1405 0,0711 0,0182
CN 0,8594 0,6674 0,4200 0,2579 0,1568 0,0574 0,7737 0,5332 0,2763 0,1403 0,0710 0,0181
Hopscotch 0,8594 0,6673 0,4199 0,2578 0,1568 0,0574 0,7737 0,5332 0,2762 0,1403 0,0710 0,0181
ADI 0,8594 0,6673 0,4200 0,2579 0,1568 0,0574 0,7737 0,5332 0,2763 0,1403 0,0710 0,0181
Monte 
Carlo 0,8594 0,6670 0,4202 0,2569 0,1556 0,0570 0,7739 0,5333 0,2752 0,1399 0,0704 0,0179

Antithetic 0,8596 0,6670 0,4199 0,2573 0,1564 0,0570 0,7733 0,5322 0,2753 0,1397 0,0706 0,0179

 USA Arbitrary
τ τ

2 5 10 15 20 30 2 5 10 15 20 30
Runge 0,9756 0,9249 0,8250 0,7203 0,6196 0,4456 0,8687 0,7005 0,4724 0,3184 0,2239 0,1237
Euler 0,9756 0,9249 0,8250 0,7203 0,6196 0,4456 0,8687 0,7005 0,4724 0,3184 0,2239 0,1237
Taylor 0,9756 0,9249 0,8250 0,7203 0,6196 0,4456 0,8687 0,7005 0,4724 0,3184 0,2239 0,1237
Implicit 
(ODE) 0,9756 0,9249 0,8250 0,7203 0,6196 0,4456 0,8687 0,7005 0,4724 0,3184 0,2239 0,1237

CN (ODE) 0,9756 0,9249 0,8250 0,7203 0,6196 0,4456 0,8687 0,7005 0,4724 0,3184 0,2239 0,1237
Explicit 0,9754 0,9245 0,8243 0,7197 0,6192 0,4459 0,8688 0,7006 0,4719 0,3180 0,2239 0,1238
Implicit 0,9754 0,9245 0,8243 0,7197 0,6193 0,4460 0,8689 0,7006 0,4722 0,3183 0,2240 0,1239
CN 0,9754 0,9245 0,8243 0,7197 0,6193 0,4460 0,8688 0,7006 0,4720 0,3181 0,2240 0,1238
Hopscotch 0,9754 0,9245 0,8243 0,7197 0,6192 0,4459 0,8688 0,7006 0,4720 0,3181 0,2240 0,1238
ADI 0,9754 0,9245 0,8243 0,7197 0,6193 0,4460 0,8689 0,7006 0,4720 0,3181 0,2240 0,1238
Monte 
Carlo 0,9756 0,9248 0,8248 0,7199 0,6211 0,4462 0,8685 0,6991 0,4682 0,3066 0,2031 0,0989

Antithetic 0,9756 0,9249 0,8251 0,7202 0,6190 0,4457 0,8685 0,6994 0,4671 0,3062 0,2063 0,0992

1 i. Grid size = 1600; ii. 25 000 simulations for Monte Carlo; iii. 5000 simulations for antithetic 
variates due to its lower variance; iv. ∆t = 0,005 for simulation methods to achieve some degree of 
accuracy; v. ∆t for the FD methods is chosen such that using ½∆t decreased average ei by less than 
0,01. Specifically, ∆t equals: 0,01 for Hopscotch and implicit, 0,005 for explicit, 0,1 for ADI and 
0,25 for CN; and vi. ∆τ for the ODE methods is chosen as the maximum for which RMS = 0.
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 Check

τ

2 5 10 15 20 30
Runge 0,8619 0,6988 0,5120 0,3855 0,2930 0,1705
Euler 0,8619 0,6988 0,5120 0,3855 0,2930 0,1705
Taylor 0,8619 0,6988 0,5120 0,3855 0,2930 0,1705
Implicit (ODE) 0,8619 0,6988 0,5120 0,3855 0,2930 0,1705
CN (ODE) 0,8619 0,6988 0,5120 0,3855 0,2930 0,1705
Explicit 0,8620 0,6988 0,5117 0,3850 0,2925 0,1702
Implicit 0,8621 0,6990 0,5119 0,3851 0,2927 0,1703
CN 0,8620 0,6988 0,5117 0,3850 0,2926 0,1702
Hopscotch 0,8620 0,6989 0,5117 0,3850 0,2926 0,1702
ADI 0,8620 0,6989 0,5117 0,3850 0,2926 0,1702
Monte Carlo 0,8617 0,6960 0,5022 0,3714 0,2763 0,1535
Antithetic 0,8618 0,6957 0,5020 0,3724 0,2766 0,1539

5.1.3 The FD methods have higher levels of accuracy and quicker computational 
times than the simulation methods. The most efficient FD method is a minimum of 49,7 times 
more computationally efficient than the most efficient simulation method, while having a 
94,8 per cent lower MAE across the five parameter sets and 50,8 per cent lower MAE on 
average. The FD methods have greater consistency in accuracy across the five parameter 
sets. These results are consistent with the comparison between FD methods and simulation 
methods found in Boyle (1977) who proposes that simulation methods are computationally 
inefficient. These results are also consistent with those in Wilmott (2006) in which it is argued 
that for models containing less than four random factors, finite difference schemes are more 
efficient than simulation methods.

5.1.4 The Euler, CN, Taylor and Runge–Kutta ODE methods as well as the ADI 
and CN finite difference schemes (selected due to their apparent computational efficiency) 
are analysed further using fifty additional randomly selected sets of parameters as previously 
described. The accuracy and computational efficiency of these methods when applied to the 
randomly selected sets of parameters is summarised and compared in Table 4, with the full 
results available in Appendix C.

5.1.4 The relative ranking of theses numerical methods based on efficiency and 
accuracy does not differ between the parameter sets in Table 1 and the random parameter sets. 
The conclusions drawn above based on the results for the sets of parameters in Table 1 hold 
when considering the random selected sets of parameters. In particular, the ODE methods 
remain more efficient and accurate across the random parameter sets. In Table 4 it can be 
seen that the least efficient of the four ODE methods shown is more efficient than the most 
efficient FD method on average, while the most efficient ODE method is more than 400 times 
more efficient on average. Furthermore, the least accurate ODE method has a 98 per cent 
lower MAE than the most accurate FD method on average. An improvement in the accuracy 
of the FD methods causes a significant worsening of their already low relative efficiency.
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TABLE 3. RMS, MAE and total computation time (in seconds) taken over the six integer times 
to maturity for each numerical method used
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TABLE 4. Summary of accuracy and efficiency for 50 random parameter sets for selected numerical 
methods. Accuracy is measured using RMS and MAE and efficiency (labelled Time) is measured 
using total calculation time in seconds, calculated over 30 integer times to maturity τ = 1, …, 30. 2

Method Measure Mean Standard 
deviation Min 25th 

percentile Median 75th 
percentile Max

Runge–Kutta RMS 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0005
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time 0.0297 0.0066 0.0200 0.0300 0.0300 0.0300 0.0600

Euler RMS 0.0005 0.0014 0.0000 0.0000 0.0001 0.0002 0.0074
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time 1.3543 0.9049 0.0700 0.5280 1.3045 2.0235 3.3120

Taylor RMS 0.0004 0.0011 0.0000 0.0000 0.0001 0.0002 0.0054
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time 3.3387 3.2052 0.1300 1.1595 2.2400 4.7438 14.4500

CN ODE RMS 0.0004 0.0011 0.0000 0.0000 0.0001 0.0002 0.0048
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time 0.2703 0.1447 0.0800 0.1613 0.2160 0.3310 0.8000

ADI RMS 0.0205 0.0528 0.0003 0.0012 0.0032 0.0142 0.3284
MAE 0.0007 0.0005 0.0001 0.0003 0.0006 0.0008 0.0027
Time 12.9710 1.7857 12.6260 12.6973 12.7220 12.7473 25.4690

CN (FD method) RMS 0.0174 0.0460 0.0002 0.0013 0.0034 0.0124 0.2832
MAE 0.0006 0.0004 0.0001 0.0003 0.0005 0.0008 0.0022
Time 77.9153 23.7836 67.9311 68.1659 68.2941 68.5509 137.2282

5.2 ODE methods
5.2.1 As shown in Tables 3 and 4, the Runge–Kutta method is the most compu-

tationally efficient method for all sets of parameters considered. Table 5 further considers the 
relative efficiency of the ODE methods when requiring a greater degree of accuracy.

TABLE 5. Computation time taken in order to obtain estimated bond prices with ei < 0,00005 
for five sets of parameters at selected times to maturity

 SA (τ = 30) Brazil (τ = 5) USA (τ = 30) Arbitrary 
(τ = 30)

Check 
(τ = 10)

Cumulative 
sum

Runge–Kutta 0,00 0,00 0,00 0,00 0,00 0,01
Euler/Explicit 0,22 0,39 0,93 0,12 0,15 1,81
Taylor 0,43 7,69 0,45 0,95 0,01 9,53
Implicit 7,35 12,17 30 3,74 5,00 58,26
CN 0,01 0,01 0,03 0,08 0,05 0,18

2 i. Grid size = 1600 for the two FD methods; ii. ∆t for the two FD methods is the largest value for 
which a reduction in ∆t by a factor of two results in a reduction in ei by less than 0,01; and iii. ∆τ for 
the ODE methods is the maximum value for which ei < 0,001.
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5.2.2 The Runge–Kutta method estimates bond prices accurately (measured to 
six decimal places) in a computation time of less than 0,01 seconds for all 1 30τ≤ ≤  for all 
parameter sets in Table 1, on average 10 times quicker than the second most efficient method 
(determined separately for each parameter set). The Runge–Kutta method further estimates 
bond prices accurately (ei < 0,001) for all times 1 30τ≤ ≤  for 50 random parameter sets 
within 1.5 seconds. The other four ODE methods are compared in Figure 1 in addition to the 
results above by considering the rates of convergence to the true bond price (Runga–Kutta is 
excluded due to its efficiency making graphical comparison less relevant).

5.2.3 For each of the five parameter sets in Table 1, the relative efficiencies of 
the methods are consistent whether computation time is based on the time required to achieve  
an RMS of 0 or MAE of less than 0,0000005 (Table 3 and Table 5 respectively). The CN 
method converges quicker than the Euler method which in turn converges quicker than the 
implicit method (for all five parameter sets). The Euler method requires between two and six 
per cent of the computation time required by the implicit method. The efficiency of the CN 
method relative to the Euler method is less consistent, with the CN method requiring between 
two and 75 per cent of the computation time required by the Euler method. The efficiency of 
the Taylor method depends on the particular set of parameters. The Taylor method appears 
to be more efficient (relative to the efficiency of the other methods) if λ12 and λ21 are close to 
0, This is the case for the USA and check parameter sets, where the Taylor method is more 
efficient than the Euler method. On average, the CN method converges the second quickest 
of the ODE methods, although the Taylor method converges marginally quicker for the check 
parameter set. The efficiency of the CN method is due to the target level of accuracy being 
obtained using a larger Δτ than the explicit and Taylor methods, which appears to offset the 
complexity of needing to solve two simultaneous equations.

5.2.4 Similar results are obtained for the random parameter sets (the implicit 
method is excluded). The Runge–Kutta method is on average 8,9 times more efficient than 
the second most efficient method (determined independently for each parameter set). The 

FIGURE 1. Rates of convergence of the ODE methods (excluding Runge–Kutta), represented 

as the cube root of time taken (in seconds) plotted against 
1
3(100 )ie , for two sets of parameters 

at selected times to maturity

South Africa (τ = 30) USA (τ = 30)
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CN method is the second most efficient method for 84 per cent of the parameter sets, and is 
more efficient than the Euler method for 88 per cent of parameter sets. The CN method, on 
average, is 5,1 times more efficient than the Euler method and 17,8 times more efficient than 
the Taylor method. The relative ranking of the Taylor and Euler methods is dependent on 
the parameter set. On average, however, the Euler method is more efficient than the Taylor 
method, being 6,9 times more efficient on average and more efficient for 72 per cent of the 
parameter sets.

5.3 Finite difference scheme methods
5.3.1 Finite difference scheme methods can be adapted to non-affine models 

of the short rate, unlike the ODE methods which rely on the affine structure of the model 
considered in this paper (Shreve, 2004). We do not suggest the results in this paper will hold for 
non-affine models without having tested this assertion. We merely propose that the results may 
be of interest in spite of having previously shown the superior efficiency of the ODE methods. 
We further consider the results in comparison to the previous studies mentioned in ¶3.3.

5.3.2 The accuracy and efficiency of the five FD methods depends on both the 
grid size and Δt. An understanding of the accuracy of the FD methods is first considered in 
Table 6, after which the efficiency to achieve similar levels of accuracy is considered. Table 6 
represents how the accuracy of these methods changes for selected sets of parameters with an 
increase in the size of the grid and reduction in the size of the time step used Δt.

5.3.3 As can be seen in Table 6, assuming the same grid size is used that is not 
too small, the five FD methods converge to the same estimated bond price as Δt is reduced 
(referred to as the limited estimate in this paper), but the rate of convergence differs between 
the methods. The implicit and explicit methods converge to the limited estimate from 
opposite directions. The size of the grid determines the level of accuracy attainable with a 
reduction in Δt (i.e. the accuracy of the limited estimate). An increase in the size of the grid 
increases the accuracy of the limited estimate.

5.3.4 Given the five FD methods converge to the same estimated bond price for 
the same size of grid, the efficiency of the FD methods can be compared for a defined grid 
size. This is done in the following paragraphs. Although the relationship between grid size 
and accuracy is an important consideration in overall efficiency of the FD methods, it is not 
a core result of this paper apart from what is discussed in ¶5.3.10 and as such is explored in 
more detail in Appendix D.

5.3.5 Table 7 compares the efficiency of the FD methods for a defined grid size 
by comparing the computational time required to achieve a given level of accuracy through 
a reduction in Δt. The Δt required to achieve the defined level of accuracy is also shown.

5.3.6 The results in Table 7 are analysed in the paragraphs below, but the 
distinction between implicit1 and implicit2 is first considered as this impacts the results. For all 
parameter sets and times to maturity shown in Table 7, the implicit method has an estimated 
bond price that decreases towards the true bond price with a reduction in Δt but then away 
from the true bond price towards the limited estimate. The results labelled implicit1 are for 
Δt being selected as the maximum value for which ei is less than 0,0025 greater than that for 
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the limited estimate. The results labelled implicit2 are for Δt being selected as the maximum 
value for which the difference between the estimated bond price and the limited estimate is 
less than 0,0001. Implicit2 is preferred for comparison as the limited estimate is the estimated 
price to which the FD methods converge, and as such considered the base value around which 
comparisons of efficiency of the FD methods should be made. Comparisons of the implicit 
method in the following paragraphs refer to implicit2.

TABLE 6. Error, represented as ( ) ( )( )100 , ,P̂ t T P t T− , of the FD schemes for the selected 
parameter sets and τ for varying grid sizes and values of Δt

Method Δt

South Africa (τ = 30) Arbitrary (τ = 2) Check (τ = 10)

Grid size Grid size Grid size

100 400 1 600 100 400 1 600 100 400 1 600
Explicit 0,100 –0.20 –0.15 –5.76 –18.17 –1.90 –47.24 0.08 –0.17 –0.33

0,050 –0.16 –0.10 –5.69 –12.82 –0.16 –47.24 0.13 –0.11 –0.08

0,010 –0.12 –0.07 –0.02 4.21 –0.10 –0.05 0.18 –0.06 –0.04

0,005 –0.12 –0.06 –0.02 7.00 –0.09 –0.05 0.18 –0.06 –0.03

0,001 –0.11 –0.06 –0.01 9.22 –0.08 –0.04 0.19 –0.05 –0.03
Implicit 0,500 0.33 0.38 0.42 –41.98 0.69 0.72 0.75 0.52 0.54

0,250 0.11 0.16 0.21 –21.19 0.31 0.35 0.47 0.23 0.26

0,100 –0.02 0.03 0.07 –6.49 0.07 0.12 0.30 0.06 0.09

0,010 –0.10 –0.05 0.00 8.07 –0.07 –0.02 0.20 –0.04 –0.02

0,005 –0.11 –0.05 –0.01 8.93 –0.08 –0.03 0.19 –0.05 –0.02
CN 1,000 –0.13 –0.07 –0.03 –47.24 –0.08 –0.04 0.17 –0.08 –0.05

0,500 –0.11 –0.06 –0.02 –32.61 –0.08 –0.04 0.18 –0.06 –0.03

0,250 –0.11 –0.06 –0.01 –25.57 –0.08 –0.04 0.19 –0.05 –0.03

0,100 –0.11 –0.06 –0.01 –22.84 –0.08 –0.04 0.19 –0.05 –0.03

0,050 –0.11 –0.06 –0.01 –22.09 –0.08 –0.04 0.19 –0.05 –0.03
Hopscotch 0,500 –0.48 –1.45 –5.76 0.14 –3.07 –5.84 –0.22 –0.73 –3.15

0,250 –0.20 –0.40 –1.80 –16.59 –0.95 –2.99 0.09 –0.22 –0.69

0,100 –0.13 –0.11 –0.30 –19.49 –0.22 –0.56 0.17 –0.08 –0.13

0,010 –0.11 –0.06 –0.02 3.83 –0.08 –0.04 0.19 –0.05 –0.03

0,005 –0.11 –0.06 –0.01 6.83 –0.08 –0.04 0.19 –0.05 –0.03
ADI 1,000 –0.12 –0.07 –5.76 –47.24 –0.23 –1.15 0.18 –0.06 –0.03

0,500 –0.11 –0.06 –5.31 –23.88 –0.09 –0.04 0.19 –0.05 –0.03

0,250 –0.11 –0.06 –0.01 5.39 –0.08 –0.04 0.19 –0.05 –0.03

0,100 –0.11 –0.06 –0.01 12.59 –0.08 –0.04 0.19 –0.05 –0.03

0,050 –0.11 –0.06 –0.01 11.81 –0.08 –0.04 0.19 –0.05 –0.03
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TABLE 7. Computational times and accuracy for finite difference methods for a selection of 
times to maturity for the five sets of parameters3

Method Measure SA 
(τ = 30)

Brazil 
(τ = 5)

USA 
(τ = 15)

Arbitrary 
(τ = 10)

Check 
(τ = 10)

Sum of 
time RMS MAE

Implicit1 Δt 0,025 0,01 0,5 0,025 0,025    

Price 0,0576 0,5333 0,7203 0,4724 0,5120    

Time 2666,50 36,32 66,67 885,00 890,57 4545,06 0,0007 0,0000

Implicit2 Δt 0,025 0,005 0,05 0,005 0,005    

Price 0,0576 0,5332 0,7198 0,4721 0,5118    

Time 2667,60 68,23 663,27 4425,53 4427,00 12251,63 0,0008 0,0002

Explicit Δt 0,0025 0,0025 0,01 0,001 0,001    

Price 0,0574 0,5331 0,7197 0,4720 0,5117    

Time 1247,37 51,14 155,85 1038,52 1044,55 3537,43 0,0013 0,0003

Hopscotch Δt 0,005 0,01 0,025 0,005 0,01    

Price 0,0574 0,5331 0,7197 0,4720 0,5117    

Time 725,28 14,14 68,24 227,88 116,46 1151,98 0,0012 0,0003

CN Δt 0,25 0,25 1 1 0,25    

Price 0,0574 0,5331 0,7198 0,4720 0,5117    

Time 281,84 1,70 34,13 22,96 91,55 432,17 0,0012 0,0003

ADI Δt 0,25 1 1 0,25 0,5    

Price 0,0574 0,5334 0,7198 0,4720 0,5117    

Time 26,45 0,27 3,18 8,42 4,20 42,51 0,0012 0,0003

True Bond Price 0,0576 0,5333 0,7203 0,4724 0,5120  

5.3.7 Table 7 shows that the ADI method is the most computationally efficient of 
the FD methods across all five parameter sets, followed by the CN method. The Hopscotch 
method is more efficient than the explicit method. The implicit method is the least efficient 
method on average, with its theoretical stability not seeming to translate into improved 
computational efficiency. The time step required to obtain a given level of accuracy (relative 
to the limited estimate) is the largest for the CN and ADI methods, significantly larger than 
that required by the other three methods (based on the Δt values used for Table 7). This 
offsets the complexity of these two methods (although the ADI method is significantly less 
complex), resulting in their efficiency.

5.3.8 Based on the computation times in Table 7, the explicit method requires 
on average 38 per cent of the computation time required by the implicit method, while the 

3 i. Brazil parameter: grid size = 400; ii. Other parameter sets: grid size = 1600; iii. The ∆t value is 
chosen from: 1; 0,5; 0,25; 0,1; 0,05; 0,025; 0,01; 0,005; 0,0025; 0,001; iv. For the four methods other 
than the implicit method, the ∆t value used is the maximum for which ei is less than 0,0025 greater 
than that for the limited estimate.
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Hopscotch method requires on average 33 per cent of the computation time required by the 
explicit method. The ADI method requires on average 3.5 per cent of the computation time 
required by the Hopscotch method and 15 per cent of that required by the CN method. For 
the random parameter sets (Table 4), the ADI method is six times more efficient on average 
than the CN method with similar levels of accuracy.

5.3.9 As detailed in ¶3.3, Geske & Shastri (1985) showed the explicit method 
to take roughly 60 per cent of the computation time taken by the implicit method, while 
Hull & White (1990) argue that the explicit scheme uses between 40 and 70 per cent of the 
computation time of the implicit method. The results in this paper similarly show the explicit 
method to be computationally more efficient. The results in Table 7 show the explicit method 
requiring between 25 and 75 per cent of the computation time of the implicit method. Previous 
results when using these methods (see eg Cairns (2004)) further showed that the CN method 
converges more quickly than the explicit and implicit method, which is the result of this paper.

5.3.10 The analysis in ¶¶5.3.7 and 5.3.8 has shown the ADI method to be the 
most efficient of the FD methods. The efficiency of this method is considered in more detail 
in Table 8 to draw a comparison relative to the efficiency of the Runga–Kutta method (the 
most efficient ODE method). The efficiency is considered for the Brazil parameter set as 
the smallest grid size was required to achieve a given degree of accuracy for this set of 
parameters.

TABLE 8. True bond prices and estimated bond prices using the ADI method for the Brazil 
parameter set at selected times to maturity4

 τ = 2 τ = 5 τ = 10  τ = 15 τ = 20 τ = 30 MAE RMS Time

True price 0,7735 0,5333 0,2765 0,1404 0,0710 0,0181

Estimated price1 0,7736 0,5333 0,2764 0,1404 0,0710 0,0181 0,0000 0,0002 432,93

Estimated price2 0,7735 0,5333 0,2764 0,140 0,0710 0,0181 0,0000 0,0001 3857,21 

5.3.11 The ADI method is unable to obtain an RMS of 0 within one hour of 
computation time. This is in contrast to the Runge–Kutta method which obtains an RMS of 
0 within 0.01 seconds of computation time. Given the ADI is the most efficient of the FD 
methods, it can be concluded that the FD methods are unable to obtain the accuracy of the 
ODE methods (in this case measured as an RMS of 0) within a reasonable computation time.

5.4 Simulation methods
5.4.1 This section considers the simulation methods in more detail due to their 

flexibility. In particular consideration is given to the impact of the number of simulations and 
the size of the Δt on the accuracy and efficiency of the simulation methods. As mentioned 

4 i. Estimated price1: a grid size of 10 000 is used; ii. Estimated price2: a grid size of 40 000 is used; 
iii. ∆t is selected as the maximum value (from 0.25; 0.1; 0.05; 0.025; 0.01) such that the RMS is the 
same as the limited estimate; iv. Estimated price1: ∆t = 0.1; and v. Estimated price2: ∆t = 0.05
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previously, these impact the two causes of error in the estimated price ( )ˆ ,P t T  for the 
simulation methods. The number of simulations will determine the variation in the sample 
estimate of the expectation. Δt will determine the accuracy of the estimate as the discretisation 
error of the short rate and the error in estimating an integral with a discrete sum reduces as 
Δt → 0. The variation in the sample estimate as measured with standard deviation is analysed 
first. This is done by considering the change in the standard deviation of the estimates with 
a change in the number of simulations for a fixed Δt, enabling a comparison of the relative 
efficiency of the two simulation methods. The impact of Δt on the accuracy of the simulation 
methods is then considered in ¶¶ 5.4.5 and 5.4.6.

5.4.2 Table 9 below compares the reduction in the observed and theoretical 
standard deviations of the estimated bond price with an increase in the number of simulations 
the South African parameter set.

TABLE 9. Observed and theoretical standard deviations of the sample estimate of the bond 
price assuming τ = 10 for the SA parameter set using a varying number of iterations5

Method Measure 500 1000 2500 5000 10000 25000
Monte Carlo Sample σ 0,00576 0,00397 0,00262 0,00185 0,00113 0,00089

Theoretical σ 0,00563 0,00398 0,00252 0,00180 0,00126 0,00080

Difference 0,00013 –0,00001 0,00010 0,00005 –0,00013 0,00009
Antithetic 
variates

Sample σ 0,00189 0,00134 0,00084 0,00057 0,00042 0,00028

Theoretical σ 0,00185 0,00131 0,00083 0,00059 0,00041 0,00026

Difference 0,00004 0,00003 0,00001 –0,00002 0,00001 0,00002

5.4.3 Similar results to those in Table 9 were found when considering the Brazil 
(setting Δt = 10) and Check (setting Δt = 5) parameter sets, with the standard deviation 
of the estimated bond price being between 40 and 70 per cent lower using the antithetic 
variates method as opposed to Monte Carlo simulation, assuming the same Δt and number 
of simulations. Furthermore, the observed sample standard deviation does not differ 
significantly from the theoretical standard deviation of the estimated bond price in any of 
the parameter sets considered. The theoretical standard deviation is a quick measure of the 
number of simulations required to reduce the sample variance to within an acceptable limit, 
and highlights the inefficiency if very low standard deviation is required.

5.4.4 To achieve a variance reduction of 40 per cent in Monte Carlo simulation, 
the number of simulations and therefore the computation time must be increased by a 

factor of 
21 2.78

1 0.4
=

−
. The antithetic variates method increases the computation time of 

5 The theoretical standard deviations are calculated by reducing the sample standard deviation 
obtained for 250 simulations in proportion to the change in 1

N
.Δt of 0,01 is used.
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that required by Monte Carlo simulation by a factor of 2. It, therefore, has an estimated 
28 per cent lower computation time (based on assuming that it results in a 40 per cent lower 
variance than Monte Carlo simulation). Similarly, if the antithetic variates method results in 
a 70 per cent lower variance than Monte Carlo simulation, it will have an estimated 82 per 
cent lower computation time. It, therefore, has a computation time of between 28 and 80 per 
cent lower than that of Monte Carlo simulation in order to obtain the same level of variance 
in the estimated bond price. This is in spite of the antithetic variates method requiring 
approximately double the computation time of Monte Carlo simulation for the same Δt and 
number of simulations. This is as a result of the lower variance offsetting the doubling of the 
computation time.

5.4.5 The above has analysed the effect of increasing the number of simulations 
on the standard deviation of the estimate. For a given number of simulations, the accuracy of 
the estimates will depend on Δt. This is considered in Table 10.

TABLE 10. Error ei of the simulation methods at different time steps Δt
6

 South Africa (τ = 5) Brazil (τ = 10) Check (τ = 5)

Time step 0,50 0,10 0,01 0,50 0,10 0,01 0,005 0,50 0,10 0,01 0,005
Monte 
Carlo 0,35 0,17 0,01 1,53 0,42 0,08 0,07 1,64 0,78 0,23 0,18

Antithetic 0,38 0,10 0,01 1,57 0,46 0,13 0,09 1,71 0,55 0,40 0,33

5.4.6 The error decreases as the time step decreases. The level of accuracy, 
however, depends on the set of parameters considered. This is similar to the results in 
Table 2, where the average accuracy (using MAE) across the South African, Brazil and USA 
parameter sets is more than 10 times higher than that across the check and arbitrary parameter 
sets using the same Δt and number of simulations.

6. CONCLUSIONS

6.1 Numerical methods used to estimate the price of zero-coupon bonds in a two-factor 
CIR model were compared on the basis of accuracy and computational efficiency. Five ODE 
methods, five FD methods and two simulation methods were considered. The ODE methods 
were shown to be significantly more efficient, consistent and accurate than the FD methods, 
which in turn were more efficient, consistent and accurate than the simulation methods. The 
ODE methods can only be used in affine short-rate models, while the FD methods can be 
applied to many non-affine short-rate models (Shreve, 2004).

6.2 The Runge–Kutta method is the most preferred of the numerical methods considered, 
having the quickest computation time and highest accuracy for all parameters and times to 
maturity considered. The Runge–Kutta method is, on average, between nine and ten times 

6 Based on 25 000 simulations for Monte Carlo and 5 000 for antithetic variates
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more computationally efficient than the second most efficient method. This paper would 
suggest that the lower theoretical truncation error of the Runge–Kutta method translates into 
improved efficiency. The Crank–Nicolson ODE method is the second most computationally 
efficient method, while the relative efficiency of the Taylor and Euler methods is dependent on 
the parameter set considered. The implicit method is the least efficient of the ODE methods, 
in spite of its theoretical stability.

6.3 The FD methods are unable to obtain the same level of accuracy as the ODE methods 
in a reasonable computation time. This is the result of the accuracy of the FD methods being 
largely constrained by the size of grid used. The ADI method is the most efficient FD method 
and was on average six times more efficient than the Crank–Nicolson method, the second 
most efficient FD method. The use of the antithetic variates methods improved the efficiency 
of Monte Carlo simulation, but these two methods were the most inefficient.

6.4 The numerical methods used in this paper are some of the most commonly used 
numerical methods in mathematics of finance. In mathematics of finance derivative pricing, 
a bigger proportion of derivatives are over the counter traded and their prices sometimes 
may not be obtained in closed-form due to their exotic nature. Our paper contributes to the 
literature in terms of providing evidence that the chosen numerical methods, though applied 
to a particular bond pricing problem, could be used in cases where closed-form solutions 
either do not exist or are difficult to obtain using classical methods. We demonstrated the 
advantages of each method based on efficiency and accuracy. We acknowledge that recent 
numerical methods, eg Fast Fourier transform (FFT), Cosine method (COS) etc, require 
knowledge of the distribution or characteristic function of the underlying, which is one of 
their weaknesses.
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APPENDIX A
Yield curves

The following diagrams illustrate the shape of the yield curves arising from the five sets of 
parameters found in Table 1.

FIGURE 2. Yield curves for the five parameter sets

(a) South Africa

(c) USA

(e) Check

(b) Brazil

(d) Arbitrary
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APPENDIX B
Further	description	of	finite	difference	scheme	methods

B1. Description of how eq. (6) is obtained

B1.1 The transformation in eq. (5), as presented by Brennan & Schwartz (1979: 152), 
results in the following:

 Let 1
1 1

1
1 k y

θ =
+

; 10 1θ⇒ ≤ ≤

 Let 2
2 2

1
1 k y

θ =
+

; 20 1θ⇒ ≤ ≤

    1
1 1

1 1 1y
k θ
 

⇒ = − 
 

    2
2 2

1 1 1y
k θ
 

⇒ = − 
 

B1.2 The partial derivatives of f with respect to Y1 and Y2 as functions of θ1 and θ2 are 
obtained as follows:

 

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

21
1 1

1 1 1 1

22
2 2

2 2 2 2
2 2

2 2 2 2 4 2 3
1 1 1 1 1 1 1 1 1 12 2
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f f f k
y y
f f f k
y y

f f f f fk k k k k
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f f f fk k k
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θ
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θ θ
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θ
θ θ

θ θ θ θ θ
θ θ θ θθ

θ θ θ
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= = −

∂ ∂ ∂ ∂
∂∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = = +   ∂ ∂ ∂ ∂ ∂∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂
= − = =   ∂ ∂ ∂ ∂∂ ∂   

( )2 4 2 3
2 2 2 22

22
2 fk kθ θ

θθ
∂

+
∂

B1.3 It is now possible to specify eq. (2) in terms of θ1 and θ2 as follows: 

 

[ ] [ ]

[ ]
1

2 1 1 1 2 2

2

2
0 1 1 2 2 1 1 1 11 1 12 2

2 2 4 2 3 2 4
2 2 2 21 1 22 2 1 1 1 1 1 1 2 2 2

2 3
2 2 2

1 1
2 2

0

ty y f f f k y y

f k y y f y k y k f f y k

y k f

θ

θ θ θ θ θ θ

θ

δ δ δ θ µ λ λ

θ µ λ λ θ θ θ

θ

− + + + − − − −

− − + + + +

=

 (9)

Eq. (6) is subsequently obtained using  a0, a1, a2, b1 and b2 for notational compactness.
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B2. Initial conditions

B2.1 The initial conditions are found by substituting 1 0y =  and/or 2 0y =  ( 1 1θ =  and/or 
2 1θ = ) into eq. (9), resulting in the second order partial derivative 

1 1
fθ θ  and/or 

2 2
fθ θ  terms 

falling away as their co-efficient becomes 0.

B2.2 If 1 1θ = , eq. (9) becomes:

 [ ] [ ] [ ]
1 2 2 2 2

2 2 4 2 3
0 2 2 1 1 12 2 2 2 2 22 2 2 2 2 2 2 2

1 0
2ty f f f k y f k y f y k y k fθ θ θ θ θδ δ µ λ θ µ λ θ θ− + + − − − − + + =

B2.3 If 2 1θ = , eq. (9) becomes:
 
[ ] [ ] [ ]

1 2 1 1 1

2 2 4 2 3
0 1 1 1 1 1 11 1 2 2 21 1 1 1 1 1 1 1

1 0
2ty f f f k y f k y f y k y k fθ θ θ θ θδ δ θ µ λ µ λ θ θ− + + − − − − + + =

B2.4 If 1 1θ =  and 2 1θ = , eq. (9) becomes:

  [ ] [ ] [ ]
1 20 1 1 2 2 0tf f f k f kθ θδ µ µ− + − − =

B2.5 The boundary conditions as 1y →∞  and/or 2y →∞  ( 1 0θ →  and/or 2 0θ → ) are 
obtained based on the method used by Brennan & Schwartz (1979) as below.

B2.6 Firstly, specify eq. (9) as:
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  (10)

B2.7 To obtain the boundary condition when 1 0θ =  and 2 0θ = , multiply eq. (10) by 

1 1 2 2

1 2
;

k kmin θ θ
δ δ

 
 
 

 and take the limit as 1 20; 0θ θ→ → . All terms fall away except for the 

coefficient of f. As such 00 0tU =  for all t T< .
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B2.8 To obtain the boundary condition when 1 20; 0θ θ= > , multiply eq. (10) by 1 1k θ  and 

take the limit as 1 0θ → . Eq. (10) reduces to 
2

2
1 21 2 2 0f f kθδ λ θ− + = . Using the condition that 

00 0tU = , iteratively it is obtained that 0 0t
jU =  for all t T< . Similarly it can be shown that 

0 0t
iU =  for all t T< .

B3. Notation
The following notation is used in the following sections. 
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;
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B4. Approximations used in discretisation of eq. (6) for the FD methods
The following approximations are used in discretising eq. (6) to obtain eq. (7) and 

eq. (8). Backward differences are used for 
1

fθ , 
2

fθ  and tf  while central second differences are 
used for 

2 2
fθ θ  and 

1 1
fθ θ .
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B5. Solving for t
ijU  in the explicit method

B5.1 The explicit method is developed from Cairns (2004:169). The value of t
ijU  for 0 < i, 

j < n is found using eq. (7) as follows: 

  ( ) ( ) ( ) ( ) ( )1 2 1 21 1 1 11t t t t tt t t t tt
ij ij t t i j i j i j i jU U c e U e U d U d U+∆ +∆ +∆ +∆ +∆

+ + − −
 = − ∆ + ∆ + + +  

.

B5.2 The value of t
inU  for 0 i n< <  is found using eq. (7) as follows: 

  ( ) ( ) ( ) ( )1 1 21 1 11t t t tt t t tt
in in t t i n i n i nU U c e U d U d U+∆ +∆ +∆ +∆

+ − −
 = − ∆ + ∆ + +   .

B5.3 The value of t
njU  for 0 j n< <  is found using eq. (7) as follows: 

  ( ) ( ) ( ) ( )2 1 21 1 11t t t tt t t tt
nj nj t t n j n j n jU U c e U d U d U+∆ +∆ +∆ +∆

+ − −
 = − ∆ + ∆ + +  

.

B6. Solving for t
ijU  in the implicit method

B6.1 The implicit method is developed from Cairns (2004:170). Eq. (8) for 0 < i, j < n can 
be represented as: 

 ( ) ( ) ( ) ( ) ( )1 2 1 21 1 1 11 0ttt t t t t
ij t ij t i j i j i j i jU c U e U e U d U d U+∆

+ + − −
 − − ∆ + + ∆ + + + =  .

B6.2 Eq. (8) for 0 i n< <  and j n=  can be represented as: 

  ( ) ( ) ( ) ( )1 1 21 1 11 0ttt t t t
in t in t i n i n i nU c U e U d U d U+∆

+ − −
 − − ∆ + + ∆ + + =  .

B6.3 Eq. (8) for 0 j n< <  and i n=  can be represented as: 

  ( ) ( ) ( ) ( )2 1 21 1 11 0ttt t t t
nj t nj t n j n j n jU c U e U d U d U+∆

+ − −
 − − ∆ + + ∆ + + =  .

B6.4 The above system of equations is solved simultaneously to obtain t
ijU  for 0 < i, 

j ≤ n as 1U Q X−=  where Q is an n2 × n2 co-efficient matrix and X is an n2 × 1 target matrix, 
obtained from the equations above. Each row and column index x in Q and each row index 
x in X specifies the value relating to the ( ),i j  grid point as follows: 1x =  is point grid point 
(1,1), 2x =  is point grid point (1,2), …, x n=  is point grid point (1,n), 1x n= +  is point grid 
point (2,1), …, 4 1x n= −  is point grid point ( ), 1n n −  and 4x n=  is point grid point (n, n).
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B7. Solving for t
ijU  in the CN method

B7.1 The CN method is developed from Cairns (2004:172). The discretised version of 
eq. (6) used for the CN method is:

  

( ) ( ) ( )

( ) ( )
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 + +
 ∆ ∆
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 ∆ ∆
 

( ) ( ) ( ) ( )

2 2
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2 2 2

2 2
0

t t tt t t t t t
ij iji j i j i j i jU U U U U U

b
θ θ

+∆ +∆ +∆
+ − + −

 − + − +
 + =
 ∆ ∆
 

 (11)

  .

B7.2 Eq. (11) for 0 ,i j n< <  can be represented as: 

  ( ) ( ) ( ) ( ) ( )1 2 1 2 11 1 1 12t t t t t
ij t t i j i j i j i jU c e U e U d U d U x+ + − −

 − − ∆ + ∆ + + + = −  .

B7.3 Eq. (11) for 0 i n< <  and j n=  can be represented as: 

  ( ) ( ) ( ) ( )1 1 2 21 1 12t t t t
in t t i n i n i nU c e U d U d U x+ − −

 − − ∆ + ∆ + + = −  .

B7.4 Eq. (11) for 0 j n< <  and i n=  can be represented as: 

  ( ) ( ) ( ) ( )2 1 2 31 1 12t t t t
nj t t n j n j n jU c e U d U d U x+ − −

 − − ∆ + ∆ + + = −  .

where x1, x2 and x3 are:

  ( ) ( ) ( ) ( ) ( )1 1 2 1 21 1 1 12t t t t tt t t t t
ij t t i j i j i j i jx U c e U e U d U d U+∆ +∆ +∆ +∆ +∆

+ + − −
 = − ∆ + ∆ + + +  

  ( ) ( ) ( ) ( )2 1 1 21 1 12t t t tt t t t
in t t i n i n i nx U c e U d U d U+∆ +∆ +∆ +∆
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 = − ∆ + ∆ + +  

  ( ) ( ) ( ) ( )3 2 1 21 1 12t t t tt t t t
nj t t n j n j n jx U c e U d U d U+∆ +∆ +∆ +∆

+ − −
 = − ∆ + ∆ + +  

.

The above system is solved as in the implicit method.
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B8. Solving for t
ijU  in the Hopscotch method

B8.1 The Hopscotch method is developed from Wilmott (2006:1260). t
ijU  is calculated as 

in section B5 in the first stage of each iteration. t
ijU  is calculated as follows in the second 

stage of each iteration, using the values calculated in the first stage:

B8.2 The value of t
ijU  for 0 ,i j n< <  is found as follows: 

  ( ) ( ) ( ) ( ) ( )1 2 1 21 1 1 11ttt t t t t
ij ij t t i j i j i j i jU U c e U e U d U d U+∆

+ + − −
 = − ∆ + ∆ + + +  .

B8.3 The value of t
inU  for 0 i n< <  is found as follows: 

  ( ) ( ) ( ) ( )1 1 21 1 11ttt t t t
in in t t i n i n i nU U c e U d U d U+∆

+ − −
 = − ∆ + ∆ + +  .

B8.4 The value of t
njU  for 0 j n< <  is found as follows: 

  ( ) ( ) ( ) ( )2 1 21 1 11ttt t t t
nj nj t t n j n j n jU U c e U d U d U+∆

+ − −
 = − ∆ + ∆ + +  .

B9. Solving for t
ijU  in the ADI method

B9.1 The ADI method is developed from Wilmott (2006:1259). The discretised version of 
eq. (6) used for the ADI method if θ1 is solved implicitly is:
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 (12)

B9.2 The discretised version of eq. (6) used for the ADI method if θ2 is solved implicitly is: 
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 (13)

B9.3 The values for t
ijU  for 0 < i, j ≤ n are solved simultaneously using the above set of 

equations. Each iteration contains n sets of n simultaneous equations. Each set of simultaneous 
equations relates to solving t

ijU  for 0 i n< ≤  and fixed j if θ1 is solved implicitly, solved as 
1

1 1U Q X−= . Each set of simultaneous equations relates to solving t
ijU  for 0 j n< ≤  and fixed 
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i if θ2 is solved implicitly, solved as 1
2 2U Q X−= . Q1 and Q2 are n × n co-efficient matrices 

obtained from eq. (12) and eq. (13) above. X1 and X1 are n × 1 target matrices obtained from 
eq. (12) and eq. (13) above. Each row and column index x in Q1 and each row index x in X1 
specifies the value relating to the ( ),i j  grid point for fixed j and 0 i n< ≤ . Each row and 
column index x in Q2 and each row index x in X2 specifies the value relating to the ( ),i j  grid 
point for fixed i and 0 j n< ≤ .
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APPENDIX C
Results	of	the	fifty	random	parameter	sets
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APPENDIX D
Impact of grid size on computation time for FD methods

D1. The overall efficiency of the FD methods is dependant on the grid size. An increase 
in the size of the grid increases the accuracy of the limited estimate but also increases the 
computational time of the method. The tables below consider the change in the computation 
time with a change in the size of the grid for selected sets of parameters at selected times to 
maturity. The multiplier represents the factor at which the computational time for a given 

size of grid increased relative to the previous grid size, i.e. 1i

i

T
T
+  where iT  represents the 

computational time for grid size i. The average multiplier is an average of these values.

TABLE 12. Computation times for USA with τ = 28

Grid size
Multiplier Average 

multiplier 100 400 1 600 6 400
Explicit 2,58 10,54 42,73 170,70 4,08 4,05 3,99 4,04

Implicit 1,64 15,40 443,01 28758,49 9,39 28,76 64,92 34,35

CN 0,02 0,19 4,61 288,00 9,50 24,24 62,53 32,09

Hopscotch 1,40 5,79 23,06 98,63 4,14 3,99 4,28 4,13

ADI 0,06 0,21 0,85 3,61 3,50 4,05 4,24 3,93

TABLE 13. Computation times for South Africa with τ = 108

 Grid size
Multiplier Average 

multiplier100 400 900 1 600 2 500

Explicit 6,39 26,18 59,39 108,40 167,29 4,10 2,27 1,83 1,54 2,43

Implicit 3,92 39,65 252,10 1109,51 3994,09 10,10 6,36 4,40 3,60 6,12

CN 0,11 0,96 5,45 22,91 82,39 8,65 5,68 4,20 3,60 5,53

Hopscotch 3,53 14,36 32,62 58,25 90,65 4,07 2,27 1,79 1,56 2,42

ADI 0,14 0,52 1,21 2,18 3,31 3,71 2,33 1,80 1,52 2,34 

D.2 The computation time for the explicit, Hopscotch and ADI methods increase largely 
in direct proportion to an increase in the grid size as shown above in Tables 12 and 13. The 
computation time for the implicit and CN methods increases exponentially with an increase in 
grid size as a result of needing to create an n × n matrix to solve the n simultaneous equations, 
where n is the size of the grid. If an increase in the level of accuracy of the limited estimate is 
required (and subsequently a larger grid size needs to be used), the CN and implicit methods 

8 The values for ∆t used are as follows: i. ∆t = 0,005 for the explicit method; ii. ∆t = 0,01 for the 
Hopscotch and implicit methods; iii. ∆t = 0,5 for the ADI method; and iv. ∆t = 1 for the CN method.
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will become relatively less efficient. The CN method may, therefore, become more inefficient 
than the explicit and Hopscotch methods if an increase in the accuracy of the limited estimate 
is required.




