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ABSTRACT
In this paper, we propose a stochastic investment model for actuarial use in South Africa by modelling 
price inflation rates, share dividends, long-term and short-term interest rates for the period 1960–
2018 and inflation-linked bonds for the period 2000–2018. Possible bi-directional relations between 
the economic series have been considered, the parameters and their confidence intervals have been 
estimated recursively to examine their stability, and the model validation has been tested. The model 
is designed to provide long-term forecasts that should find application in long-term modelling for 
institutions such as pension funds and life insurance companies in South Africa
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1. INTRODUCTION

1.1 Economic scenario generators (ESGs) are computer-based models used for joint 
simulation of integrated economic series such as price inflation, interest rates, gross domestic 
product, stock prices and foreign-exchange rates by including the interaction of the series. 
These stochastic models provide the necessary economic output for modelling of liabilities 
that financial institutions require. It is expected that an ESG should include the production of 
simulation results which reflect certain financial variables and relevant views of the economy. 
It should include some extreme but plausible results and produce scenarios reflecting realistic 
market dynamics.

1.2 Campbell et al. (2016) present an extensive review on the nature of ESGs by providing 
definitions, how they evolved and how they address the needs in the insurance and pension 
industries. They discuss the required features of a good ESG as well as providing a detailed 
guidance on crucial aspects of the financial market specification, model calibration and 
validation. The increased utilisation of ESGs is derived by two common applications: real-
world and market-consistent models. Real-world models are concerned with future potential 
paths of economic variables and their influence on capital and solvency while the market-
consistent models are more concerned with mathematical relationships within and among 
financial instruments.

1.3 The range of application of ESGs might require the use of different types of models 
which leads a discussion between the use of the real-world and market-consistent models. 
The real-world simulation aims to capture market dynamics, risks and returns in a way 
that the financial institutions or insurance companies experience them. They also enable 
the exploration of the likelihood of future events and their financial impacts. The market-
consistent models provide a tool for valuing cash flows which depend upon stochastic 
financial variables. Although it is preferable that an ESG should address a broad range of 
applications involving both real-world and market-consistent scenarios, one should have 
a comprehensive understanding of the specific applications and whether the applications 
require real-world or market-consistent scenarios, or both (Campbell et al., 2016).

1.4 One of the early ESGs which is specifically designed for actuarial applications is the 
Wilkie stochastic investment model (Wilkie, 1986, 1995; Wilkie et al., 2011). The Wilkie 
model is an open access ESG and it is the first comprehensive model designed to be used in 
the actuarial profession. The original Wilkie model was developed from United Kingdom 
(UK) data over the period 1919–1982, and was made up of four interconnected models for 
price inflation, share dividend yields, share dividends and long-term interest rates. Wilkie 
(1995) updated the original model and extended it to include an alternative autoregressive 
conditional heteroscedastic (ARCH) model for price inflation, and models for wage inflation, 
short-term interest rates, property yields, and income- and index-linked yields. Furthermore, 
these models were fitted to data from several developed countries and an exchange rate model 
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was proposed. The model was updated in Şahin et al. (2008), Wilkie et al. (2011) and several 
futures of the stochastic investment models as well as additional economic data (earnings) 
have been analysed in the series of papers Wilkie & Şahin (2016, 2017a, 2017b, 2017c, 2018, 
2019).

1.5 There is well-developed literature on real-world ESGs, particularly discussing and 
criticising the Wilkie model as well as introducing similar models for different countries. 
Especially in the ten years following its publication many other stochastic investment models 
were developed in various ways. In this introduction, we consider mainly the real-world 
ESGs developed for different countries such as Finland, UK, Australia, Ghana, the United 
States of America (USA) as well as paying specific attention to the South African literature.

1.6 Ranne (1998) proposed a stochastic investment model based primarily on Finnish 
data, and different from the Wilkie model, he inserted a variable representing the economic 
cycles derived from the real growth rate of the gross national product. Yakoubov et al. (1999) 
introduced a stochastic investment model which is the first fully published model to use 
earnings rather than dividends to generate price returns. Whitten & Thomas (1999) suggested 
a non-linear model to introduce threshold modelling to the actuarial profession and illustrate 
how this can complement or replace methods based on ARCH. Chan (2002) adopted the 
multiple time-series modelling approach, a general vector autoregressive moving average 
(VARMA) model for the outlier adjusted UK investment data. The model is recommended 
for actuarial applications not involving extreme stochastic fluctuations. Sherris & Zhang 
(2009) proposed a multivariate regime-switching vector autoregressive model which 
is calibrated to Australian data for the period 1979–2006. Eleven economic variables 
representing main financial and economic series have been considered. They explore vector 
autoregressive (VAR), univariate and multivariate regime-switching models and illustrate 
the relative performance of the models using simulation. It is concluded that the regime-
switching approach incorporated into the VAR model structure displays better performance 
when compared to unconditional historical distributions of the data series used in the model.

1.7 Beside those various ESGs, there are several research papers that compare these types 
of models such as Harris (1995), Huber & Verrall (1999), Lee & Wilkie (2000), Rambaruth 
(2003) and Nam (2004). All these papers follow different methods to compare the models 
including re-estimating the parameters on the same interval, applying some model validation 
tests (independence, normality, likelihood), stability of the model parameters, calculating 
contingency reserves for specific contracts and forecasting by simulation.

1.8 Two recent papers, Tee & Ofosu-Hene (2017) and Zhang et al. (2018) compare and 
discuss the performance of the models for Ghana and the US. Tee & Ofosu-Hene (2017) 
fit and compare three actuarial stochastic asset models, namely the Wilkie model, the 
Wilkie ARCH model and Whitten & Thomas (1999) model to Ghanaian economic data. 
The analysis indicates that the investment series used in the paper are non-stationary, the 
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simulated values using the Wilkie model produce similar characteristics to the historical data, 
the Wilkie model has a relatively better parsimony and ready economic interpretation while 
the Whitten & Thomas model produces simulated values with minimal forecast error. On the 
other hand, Zhang et al. (2018) update the Wilkie’s ESG to 2014 using US data and examine 
the stationarity assumptions and parameter stability considering the structural breaks to 
analyse the performance of the model. They conclude that inflation violates the stationarity 
assumption and the parameters are sensitive to the calibration period. The out-of-sample 
backtest based on 30 years of data indicates that the model tends to overestimate inflation 
due to the structural shift in inflation targeting policy in the early 1990s and underestimates 
total return on stocks due to the dot-com bubble in the 1990s while it performs relatively 
well for long-term interest rates. Compared to a generically constructed ESG, the Wilkie 
model generates a wider range of scenarios for inflation and long-term interest but a narrower 
range for stock returns. While the Wilkie model might under-represent risk in long-term 
stock investment, particularly for tails, it is quite suitable to use for pension plans since the 
pension assets are relatively passively invested, so the annual time step suffices.

1.9 As mentioned, we focus on South African stochastic investment models in this paper 
since the aim is to construct an updated stochastic investment model based on South African 
data to be used in long-term forecasting of economic variables for actuarial use.

1.10 The first comprehensive stochastic investment model for South Africa was introduced 
by Thomson (1996). The series modelled by Thomson were price inflation, short-term and 
long-term interest rates, dividend growth rates, dividend yields, rental growth rates and rental 
yields. No exogenous variables were included as in the Wilkie model, and the model was 
intended to be used in asset-liability modelling of South African defined benefit pension 
funds. Unlike Wilkie’s model, Thomson’s model was designed for projections of not more 
than ten years as having much shorter years of data available for South Africa (1960–1993). 
Due to the stationarity condition for the Box & Jenkins methodology (Box & Jenkins, 1976), 
Thomson used prewhitened variables for his modelling work. Although it has a cascade 
structure, the order of the influence is different from the one in the Wilkie model. Thomson 
(1996) expresses his reservations about the validity of the model paucity of the data and he 
emphasises that it would be necessary to modify the model as time passes.

1.11 Thomson & Gott (2009) developed a long-term equilibrium model for South Africa 
which is different from the above descriptive stochastic investment models. They emphasise 
that the issues of arbitrage and equilibrium are generally not addressed and the models tend 
to be based on ex-post estimates. They argue that these descriptive models might produce 
risk-adjusted expected returns that exceed those of the market for some asset categories and 
understate those of the market for others. Therefore, they proposed an equilibrium model 
based on the returns on risk-free zero-coupon bonds both index-linked and conventional and 
on equities, as well as the inflation rate. The model is developed in discrete (nominally annual) 
time with an allowance for processes in continuous time subject to continuous rebalancing. 
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The model is used as the basis for development of the arbitrage-free equilibrium model of its 
constituent asset categories.

1.12 Research in the area of stochastic models for actuarial use in South Africa is limited. 
Maitland (1996) reviews the Thomson model from a statistical and economic perspective. 
The paper was the first to do so and is largely critical of the Thomson model (developed as 
a forecasting tool) and concludes that the model should not be used in practical applications 
such as projections. The paper cited problems with the model structure identification as well 
as the method of estimating model parameters.

1.13 Maitland (1997) considers various descriptive models for variables such as inflation, 
equity dividend yields and dividend growth rates. The models presented are descriptive only 
and hence cannot be applied for projections. Maitland (2000) provides support for modelling 
the South African long-bond yield and the short rate as proposed by Thomson (1996). The 
paper provides a methodology for constructing the South African yield curve from these 
modelled yields using the first and second principal components.

1.14 Maitland (2010) presents a new stochastic model for South African equities, long- and 
short-term interest rates and inflation. He recommends modelling the total return on equities 
instead of modelling equity dividend yields and growth rates separately. He recommends 
a regime-switching model and introduces a Markov switching framework. Parameters are 
estimated using historical data. The model is descriptive  and does not incorporate theoretical 
considerations.

1.15 In this paper, we introduce an updated “real-world” stochastic investment model 
for long-term actuarial application for South African use. Thomson (2013) discusses the 
assumption of “ergodicity” which states that the time series estimates serve as the unbiased 
estimators of the considered parameters. On this basis, we can categorise our model as an 
ESG based on the assumption of ergodicity. We use the phrase “real-world” model for our 
ESG with some reservations since it is both based on the data and the implicit theory of the 
Wilkie model. Although we referred to the Wilkie model in each economic series considered 
in our model, we tried to find the best model for the available data. Therefore, some of the 
economic variables produced different model structures to the Wilkie model. We consider 
the interaction between different economic series namely price inflation, share prices, share 
dividends, share dividend yields, long-term and short-term interest rates, and inflation-linked 
bonds.

1.16 Following this introduction, the paper is structured as follows. Section 2 explains the 
methodology applied and the structure of the model. Sections 3 to 8 introduce the models, 
parameter estimates, model validation analysis and examine the parameter stability. Sections 9 
and 10 present the backtesting analysis and a brief insight for the practical implementations. 
Finally, Section 11 concludes the paper.
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2. METHODOLOGY AND THE STRUCTURE OF THE MODEL

2.1 The model proposed in this paper is based on Box–Jenkins (1976) time series models. 
The parameters are estimated by using the maximum likelihood method calculated by a non-
linear optimisation method, the Nelder–Mead simplex method, by using R programming 
language. All economic variables used in the model are stationary based on Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test (1992) except dividend yields, which can be considered 
as stationary with 1% significance level. Some of the series are treated as if co-integrated, 
such as the logarithm of the share dividends and share prices as the difference gives the share 
dividend yields.

2.2 We use the annual June values for the period of 1960–2018 except for the inflation-
linked bonds data which is available for 2000–2018. The main contribution of our paper is to 
develop an updated ESG based on South African data. Since we use 57–58 years of data for 
most of the economic variables considered in the model, our model can be used for long-term 
forecasting for actuarial purposes which cannot be done by the predecessor of this model 
introduced by Thomson (1996) due to the data restriction. This paper is the first to consider 
more than 50 years of data in South Africa to construct an ESG.

2.3 The fitted models for each economic series have been chosen among the candidates 
by applying some statistical tests on the residuals as model validation. The residuals have 
been analysed by calculating the auto-correlation functions, skewness and kurtosis as well as 
the Jarque–Bera test to check if they are independent and identically distributed (iid) normal 
variates. The models producing higher log-likelihood values have been chosen over the ones 
which produce lower values.

2.4 The stochastic investment models which are designed for long-term applications 
should be analysed in terms of the stability of the parameters since the estimated parameters 
are assumed to be constant for the forecast period. We examine the parameter stability for 
each economic series separately by giving the details for a price inflation model in Section 
3 and presenting the results for the remaining series in Appendix A. As suggested by Huber 
(1997) and Wilkie et al. (2011), we investigate the parameter constancy of the models by 
recursively estimating the parameters on incrementally larger datasets and present 95% 
confidence intervals.

2.5 As a final model validation analysis, we use the selected models based on the period 
1960–2018 for each economic series and estimate the parameters for a shorter period of data, 
1960–2008. Then, we use those parameters to forecast the remaining 10 years for each series 
and construct 95% and 99% forecast intervals to analyse the fore casting performance of our 
model. Although the model is designed for long-term applications, due to the data restrictions 
the backtesting is illustrated only for the last 10 years.



© ASSA licensed under  4.0 | SAAJ 20 (2020)

 A STOCHASTIC INVESTMENT MODEL FOR ACTUARIAL USE IN SA | 55

2.6 The series in the model are correlated and the model has a cascade structure. Figure 1 
illustrates the structure of the model where the arrows indicate the direction of influence. 
Dotted arrows for share prices indicate that the share prices have not been modelled directly 
but derived from the models of share dividends and share dividend yields. The dotted arrow 
from long-term interest rates towards the inflation-linked bond rates indicates a possible 
statistically significant effect although the model involving short-term interest rates can be 
preferred to derive the inflation-linked bond rates as explained in the relevant section. One 
can see from the figure that the complete model is wholly self-contained. The only inputs are 
the separate white noise series, and no exogenous variables are included.

2.7 As in the Wilkie model, price inflation is the driving force because it affects the share 
dividends and dividend yields as well as the interest rates. We use subscripts to distinguish 
the series: q for price inflation, y for dividend yields, d for dividends, c for long-term bond 
yields, b for short-term bond yields and r for inflation-linked bond yields.

3. PRICE INFLATION

3.1 To model the price inflation we use the South African Consumer Price Index (CPI) 
data which is provided by Statistics South Africa (2019). We model the force of inflation as 
a stationary autoregressive process. Denoting the value of CPI at time t as ( )Q t , we calculate 
the force of inflation over the year ( 1,t t− ), ( )q tδ , as

  ( ) ( ) ( )( )1 . qQ t Q t exp tδ= − , (1)

so that ( ) ( ){ } ( ){ }1q t ln Q t ln Q tδ = − − .

3.2 South Africa formally introduced inflation-targeting in February 2000. Since then, 
South Africa’s Monetary Policy Committee has conducted its monetary policy to keep 
inflation within a target band of 3–6% (Monetary Policy Review, 2019). The reason for 

FIGURE 1. Structure of the model
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introducing the target ranges is to have a degree of flexibility for absorbing shocks outside 
the control of the authorities. The consumer price index, ( ),Q t  from 1959 to 2018 and the 
annual differences in the logarithms ( )q tδ , are shown in Figure 2. Although it is not clear in 
Figure 2 whether the monetary policy is successful for the period 2004–2008 due to very low 
and high values, percentage changes in the 12 months particularly after 2008 show that the 
average rate of increase in consumer prices, i.e. the bands together with the actual inflation 
rates, are achieved (South African Reserve Bank, 2019).

3.3 The force of inflation ( )q tδ  which is defined as the difference in the logarithms of the 
CPI each year, is modelled as a first order autoregressive (AR) series as given in Equation (2). 
An AR(1) model is a statistically stationary series for suitable parameters, which means that 
in the long run the mean and variance are constant. We define the model as below.

  ( ) ( )( ) ( )1q q q q q qt µ a t µ tδ δ ε= + − − + , (2)

  ( ) ( ).q q qt z tε σ= ,  (3)

  ( ) ( )~ 0,1qz t iidN , (4)

where μq is the long-run mean, aq is the autoregressive parameter, σq is the standard deviation 
of the residuals and ( )qz t  is a series of independent, identically distributed unit normal 
variates. The model states that each year the force of inflation is equal to its mean rate, μq, 
plus some proportion, aq, of last year’s deviation from the mean, plus a random innovation 
which has zero mean and a constant standard deviation, σq.

3.4 The model validation has been analysed by applying some statistical tests on the 
residuals. The autocorrelation coefficients of the residuals, rz, and squared residuals, 2

zr , show 
nothing unusual, i.e. residuals can be considered to be independent and there is no simple 
autoregressive conditional heteroskedasticity effect. The skewness and kurtosis coefficients, 
based on the third and fourth moments of the residuals, are close to the theoretical values 

FIGURE 2. Consumer Price Index (CPI), 1959–2018
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of the normal distribution (zero for skewness and 3 for kurtosis). A composite test of the 
skewness and kurtosis coefficients, the Jarque–Bera test statistic is 0.2191 for the observation 
period, which should be compared with a 2χ  variate with two degrees of freedom. The 
p-value is 0.90 and therefore, the normality assumption holds.

3.5 Parameter stability
3.5.1 As mentioned in Section 2 we investigate the parameter constancy of the 

models by recursively estimating the parameters on incrementally larger datasets. Figure 3 
presents these recursive estimates and 95% confidence intervals of μq, aq and σq, for earlier sub-
periods (datasets start in 1985) and later sub-periods (datasets end in 2018) for the price inflation 
model. Sub-periods with fewer than 25 observations for the early periods and 10 observations 
for the later periods are omitted in this case to obtain reasonable parameter values.

3.5.2 Solid lines show the parameter estimates and the dotted lines show the 
95% confidence intervals in Figure 3. These are based on an assumption that the parameter 
value is distributed normally, and are calculated as the estimated value plus or minus 1.96 
times the calculated standard error.

3.5.3 The heavy lines show the estimated values of μq, aq and σq for periods 
starting in 1960 and ending in the given year. The graphs begin with the period ending in 
1985, for which there are 25 observations from which to estimate the parameters. Over this 
period, we see that the estimated value of μq is 11.03% and increases up to 16.17% in the next 
four years. Then it steadily decreases with small distortions and end with 8.09% (the long-
term mean) in 2018.

TABLE 1. Estimates of parameters and standard errors (in brackets) of 
AR(1) model for inflation over 1960–2018

Inflation model (1960–2018)
δq(t) AR(1)
uq 0.0809 (0.0185)
aq 0.8433 (0.0670)
σq 0.0220 (0.0020)

Log likelihood 139.05

( )1zr –0.119

( )2 1zr –0.043

skewness 1β –0.1031

kurtosis β2 2.7841

Jarque–Bera χ2 0.2191

p(χ2) 0.8962

3.5.4 The thinner continuous line in the graphs show the estimated values of μq, 
aq and σq for periods ending in 2018. These lines commence in 1960 at the value 8.09% for 
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μq, being the value for the whole period 1960–2018. The line lowers slightly ending at 5.78% 
in 2009, the last year for which we have 10 years data ending in 2018. The estimated mean 
value for the last 10 years (5.78%) has been in the targeted band (3–6%), indicating that the 
inflation-targeting policy works.

3.5.5 The dotted lines of either side of the thinner continuous line show 
approximate 95% confidence intervals for the corresponding value; the dashed lines on either 
side of the heavy line do the same.

3.5.6 Figure 3 shows that σq values over the years are relatively stable considering 
the range of the parameter estimates while μq and aq parameters seem more sensitive to the 
different periods of data. Recursive estimates for aq for the later sub-periods and recursive 
estimates for μq for the earlier sub-periods are quite volatile which also coincide with the high 
and/or unstable values of price inflation for the periods 1980–1990 and 2000–2010.

4. SHARE DIVIDEND YIELDS

4.1 We use the dividend yield on the JSE-Actuaries All Share Index (ADY) provided until 
June 2001 which was replaced by the ALSI Dividend Yield (J202) afterwards to construct a 
model for share dividend yields.

4.2 Figure 4 illustrates the share dividend yields in percentages which decrease after the 
mid-1980s and show some significant jumps.

4.3 Although we fitted several models to the dividend yields, we ended up including both 
autoregressive and inflation effects to reach a satisfactory model given in Equations 5–10 as 
below. ( )y t  is the yield on the index at time t:

  ( ) ( ) ( ) ( ). 1 . 1y q yym t d t d ym tδ= + − − , (5)

  ( ) ( ) ( ) ( ). 1 .q y y qy t w ym t w tδ= + − , (6)

FIGURE 3. Estimates for parameters qµ , qa  and qσ  (solid lines show the parameter estimates 
and dotted lines show the 95% confidence intervals)
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  ( ) ( ) ( )ln q yy t y t yn tµ= + + , (7)

  ( ) ( ) ( ). 1y yyn t a yn t tε= − + , (8)

  ( ) ( ).y y yt z tε σ= , (9)

  ( ) ( )~ 0,1yz t iidN , (10)

where ( )ym t  is the moving average effect of inflation which has an inflation component 
( )q tδ , ( )yn t  is the autoregressive part and ( )yz t  is a series of independent, identically 

distributed unit normal variates.

4.4 We used the Maximum Likelihood Estimation (MLE) method to estimate the parameters 
of the models presented in Table 2. We compare two models—AR(1) and AR(1) with moving 
average (MA) inflation effect on dividend yields based on the log-likelihood values and the 
statistics which are used to check whether the model assumptions such as normality and 
independence of the residuals are held. Including the inflation effect improves the log-likelihood 
significantly and justifies the two additional parameters. The Jarque–Bera test indicates that 
having a model with an inflation effect satisfies the necessary normality assumption.

FIGURE 4. Dividend yields %, 1961–2018
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TABLE 2. Estimates of parameters and standard errors (in brackets) of the models for dividend 
yields over 1962–2018

Dividend yields model (1962–2018)

δy(t) AR(1) MA inflation effect

wy –4.0074 (1.2161)

dy 0.1396 (0.0557)

μy 1.2695 (0.1774) 0.3781 (0.1152)

ay 0.8266 (0.0727) 0.6318 (0.0890)

σy 0.2261 (0.0214) 0.1973 (0.0186)

Log likelihood 3.81 11.42

( )1zr –0.049 –0.132

( )2 1zr 0.180 –0.036

skewness 1β 0.5254 0.2350

kurtosis β2 4.0364 2.9365

Jarque–Bera χ2 5.1731 0.5343

p(χ2) 0.0753 0.7656

5. SHARE DIVIDENDS

5.1 Thomson (1996) used JSE Actuaries All Share Index (CI101) for the purpose of his 
modelling. This was later replaced by the ALSI Total Return Index (J203). There was an 
overlap period from 1995–2002. Because of the discrepancies between the construction of 
the CI01 and J203 indices, their total returns figures did not reconcile in the period 1995–2002 
when both were being calculated and published concurrently. In order to avoid a discontinuity 
in the index movements over time, the J203 index was rebased to match the value of the CI01 
on the date the J203 came into effect. The total return is then calculated on the rebased J203 
index as opposed to using the CI01 index. We use this rebased index for the share prices and 
to obtain share dividends.

5.2 Share dividends, ( )D t , are obtained from the published values of share prices, ( )P t , 
and dividend yields, ( )Y t  as ( ) ( ) ( ).D t P t Y t= .

5.3 The logarithm of the dividend growth, ( ) ( ) ( )1d t lnD t lnD tδ = − −  is plotted in 
Figure 5. Although there are some negative and positive jumps in the yearly dividend values, 
the overall level of the index does not change significantly and the data seems stationary.

5.4 The logarithm of the dividend growth, ( )d tδ , can be modelled including the effect 
from the previous year’s dividend yield residuals ( )1y tε −  as well as a simultaneous 
inflation effect ( )q tδ , or a moving average inflation effect, ( )dm t  where ( )dz t  is a series 
of independent identically distributed unit normal variates as presented in Equations 11–15. 
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( )dm t  is a function of the exponentially weighted moving average of inflation up to time t. 
As in the Wilkie model, ( )qd t  takes a proportion of the moving average inflation effect and 
a proportion of the latest rate of inflation. The coefficients qw  and 1 qw−  indicate that there 
is ‘unit gain’ from inflation to dividends. ( )d tδ  is also influenced by the residuals from the 
previous year of dividend yields and the dividend growth itself.

  ( ) ( ) ( ) ( ). 1 . 1d q ddm t d t d dm tδ= + − − , (11)

  ( ) ( ) ( ) ( ). 1q d d qd t w dm t w tδ= + −  (12)

  ( ) ( ) ( ) ( ) ( ). 1 . 1d q d d y d d dt d t y t k t tδ µ ε ε ε= + + − + − + , (13)

  ( ) ( ).d d dt z tε σ= , (14)

  ( ) ( )~ 0,1dz t iidN . (15)

5.5 Table 3 presents the parameter values, standard errors, log-likelihood values and 
the statistical tests for each model. All three models seem satisfactory while the one with 
both dividend yields and moving average inflation effect seems the best based on the log 
likelihood and model validation tests. Using the models for share dividend yields and share 
dividends it is straightforward to obtain share prices.

FIGURE 5. Share dividends growth, 1962–2018
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TABLE 3. Estimates of parameters and standard errors (in brackets) of the models for share 
dividends over 1962–2018

Share dividends model (1962–2018)

δd(t) only δd effect +Inflation effect +MA Inflation effect

wd –5.5068 (3.6008)

dd 0.6499 (0.1970)

qd 0.9482 (0.4815)

μd 0.1415 (0.0276) 0.0675 (0.0460) 0.0649 (0.0245)

yd –0.1622 (0.0728) –0.1673 (0.0692) –0.1850 (0.0690)

kd 0.3670 (0.1292) 0.3828 (0.1272) 0.2798 (0.1479)

σd 0.1207 (0.0114) 0.1166 (0.0110) 0.1086 (0.0103)

Log likelihood 38.97 40.89 44.87

( )1zr –0.023 –0.011 –0.005

( )2 1zr 0.198 0.198 0.103

skewness 1β 0.0266 –0.0589 –0.0360

kurtosis β2 4.2681 3.8662 3.3556

Jarque–Bera χ2 3.8259 1.8151 0.3125

p(χ2) 0.1476 0.4035 0.8553

6. LONG-TERM INTEREST RATES

6.1 For long-term interest rates, the JSE-Actuaries Long Bond Yield (i.e. JAYC20, the 
20-year bond yield) is used as in Thomson (1996). The data is provided by IRESS (2019).

6.2 Figure 6 shows that long-term and short-term interest rates move closely and they are 
also correlated with price inflation. The autocorrelation and cross correlation functions (CCF) 
indicate significant correlations between long-term interest rates and historical price inflation 
going back 5 to 10 years. Additionally, long-term interest rates and dividend yield residuals 
have simultaneous and lagged correlations. We investigate whether those correlations can be 
incorporated to obtain a more sophisticated and economically meaningful long-term interest 
rates model. Our analysis showed that the parameter which represents the dividend yield 
residuals is not significant so we eliminate the dividend yield effect.

6.3 We denote long-term interest rates as ( )c tδ , where ( )cm t  represents the inflation 
effect. We define ( )cr t  as the real interest rate, obtained as the difference between the 
nominal rate and inflation. The autoregressive effect is denoted by ( )cn t  and ( )cz t  is a series 
of independent identically distributed unit normal variates.

6.4 Wilkie et al. (2011) fixed the parameters 1cw =  ( )1CW =  and 0.045cd =  ( )0.045CD =  
in the consols yield model to ensure that the real interest rates were never 
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negative for the period considered in the model. We inserted the moving average inflation 
effect by fixing 1cw =  and 0.13cd =  after several trials and the formulas are given in Equations 
16–21 below.

  ( ) ( ) ( ) ( ). 1 . 1c q ccm t d t d cm tδ= + − − , (16)

  ( ) ( ) ( ).c ccr t t w cm tδ= − , (17)

  ( ) ( )ln ln ccr t cn tµ= + , (18)

  ( ) ( ) ( ). 1c ccn t a cn t tε= − + , (19)

  ( ) ( ).c c ct z tε σ= , (20)

  ( ) ( )~ 0,1cz t iidN . (21)

6.5 Table 4 presents the parameters for the AR(1) model and the model with a moving 
average inflation effect. Although the cross correlations between the long-term interest rates 
and inflation indicate strong simultaneous and lagged correlations in Figure 6, inserting 
relevant parameters worsens the fit of the model compared to the AR(1) model. We present 
both models and estimate the parameter stability based on the second model (results are 
given in Appendix B) since we believe that it is important to consider the economic theory 
as well as the data and statistics in stochastic investment modelling. Figure 7 shows the cross 
correlations between the interest rates and inflation, Fisher relation based on the estimated 
moving average inflation effect and the real interest rates derived from the model and the 

FIGURE 6. Annual force of inflation based on CPI, long-term interest rates, short-term interest 
rates and inflation-linked bond rates, 1960–2018
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efficient market hypothesis which shows the close relation between the inflation effect 
captured in the model and the realised inflation over the years.

TABLE 4. Estimates of parameters and standard errors (in brackets) of the model 
for long-term interest rates over 1961–2018

Long-term interest rates model (1961–2018)

δc(t) AR(1) MA inflation effect

wc 1.0

dc 0.13

μc / lnμc 0.1174 (0.0235) –3.3892 (0.1086)

ac 0.9328 (0.0418) 0.5665 (0.1117)

σc 0.0115 (0.0010) 0.3610 (0.0341)

Log likelihood 173.59 29.06

( )1zr –0.101 –0.108

( )2 1zr –0.016 0.109

skewness 1β
0.3227 –0.9368

kurtosis β2 3.9470 4.2522

Jarque–Bera χ2 3.17 12.06

p(χ2) 0.2046 0.0024

6.6 The Fisher relation (Fisher, 1930) states that expected inflation is fully reflected in 
nominal interest rates. As a result, this relation assumes that investors’ expectations of average 
future inflation can be approximately determined by subtracting the average future real return 
required by investors from nominal interest rates. As in the Wilkie model, the Fisher relation 
is explicitly included in the long-term interest rate model (+MA inflation effect) by assuming 
that the average future real return required by investors is given by ( )cr t  and that investors’ 
expectation of average future inflation is given by ( )cm t . Based on our long-term interest rate 
model, average expected future inflation is 7.23% and average future real return is 3.60%. 
These percentages are consistent with the average realised inflation of South Africa over the 
period 1961–2018 which is 7.79%. Due to the lack of historical real interest rate data we 
can compare the ( )cr t  values over the period of 2000–2018 with the inflation-linked bond 
rates which will be discussed in the following section. The average real interest rate is 2.58% 
based on Bloomberg’s inflation-linked bond prices while the average future real return is 
equal to 2.91% obtained from our long-term interest rates model. These averages show that 
although inserting the inflation effect into the long-term interest rates model worsens the fit, 
the extended model provides consistent information regarding the future average inflation 
rate and the investors’ expectations for the future real returns.

6.7 Figure 7 also presents the graph for the rational expectation hypothesis. The concept 
of rational expectations asserts that outcomes do not differ systematically (i.e., regularly or 
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predictably) from what people expected them to be. It does not deny that people often make 
forecasting errors, but it does suggest that errors will not persistently occur on one side or the 
other. Although the future is not fully predictable, agents’ expectations are assumed not to be 
systematically biased. The third graph in Figure 7 shows the realised inflation ( )q tδ , smoothed 
expected inflation obtained from the long-term interest rates model, ( )cm t  with the optimal 
estimate of average future inflation equal to qµ . Comparing these three types of inflation we 
see that up to 1995 the investors slightly underestimate the average future inflation while 

FIGURE 7. Cross-correlation function (CCF) of inflation and long-term interest rates, 
Fisher relation and efficient market hypothesis



SAAJ 20 (2020) | © ASSA licensed under  4.0

66 | A STOCHASTIC INVESTMENT MODEL FOR ACTUARIAL USE IN SA

slightly overestimating it afterwards. Differences between the estimated and realised average 
inflation values are not high and there is no systematic pattern in the differences.

7. SHORT-TERM INTEREST RATES

7.1 As in Thomson (1996), the Alexander Forbes Money-Market Index (GMC1) 
(previously referred to as the Ginsburg Malan & Carsons Money-Market Index) has been 
used for the short-term interest rates model and the data is provided by IRESS (2019). The 
short-term interest rates, ( )b tδ , is obtained in Equation 22 as

  ( ) ( )
( )
1

ln
1 1b

GMC t
t

GMC t
δ =

−
, (22)

based on the data.

7.2 Figure 8 shows that short-term interest rates are clearly connected with long-term 
ones. Wilkie’s approach was to model the difference between the logarithms of these series 
where ( )c tδ  is the long-term interest rates and ( )b tδ  is the short-term interest rates:

  ( ) ( ) ( )
( )

b
c b

c

t
ln t ln t ln

t
δ

δ δ
δ

− = −  (23)

i.e. the logarithm of the ratio of the rates.

FIGURE 8. Long-term interest rates, short-term interest rates and inflation-linked bonds, 1961–2018
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7.3 We follow Wilkie’s approach and the inspection of the data shows that AR(1) model 
fits the log ratio, ( )bd t  quite well. The short-term rate of interest at time t is defined as ( )b tδ  
and we put:
  ( ) ( ) ( )( ).b ct t exp bd tδ δ= − , (24)

where:
  ( ) ( )( ) ( ). 1b b b bbd t a bd t tµ µ ε= + − − + , (25)

  ( ) ( ).b b bt z tε σ= , (26)

  ( ) ( )~ 0,1bz t iidN . (27)

Note that bd has a minus sign in front of it, because short-term yields are, on average, lower 
than long-term ones. Figure 9 presents the log spread values for the period 1963–2018.

7.4 Table 5 presents the parameter values, standard errors and the statistics based on the 
AR(1) model fitted to the log ratio. The estimated parameters are significant, the residuals 
are distributed normally and the model satisfies the necessary independence and normality 
assumptions.

FIGURE 9. Log spread, ( ) ( ) ( )( )/c bbd t ln t tδ δ= , 1963–2018
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TABLE 5. Estimates of parameters and standard errors (in brackets) of the model 
for short-term interest rates over 1962–2018

Short-term interest rates model (1962–2018)

bd(t) AR(1)

μb 0.1568 (0.0596)

ab 0.5527 (0.1116)

σb 0.1996 (0.0189)

( )1zr –0.095

( )2 1zr 0.098

skewness 1β –0.2012

kurtosis β2 3.1408

Jarque–Bera χ2 0.4318

p(χ2) 0.8058

8. INFLATION-LINKED BONDS

8.1 The inflation-linked bonds data is obtained from Bloomberg (2019). We use an 
arithmetic average of the real yields of the government inflation-linked bonds in issuance for 
different maturities due to lack of historical data for a specific maturity. The first issuance was 
in March 2000 as shown in Figure 10.

8.2 We investigated the cross correlations between inflation, long-term and short-term 
interest rates and the inflation-linked bonds to construct a model for the real interest rates. We 
have fitted many different models by considering different relations between the series as 
presented in Table 6. The most comprehensive model is given in Equations 28–30 where 

( )r tδ  is the real interest rate, ( )c tδ  is the long-term interest rate and ( )b tδ  is the short-term 
interest rate, μr is the overall mean, ar is the autoregressive parameter, cr and br are the long-
term and short-term interest rates parameters and finally ( )rz t  is a series of independent 
identically distributed unit normal variates.

  ( ) ( )( ) ( ) ( ) ( ). 1 . .r r r r r r c r b rt a t c t b t tδ µ δ µ δ δ ε= + − − + + + , (28)

  ( ) ( ).r r rt z tε σ= , (29)

  ( ) ( )~ 0,1rz t iidN . (30)

Table 6 shows that all models satisfy the necessary assumptions while there are slight 
differences between their goodness of fits and log-likelihood values. The simple AR(1) 
model and the model incorporating the short-term interest rates effect are the best models for 
the period under consideration.
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TABLE 6. Estimates of parameters and standard errors (in brackets) of the model 
for inflation-linked bond rates over 2000–2018

Inflation-linked bond yields (2000–2018)

δr(t) AR(1) δc(t) and δb(t) δc(t) δb(t)

μr included μr omitted

μr
0.0222 (0.0033) 0.0438 (0.0316) –0.0118 (0.0266) 0.0038 (0.0071)

ar
0.7194 (0.0618) 0.5942 (0.0957) 0.6877 (0.0745) 0.6174 (0.0698) 0.6165 (0.0703)

cr
–0.2721 (0.1582) 0.1163 (0.0889)

br
0.2142 (0.0727) 0.0973 (0.0419) 0.1144 (0.0272)

σr
0.0033 (0.0004) 0.0038 (0.0007) 0.0034 (0.0004) 0.0029 (0.0003) 0.0030 (0.0003)

Log likelihood 77.10 74.61 76.95 79.46 79.32

( )1zr 0.038 –0.068 –0.060

( )2 1zr –0.072 –0.230 –0.151

skewness 1β
–0.2749 –0.3155 –0.3418

kurtosis β2
2.2125 2.2151 2.3209

Jarque–Bera χ2 0.7303 0.8030 0.7349

p(χ2) 0.6941 0.6693 0.6925

FIGURE 10. Inflation-linked bond rates, 2000–2018
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8.3 Due to having a very short period of data, we cannot examine the stability of the 
parameters for this model.

9. BACKTESTING

9.1 The performance of our proposed model is assessed in this section based on out-
of-sample model validation. To backtest the model, we used the selected models for each 
economic series (except inflation-linked bond yields due to the short period of data) and fit 
the models to data from 1960 to 2008 as the longest period to estimate the parameters. Then 
we use these parameters to project 100,000 scenarios of 10 years and display the 95% and 
99% forecast intervals compared to the historical observations for the period 2008–2010 in 
Figure 11. Estimated parameters are given in Appendix B.

9.2 The graphs for funnels of doubt for the economic series show that almost all forecasts 
for the next 10 years are within the confidence intervals although the funnels of doubt become 
wider as time passes. The inflation model tends to overestimate due to a higher value of long-
term mean parameters based on the period 1960–2008. The estimated mean parameter might 
need further adjustments to produce more realistic forecasts, which is briefly discussed in 
the following section. The forecast results presented below are all calculated by using the 
estimated parameters from the data up to 2008. CPI forecasts have been derived from the 
forecast inflation rates.

9.3 The stationarity problem of the dividend yields data is reflected in the forecast intervals 
as producing quite wide ranges as presented in Figure 11. The high values in the historical data 
seem to dominate the parameter estimations and forecasts. The prediction interval for dividends 
is stable and narrow although the record low value observed in 2010 lies outside the range.

9.4 The funnels of doubt increase as the forecast period increases for long-term (both 
AR(1) and moving average inflation effect models) and short-term interest rates. The high 
interest rates between 1980 and 2000 cause higher estimated mean values which also affect 
the forecasts. Thus, the models produce interest rates above the observed rates for the period 
2008–2018 although all lie within the forecast intervals. The short-term interest rates model 
requires forecast values of the long-term interest rates. This increases the uncertainty in the 
model and explains the wider funnel of doubt even for the early years.

9.5 The parameter stationarity analysis of the models given in Appendix A indicates time-
dependence of some parameters such as inflation effect parameters of dividend yields and 
share dividends and mean parameter of the long-term interest rates. The higher number of 
parameters to be estimated in a model fitted to a short period of data also cause non-stable 
estimates. As presented in Appendix B, the parameters estimated for the periods up to 2008 
have slightly higher standard errors for almost all models compared to the ones estimated for 
the whole period.
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10. PRACTICAL IMPLEMENTATIONS

10.1 We believe that the model presented in this paper can easily be applied in practice. 
The intention is that simulations of key variables can be produced using simple software like 
Microsoft Excel. Whilst parameter estimates for all the variables are provided, we caution the 
practitioner against using all of these without adjustment.

FIGURE 11. Backtesting plots with 95% and 99% forecast intervals and historical data for 
inflation, CPI, dividend yields, dividends, long-term and short-term interest rates
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10.2 For example, the model is calibrated to inflation data over the period 1959–2018. 
During this time there have been several distinct inflation regimes. It is therefore not advisable 
simply to use the mean parameter based only on historic data. In this instance, μq is 0.0809 
when determined using historic data.

10.3 One can use a lower value for the long-term mean to at least be consistent with 
inflation-targeting rather than the estimated mean parameter for forecasting purposes. The 
expected inflation parameter can be estimated from the appropriate prevailing bond curves. 
The approach to the derivation process is not prescriptive. However, it is important to keep the 
estimated value for the standard deviation to consider the uncertainty in the future inflation 
rates based on historical data.

10.4 Once the adjustment has been made in μq, we suggest running the simulations for 
all models to see how the chosen value affects the other models since price inflation plays a 
crucial role in the proposed cascade model. As can be inferred from backtesting simulations 
in the previous section, lower μq would produce lower forecast values for dividend yields 
and dividend growth as well as interest rates. The practitioners then decide if any more 
adjustments are needed for long-term mean parameters for other economic series due to a 
changing economic environment and/or policies.

11. CONCLUSIONS

11.1 In this paper we proposed a real-world stochastic investment model for South African 
use. It is an updated and extended model proposed by Thomson (1996) which has a number 
of practical limitations due to a lack of historical data. Our aim was to develop an economic 
scenario generator for long-term application for both pension funds and life insurance 
companies.

11.2 We modelled different economic series by considering the bi-directional relations and 
also compared several models based on the statistical tests for independence and normality 
as well as incorporating economic theory. We applied in-sample and out-of-sample model 
validation tests to analyse the performance of the proposed models. Except for the inflation-
linked bonds model we examined the parameter stability of each economic series to comment 
on the robustness of the estimated values for long-term liability applications.

11.3 Price inflation has been modelled as an AR(1) process and influences the models for 
share dividends, dividend yields and long-term interest rates. The model is satisfactory based 
on both the statistical tests applied to the residuals and the forecast intervals calculated for 
backtesting. The dividend yields and share dividends model include moving average inflation 
effects while the data suggest that dividends also depend on the previous year’s dividend 
yields. The selected models satisfy in-sample model validation tests as well as producing 
reasonable forecasts compared to the historical observed values between 2008 and 2018. The 
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long-term interest rates can be modelled as an AR(1) process although we also considered the 
moving average inflation effect. We examine the Fisher relation and the rational expectation 
hypothesis considering the relation between interest rates and a moving average inflation 
effect derived from the model we proposed. The forecasts obtained from two models are 
quite close while the values produced by the model including the inflation effect are slightly 
higher. The short-term interest rates are modelled connected to the long-term interest rates 
and the model satisfies the necessary assumptions while funnel of doubt for the 10-year 
forecasts increases as the period extends. As for the inflation-linked bond rates, although 
several models fit the data satisfactorily as presented in the relevant section, the AR(1) model 
influenced by short-term interest rates performs the best. Due to the short period of available 
data we could not analyse the forecasting aspects of the model for the inflation-linked bond 
rates.

11.4 In future research we would like to discuss a practical application of the model and 
extend our model to incorporate real and nominal yield curves.
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APPENDIX A
Parameter stability

This appendix presents the results for the parameter stability analysis of the dividend yields, 
share dividends, long-term and short-term interest rates models introduced in the paper.

Dividend yields
Figure 12 presents recursive estimates and 95% confidence intervals for the parameters 
wy, dy, μy, ay and σy for earlier sub-periods (datasets starting in 1985) and later sub-periods 
(datasets ending in 2018). Solid lines show the parameter estimates and the dotted lines 
show the 95% confidence intervals as explained in Section 3.5. Although we obtain relatively 
stable values for earlier and later sub-periods for μy, ay and σy, the parameters which represent 
the inflation effect on dividend yields are not stationary, particularly for shorter sub-periods. 

FIGURE 12. Estimates for parameters wy, dy, μy, ay and σy (solid lines show the parameter 
estimates and dotted lines show the 95% confidence intervals)
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In 1980s and 1990s there are three jumps in dy parameter based on later sub-periods. We had 
to start with 25 years of data for the earlier and 22 years of data for the later sub-periods to 
have reasonable values due to the high number of parameters to be estimated.

Share dividends
The share dividends model has six parameters to estimate since we need to insert the inflation 
and dividend yield effects. As the number of parameters increases more data are needed to 
obtain robust estimates. When we use shorter sub-periods to estimate all six parameters, it 
is not unusual to get high standard errors and hence wider confidence intervals. Figure 13 
shows that the parameters representing the moving average inflation effect wd and dd have 
large standard errors. Overall, mean μd, standard deviation σd, dividend yield effect yd and 
moving average parameter kd have more stable estimates although there are a few jumps for 
some of the sub-periods.

FIGURE 13. Estimates for parameters wd, dd, μd, yd, kd and σd (solid lines show the parameter 
estimates and dotted lines show the 95% confidence intervals)
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Long-term interest rates
We examine the stability of the parameters of the long-term interest rates model by calculating 
the recursive estimates on incrementally larger datasets as we did in the previous sections. 
Figure 14 presents the recursive estimates and 95% confidence intervals of the mean level 
of long-term interest rates, μc, the autoregressive parameter, ac and the standard deviation, σc  
respectively, for the earlier (datasets starting in 1983) and later sub-periods (datasets ending 
in 2018). The values of most of the parameters are reasonably stable, except for μc which 
jumps around a lot for the later sub-periods, and σc, which has been increasing.

Short-term interest rates
The stability of the parameters is examined using the same method as in previous sections. 
The values of μb, ab and σb over various sub-periods are shown in Figure 15. The graphs 
indicate that the parameters are quite stable over the whole period.

FIGURE 15. Estimates for parameters μb, ab and σb (solid lines show the parameter estimates 
and dotted lines show the 95% confidence intervals)

FIGURE 14. Estimates for parameters μc, ac, and σc  (solid lines show the parameter estimates 
and dotted lines show the 95% confidence intervals)
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APPENDIX B
Backtesting parameters

Backtesting parameters Estimate (Standard error)

Price inflation (fitted to 1960–2008)
μq 0.0951 (0.0225)

aq 0.8490 (0.0711)

σq 0.0225 (0.0023)

Dividend yields (fitted to 1962–2008)
wy –3.7045 (1.3039)

dy 0.1482 (0.0696)

μy 0.3166 (0.1259)

ay 0.6780 (0.0946)

σy 0.2020 (0.0211)

Share dividends (fitted to 1962–2008)
wd –2.8389 (2.3418)

dd 0.6082 (0.3095)

μd 0.0323 (0.0249)

yd –0.0650 (0.0531)

kd 0.6676 (0.1602)

σd 0.0933 (0.0097)

Long-term interest rates (fitted to 1962–2008)

AR(1) model
μc –2.0809 (0.0267)

ac 0.9286 (0.0460)

σc 0.0123 (0.0012)

+MA inflation effect
wc 1 (fixed parameter)

dc 0.13 (fixed parameter)

lnμc –3.3452 (0.1162)

ac 0.5405 (0.1238)

σc 0.3770 (0.0389)

Short-term interest rates (fitted to 1961–2008)
μb 0.1055 (0.0621)

ab 0.5126 (0.1281)

σb 0.2066 (0.0213)
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