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ABSTRACT
In this paper we derive the first two moments and a linear predictor of the compound discounted 
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inter-occurrence times, we compare the accuracy of the proposed linear predictor to the simulated value 
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1.	 INTRODUCTION

1.1	 The model proposed and studied in the present paper was first presented in Section 3 
of Albrecher et al. (2011), where the authors used a simple mixing idea to establish a number 
of explicit formulae for ruin probabilities in renewal risk models with dependence among 
claim sizes and among claim inter-occurrence times. In that model, the authors relax the 
assumption of independence between the inter-occurrence times through an arbitrary copula 
structure, such as the Archimedean copula.

1.2	 All the previous papers that assume dependence between the subsequent inter-arrival 
times have restrictive applications and generalisations to dependent scenarios are called for. 
For instance, in car insurance, if there has been a long waiting time before a claim, the 
next inter-arrival time can be long as well, because the policyholders are potentially “good 
drivers”. Alternatively, when some policyholders only start to use their cars a long time after 
purchasing them, claims would arrive more frequently after a long claim-free period.

1.3	 Another context in finance serves as a motivation for this study. Consider a portfolio 
of homogeneous credit risks according to S&P’s ratings. For risks with credit rating of single 
B, the probability of default is 0.049 and the Pearson’s correlation coefficient between the 
occurrences of two risks is 0.00156. Is this correlation negligible? Can we assume that the 
risks are independent? If we ignore it, does it have an impact on the riskiness of the portfolio? 
To answer these questions, we can use the concept of a sequence of exchangeable random 
variables (mixture of distributions). To take into account dependency, one can consider an 
extension of the classical discrete-time individual risk model, with exchangeability, which 
involves two important contributions by De Finetti (1957), i.e. the Representation Theorem 
for a sequence of exchangeable random variables and the classical discrete-time individual 
risk model.

1.4	 Two types of competing risk models can be considered in actuarial science, namely, 
individual and collective risk models. The individual risk model is more suited to life insurance 
but the calculations involved can become very laborious, especially when it comes to finding 
the distribution function of the aggregate risks. To facilitate the calculation of the distribution 
of the total amount of portfolio claims, the individual risk model is often approximated by 
a collective risk model such as the Compound Poisson model. The collective risk model is 
better suited to risk modelling in automobile insurance or damage insurance.

1.5	 In finance, the individual and collective risk models are known respectively as 
bottom-up and top-down models.

1.6	 In the bottom-up approach, aggregate loss dynamics are inferred from the individual 
specification of portfolio entity dynamics while in the top-down approach, loss dynamics are 
directly specified. The individual dynamics of portfolio entity deficiencies can be inferred 
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by random thinning techniques. The precursors of these techniques in the area of ​​credit risk 
modelling are shown in Giesecke & Goldberg (2006).

1.7	 Bottom-up models have certain limitations when it comes to valuing exotic products 
such as Collateralised Debt Obligation (CDO) tranche options for which the dynamics of 
aggregate loss could be complex. Static bottom-up models are often used for large portfolios 
when it is required to take the heterogeneity of credit spreads into account. For a meticulous 
comparison of these two competing approaches, the reader is referred to the article by 
Giesecke (2008).

1.8	 Our goal is to extend the results of Léveillé & Adékambi (2011) under Albrecher et 
al.’s (2011) models. We use simpler models for which explicit formulae exist and afterwards 
mix over involved parameters. That is, the mixing of parameters can be carried over to the 
mixing of the moments under study.

1.9	 The first moment of the discounted aggregate claims or its mathematical expectation 
intuitively represents the central tendency of that random variable, as well as the average 
of its distribution. The justification for the popularity of the notion of mathematical 
expectation comes from the Law of Large Numbers which essentially says that the average 
of the successive realisations of a random variable tends towards the expectation of this 
random variable when the number of realisations tends to infinity. This result gives an almost 
experimental status to the mathematical notion of mathematical expectation.

1.10	 The mathematical expectation plays an important role in determining the pure 
premium. The expectation of a random variable gives information on the central tendency of 
the distribution, but no information on the dispersion of values around their average value. 
A natural idea to quantify this dispersion would be to measure how far from the mean a 
realisation of that random variable falls. We could thus consider the expectation of the square 
of the distance from its mean, which is the second central moment.

1.11	 The paper is organised as follows: in Section 2, we present the theoretical background 
of the study; in Section 3, we present the ordinary renewal process with dependence. The first 
two moments and joint moment of the aggregate discounted claims are derived in Sections 4, 
5 and 6. In Section 7, we apply the results of the preceding section when the subsequent inter-
arrival times have a conditional exponential distribution, with a parameter theta that follows 
an Erlang (2,2) distribution to find a linear predictor of the aggregate discounted claims for a 
constant instantaneous interest rate. In Section 8, the conclusion follows.

2.	 THEORETICAL BACKGROUND

2.1	 Collective risk theory originated in the doctoral thesis of Filip Lundberg (1903) and it 
was subsequently developed by a small group, of mainly Scandinavian actuaries. Lundberg’s 
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insight was to model an insurance company as a repository of continuous flows of premiums, 
and as a source of flows of claim payments.

2.2	 Lundberg’s ideas were subsequently further developed by Cramer (1930, 1955). 
Andersen (1957) generalised the basic risk process to the compound ordinary renewal risk 
process and Thorin (1975) extended to the more general, delayed renewal risk process.

2.3	 As the theory of the basic risk process and related problems matured, researchers 
increasingly turned their attention to the problem of finding the distribution of the 
aggregated discounted claims under the classical risk model and to more general problems 
that incorporated macroeconomic variables or that relaxed some of the assumptions of the 
classical risk process.

2.4	 Much has been written on the problem of the distribution of aggregated discounted 
claims. The literature review in this paper is restricted to those papers that are relevant to this 
study. In a sequence of papers, Léveillé & Garrido (2001a, 2001b) tackled the problem of the 
distribution of aggregated compound discounted claims. They were interested in computing 
the moments of the distribution. In the first paper, they derived asymptotic expressions of 
the first two moments using renewal theory arguments under inflationary conditions. In the 
second, they obtained recursive formulae for the moments. Further improvements to these 
results were made by Leveille et al. (2010), who computed the asymptotic and finite time 
moment generating functions of the discounted aggregate claims process.

2.5	 Taylor (1979) considered the classical ruin problem studied by Lundberg (1903) and 
Cramer (1955) and studied the effect of inflationary conditions. He proved that the probability 
of ruin is always increased when the (constant) inflation rate is increased. Perhaps this is not 
surprising because, intuitively the presence of inflation means that if the effects of inflation 
are not compensated for through the adjustment of premiums, say, it is the insurer who will 
be prejudiced when claims are eventually presented.

2.6	 Delbaen & Haezendonck (1987) studied the influence of both the inflation force 
and the interest force. They found that the incorporation of interest and inflation forces 
greatly improved the estimation of bankruptcy probabilities both for the finite and infinite 
time horizons. Other noteworthy works are Yuen et al. (2006), who considered the effect 
of stochastic interest rates in a renewal risk process, and Leveille & Adékambi (2011), 
who considered the effect of stochastic interest rates in the problem of the moments of the 
distribution of discounted compound renewal sums for an ordinary or a delayed renewal 
process.

2.7	 Albrecher & Boxma (2004) employed a threshold approach and showed that if a 
claim exceeded a certain threshold, then the parameters of the distribution for the next claim 
inter-arrival time would be modified. In contrast, Boudreault et al. (2006) assumed that if a 
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claim in an inter-arrival time is greater than a certain threshold then the parameters of the 
distribution of the next claim amount is modified. Albrecher & Teugels (2006) considered 
modelling dependence with the use of an arbitrary copula. Kim & Kim (2007) and Ren 
(2008) modelled dependence through a two-state Markovian environment in which claim 
rates and sizes fluctuated according to the state of risk of the business. Barges et al. (2011) 
adapted the copula approach earlier introduced by Albrecher & Teugels (2006) to compute the 
moments of the distribution of aggregate compound renewal sums when the force of interest 
is constant. Adékambi & Dziwa (2016) and Adékambi (2017) derived the first two moments 
of the compound discounted renewal cashflow when taking into account dependence between 
the cashflow and its occurrence time. The dependence structure between the two random 
variables is defined by a Farlie–Gumbel–Morgenstern copula.

2.8	 Sarabia et al. (2017) obtain analytic expressions for the probability density function 
(PDF) and the cumulative distribution function (CDF) of aggregated risks, modelled according 
to a mixture of exponential distributions. Cossette et al. (2018) investigate dependent risk 
models in which the dependence structure is defined by an Archimedean copula.

3.	 THE MODEL

3.1	 In this section, we introduce the ordinary renewal case with dependence.
3.1.1	 The claims counting process ( ){ }, 0N t t ≥  forms an ordinary renewal 

process and, for { }1,2,3,...k ∈ = :
—— the positive claim occurrence times are given by { },kT k∈ ; and
—— the positive claim inter-arrival times are given by 1 0, , 0k k kW T T k T−= − ∈ = .

3.1.2	 The corresponding claim severities { },kX k∈  are such that:
—— { },kX k∈  are independent and identically distributed (i.i.d),

—— { }, ;k kX W k∈  are mutually independent; and

—— the first two moments of X1 exist.

3.1.3	 The aggregate discounted value at time 0 of the claims recorded over the 
period [ ]0, t  is given by:

		  ( )
( )

( )
( )

1 1

i

N t N t
T

i i i
i i

Z t e X D T X−

= =
= =∑ ∑δ ,

with ( ) 0Z t =  if ( ) 0N t = , and ( ) ( )
0

exp
kT

kD T v dv
  = − 
  
∫ δ .
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3.2	 In the usual ordinary renewal risk process, the sequences { } 1j j
W

∞

=
 are assumed to be 

mutually independent. In this paper, we assume that 1 2, ,...W W  are dependent, with dependence 

given by Archimedean copulas.

	 3.2.1	 Let Θ be a random variable with PDF ( )fΘ θ  and suppose that the Laplace 

transform of Θ given by ( ) ( )
0

sf s e f dθ θ θ
∞

∗ −
Θ Θ= ∫  exists over a subset K ⊂  including a 

neighbourhood of the origin.

3.3	 For a general set-up, the formula above by using an exponential distribution for the 
conditional distribution of the time between successive claims can be extended to other 
conditionally independent distributions.

3.4	 For example, the conditional distribution of the inter-claims time can be written in the 
power form ( ) ( )( )Pr i i iW x H x≥ Θ = =

θ
θ  for some distribution function ( )H x  and

		  ( ) ( )( )1 1 2 2, ,
1

Pr , ... | .
n

n n i
k

W x W x w x H x
=

≥ ≥ ≥ Θ = =∏ θ
θ 	 (1)

For all n, i.e. Θ is the common mixing parameter, then

		

( )
( )( ) ( )( )

( ) ( )( )

1, ,

1, , 1, ,

1

... 1, , 1 1, ,0

... ( ... ) 10

1

1 1
1

... Pr( ... | ) ( ) ,

... ( ) ,

log ... ,

( ( ( )) ... ( ( ))).

n

n n

n

W W n n n

W W x x n

n

W W n

F x x W x W x f d

F H x H x f d

f H x H x

f f F x f F x

∞
Θ

∞
Θ

∗
Θ

∗ ∗ − ∗−
Θ Θ Θ

= ≥ ≥ Θ =

= =

= − − −

= + +

∫

∫
θ θ

θ θ θ

θ θ 	 (2)

The form of dependence structure is again Archimedean with generator 1( ) ( )t f t∗−
Θ∅ = , where 

( ) ( )( )log
iW i iF x f H x∗

Θ= − .

3.5	 Remark: Specific mixture of exponential distributions
3.5.1	 Ordinary renewal case

Suppose that random variables 1 2, ,..., nW W W  are n dependent, positive and continuous 
random variables and Θ =θ , then the random variables 1 2, ,..., nW W W  are conditionally 
independent and distributed as ( )Exp θ , i.e.

  ( ) ( )
1

1 1 2 2, , 1 1 . .Pr , ... | Pr | ) ... Pr( |

... .n

n n n n

xx

W x W x w x W x W x

e e θθ

θ θ θ
−−

≥ ≥ ≥ Θ = = ≥ Θ = ≥ Θ =

=

	 (3)

It follows that

  ( ) ( ) ( ) ( )1
1 1 1 1 1 1 10 0

Pr ( ) Pr | ( )x
WF x W x e f d f x W x f dθ θ θ θ θ θ

∞ ∞− ∗
Θ Θ Θ= ≥ = = = ≥ Θ =∫ ∫ .	(4)
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The joint distribution of the tail of 1 2, ,..., nW W W  can be written as

		

( ) ( ) ( )

( )

( )( ) ( )( )( )

1, ,

1

1

... 1, , 1 1, ,0

0

1 1
1

1

... Pr ... |

,

... .

n

n

i
i

n

W W n n n

x

n
W Wi n

i

F x x W x W x f d

e f d

f x f f F x f F x

θ

θ θ θ

θ θ=

∞
Θ

−∞
Θ

∗ ∗ ∗ − ∗−
Θ Θ Θ Θ

=

= ≥ ≥ Θ =

∑
=

 
= = + +  

 

∫

∫

∑

	 (5)

From Sklar’s theorem,
		  

11 1, , 1Pr( ... ) ( ( )... ( ))nW Wn n nW x w x C F x F x≥ ≥ = .	 (6)

It follows that  1, ,( ... )nC u u  is an Archimedean copula with

		   ( )( )1 1 1
1, , 1 1( ... ) ( ( ) ... ( )) ... ( )n n nC u u f f u f u u u∗ ∗− ∗− −

Θ Θ Θ= + + = ∅ ∅ + +∅ ,	 (7)

where 1( ) ( )t f t∗−
Θ∅ =  is the generator of the Archimedean copula C .

4.	 FIRST MOMENT
	 From the first moment of Léveillé & Adékambi (2011), we afterwards mix over the 
involved parameter Θ.

Lemma 4.1
Consider a renewal counting process, such as defined in Section 2. Then the conditional 
density probability functions of ( ) ,kT N t n θ= Θ =  are given, for 0 s t< ≤  and k n≤ , by:

		  ( ) ( )
( ) ( )

( ),

( ) –
,

( )
k

k

T
T N t n

P N t s n k f s
f s n

P N t n
θ

θ

θ θ
θ

θ
Θ=

= Θ=

− = Θ =
=

= Θ =
.	 (8)

Proof
For { }0 :n∈Ν∪

	

( ) ( )( )
( )( )

( ) ( )
( )

( )( )

( )
( )( ) ( )

,
0

, ,
( ) ,

,

( ) , ,
  

( ) ,

, , ( )

,

k k

k
k

k k

s

k k T T s

k

P N t n T s
P T s N t n

P N t n

P N t n T s P T s
P N t n

P N t n T s T v f v dv

P T s
P N t n f

θ

θ
θ

θ

θ θ
θ

θ

θ
θ θ

≤ Θ=

Θ

= Θ = ≤
≤ = Θ = =

= Θ =

= ≤ Θ = ≤ Θ =
=

= Θ =

= ≤ = Θ =

=
× ≤ Θ =

= Θ =

∫
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( )
( ) ( )( ) ( )

( )( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( )( )

0

0

0

– ,
( ) ,

– ,
  

–
 

k

k

k

s

k T

k

s

k T

s

T

P N t N v n k T v f v dv
P T s N t n

P N t n f

P N t N v n k T v f v f dv

P N t n f

P N t v n k f v dv

P N t n

θ

θ

θ
θ

θ θ

θ θ θ

θ θ

θ θ

θ

Θ

ΘΘ=

Θ

Θ=

− = = Θ =

≤ = Θ = =
= Θ =

− = = Θ =

=
= Θ =

− = Θ =

=
= Θ =

∫

∫

∫

which establishes equation (8), with ( ) ( )( ) ( )( )– –P N t N v n k P N t v n k− = = − = .

Theorem 4.1
Given the assumptions of Section 3, the first moment of the discounted aggregate claims is 
given, for 0t > , by:

		  [ ] [ ] ( ) ( ) ( )1
0 0

( )  
t

E Z t E X E D v dm v f d
∞

Θ=   ∫ ∫ θ θ θ ,

where ( ) ( ) ( )
1

1

k
W

k
m v F v E N v

Θ=

∞
∗

=
= =  Θ =  ∑ θ

θ θ θ .

Proof
Conditioning on ( )N t  and Θ, then using independence between the number and the severity 
of claims yields:

		  ( ) ( ) [ ] ( ) ( )1
1

, , .
n

k
k

E Z t N t n E X E D T N t n
=

   = Θ = = = Θ =   ∑θ θ

From equation (8) of Lemma 4.1, we have:

( ) ( ) [ ] ( ) ( ) ( ) [ ]

[ ] ( ) ( ) ( )

[ ] ( )
( ) ( ) ( )

( ) ( )

[ ] ( )
( ) ( ) ( )

( )

1 ,
1 0

1
1 0

1
1 0

, 0, , , , 0,

( ) –
 

( )

( ) –
 .

( ) ,

k

k

k

tn

T N t n
k

tn T

k

tn T

k

E Z t x x t E E Z t N t n x x t

E X D v f v dv

P N t v n k f v f
E X D v

P N t n f

P N t v n k f v f
E X D v

P N t n

θ

θ

θ

δ θ δ

θ θ θ

θ θ

θ θ θ

θ

= Θ=
=

ΘΘ=

= Θ

ΘΘ=

=

    ∈ = = Θ = ∈    

=

− = Θ =
=

= Θ =

− = Θ =
=

= Θ =

∑∫

∑∫

∑∫
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Then,

 

( ) ( ) [ ] ( ) ( ) ( ) [ ]

[ ] ( ) ( )( )

( ) ( )

[ ] ( ) ( ) ( )( )

( )

[ ] ( ) ( ) ( )

[ ] ( ) ( )
1

1
0 1 0 0

1
1 0 0

1
1 0 0

1

 , 0, , , , 0, ,

–

 –

 

 

k

k

k

tn

n k

T

t

T
k n k

t

T
k

k
W

E Z t x x t E E Z t N t n x x t

E X D v P N t v n k

f v f dv

E X D v f v P N t v n k

f dv

E X D v f v f dvd

E X D v d F v f
θ

θ

θ

θ

δ θ δ

θ

θ θ

θ θ

θ

θ θ θ

θ
Θ=

∞∞

= =

ΘΘ=

∞∞ ∞

Θ=
= =

Θ

∞∞

ΘΘ=
=

∗
Θ

    ∈ = = Θ = ∈    

= − = Θ =

×

= − = Θ =

×

=

=

∑∑∫ ∫

∑ ∑∫ ∫

∑∫ ∫

( )

[ ] ( ) ( ) ( )

10 0

1
0 0

  

t

k

t

dvd

E X D v dm v f d

θ θ

θ θ θ

∞ ∞

=

∞

Θ=

∑∫ ∫

∫ ∫

where ( ) ( ) ( )
1

1

k
W

k
m v F v E N v

Θ=

∞
∗

=
= =  Θ =  ∑ θ

θ θ θ .

Since the last integral is a random variable, we use a well-known theorem of stochastic 
processes theory (see Karatzas & Shreve, 1991: 3) to finally obtain:

		

( ) ( ) ( ) [ ]

[ ] ( ) ( ) ( )

[ ] ( ) ( ) ( )

1
0 0

1
0 0

, 0,

 

 .

t

t

E Z t E E Z t x x t

E X E D v dm v f d

E X E D v dm v f d

δ

θ θ θ

θ θ θ

∞

Θ

∞

Θ

  = ∈     
 

=  
  

=   

∫ ∫

∫ ∫

Example 4.1
Let ( ){ }, 0t t ≥δ  be an Itô process satisfying the stochastic differential equation of Ho–
Lee–Merton:
		  ( ) ( ),d t rdt dB t= +δ σ

with constant drift r, constant diffusion coefficient σ, and where ( )B t  is a standard Brownian 
motion (see Cairns, 2004: 87).

From the Itô theory (see Karatza & Shreve, 1991; Oksendal, 1992), it can be shown that:
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		  ( ) ( )
2 3

2

0

0 , .
2 3

t t tx dx N t r
 

+  
 

∫ δ δ σ

We assume that:

		  ( ) [ ] ( )1 1, 1 , 0 0.03, 0.002 and 0.001.W Exp E X rθ θ δ σΘ = = = = =

We set: ( )2, 2Θ Γ , be a Gamma distribution of parameters (2,2).

Hence, Theorem 4.1 yields:

		  ( ) [ ] [ ] ( )
2 3

2

0

exp 0
2 6

t v vE Z t E X E v r dv
  = Θ − − +    
  

∫ δ σ .

Then with the help of software Matlab, we have the table below.

TABLE 1. First moment of ( )Z t  Ho–Lee–Merton case

( )1E Z   ( )5E Z   ( )10E Z   ( )15E Z   ( )20E Z  

0.9848 4.6061 8.3807 11.3241 13.5086

( )30E Z   ( )40E Z   ( )50E Z   ( )60E Z   ( )70E Z  

16.0895 17.1590 17.5241 17.6270 17.6509

The above results are similar to the one obtained in Léveillé & Adékambi (2011) because in 
our example [ ] 1E Θ = .

5.	 SECOND MOMENT
	 From the results of Léveillé & Adékambi (2011), we mix over the involved 
parameter Θ.

Lemma 5.1
Consider a renewal counting process, such as defined in Section 3. The conditional joint 
density probability functions of ( ),i jT T N t n=  are given for 0 < x < y < t  and 1 ≤ i < j ≤ n 
by:

  ( )
( )( ) ( ) ( )

( )( ), ,

 
( , , ) j i i

i j

T T
T T N t n

P N t y n j f y x f x
f x y n

P N t n
− Θ= Θ=

= Θ=

− = − Θ = −
=

=
θ θ

θ

θ θ θ
θ

θ
.	 (9)
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Proof
As in Lemma 4.1, we get for { }0n∈Ν − :

		

( ) ( )
( )

( )
( )
( )

( ) , , ,
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The last equation can be written as:	
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−Θ= = −θ θθ θ θ .
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Finally,
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∫ ∫

which gives equation (9).

Theorem 5.1
Given assumptions of Section 3, the second moment of the discounted aggregate claims is 
given, for t > 0, by:
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Proof
Conditioning on ( )N t  and Θ and using independence between the number and the severity 
of claims yields:
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From equation (8) of Lemma 4.1 and of equation (9) of Lemma 5.1, we have:
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The permutation of the sums gives:
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Hence, following the same reasoning used in Theorem 4.1, we have:
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Let ( ){ }, 0t t ≥δ  be an Itô process satisfying the stochastic differential equation of Ho–Lee–
Merton. Hence, we have:

 

( ) ( )

( ) ( ) ( )( ) ( )

2 2 2 3

3 32
2 2

2exp 2 0 ,
3

2
exp 0 2 2 2 .

2 2 6

E D v v rv v
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  + +    + = − + − + + +              

δ σ

σδ

We assume that:

	 ( ) [ ] ( )2
1 1 1, 1, 2, 0W Exp E X E Xθ θ δ Θ = = =   = 0.03, r = 0.002 and σ = 0.001.

We set: ( )2, 2Θ Γ , be a Gamma distribution with parameters (2,2). Then with the help of 
software Matlab, we have the table below for the second moment.

TABLE 2. Second moment of ( )Z t  Ho–Lee–Merton case

( )2 1E Z 
  ( )2 5E Z 

  ( )2 10E Z 
  ( )2 15E Z 

  ( )2 20E Z 
 

2.9098 29.7246 84.4707 145.9729 202.1786

( )2 30E Z 
  ( )2 40E Z 

  ( )2 50E Z 
  ( )2 60E Z 

  ( )2 70E Z 
 

280.0771 315.9861 328.7406 332.3814 333.2318

The above results are similar to the one obtained in Léveillé & Adékambi (2011) because in 
our example [ ] 1E Θ = .

6.	 JOINT MOMENT
As in Section 4, we mix over the involved parameter Θ.

Theorem 6.1
According to the assumptions of Section 3, the joint moments of order 2 of the discounted 
aggregate claims are given for t > 0 and h > 0 by:
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	 (10)
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Proof
We have:
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Conditioning on ( )N t , ( )N t h+  and Θ, we obtain for the second term:
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Now,
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Then from equation (9) of Lemma 5.1, we have:
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Finally, as theorems 4.1 and 5.1, we have:

		

( ) ( )
( ) ( ) ( ) [ ]

( )

[ ] ( ) ( ) ( ) ( ) ( )

( )

[ ] ( ) ( ) ( ) ( ) ( )

2

2
1

0 0

2

2
1

0 0

, 0, ,

,

 .

t t h v

t v

t t h v

t v

E Z t Z t h

E E Z t Z t h x x t h

E Z t

E X E E D u v D v dm u dm v f d

E Z t

E X E D u v D v dm u dm v f d

∞ + −

Θ
−

∞ + −

Θ
−

+  
  = + ∈ +  
 =  

 
+ + Θ = Θ =   

  
 =  

+ + Θ = Θ =  

∫ ∫ ∫

∫ ∫ ∫

δ

θ θ θ θ

θ θ θ θ

7.	 LINEAR PREDICTOR

7.1	 Having all the information on our risk process to time t, we are able to predict the 
behaviour of this risk process to better re-evaluate the premium. Since it is usually difficult 
to obtain the distribution explicitly, one must rely on methods of estimation, regression or 
simulation.
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7.2	 Since we have obtained the simple and joint moments of the discounted renewal 
claims, we can construct linear predictors based on the minimisation of the linear distance to 
predict the value of ( )Z t h+  if we know that of ( )Z t . These predictors could help to assess 
our risk better, to estimate its variability over time or to readjust the premium, as and when 
information is received by the insurer.

7.3	 Consider a constant instantaneous interest rate 0>δ  and a conditional counting 
Poisson process with parameter ( )2, 2Θ Γ . Then Equation (10) yields:
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and,
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It follows that,
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and,
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 

δ

δ
,

which is independent of h and then equal to ( )V Z t  , and is almost constant for large t.

If ( ),t hρ  is the correlation coefficient between ( )Z t  and ( )Z t h+ , then
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    − −   Θ Θ                
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=  
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δ

δδ

δ

δ

δ
ρ

δ δ

So ( )
1 22, 1  tt h e− → − 

δρ  when h →∞, and ( ),t hρ  is close to 0 for a small t and large h as 
expected. This strong result just shows us that the correlation coefficient ( ),t hρ  doesn’t 
depend on a specific mixture of exponential distributions for the inter-occurrence times. We 
consider a linear predictor ( ) ( ), ,, t h t hL t h a b Z t= + , where ,t ha  and ,t hb  eventually depend on 
t and h, by minimising the function ,t hA  defined by:

		  ( ) ( ) ( ) 2
, , , , ,,t h t h t h t h t hA a b E Z t h a b Z t  = + − −  .

The partial derivative of ,t hA  with respect to ,t ha  and ,t hb , that we set equal to 0, gives
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( ) ( ) ( ) ( )
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, ,

,

, , ,
, ,

,
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,
2 0 .

t h t h t h
t h t h

t h

t h t h t h
t h t h

t h

A a b
E Z t h a b Z t

a

A a b
E Z t Z t h a b Z t

b

∂
 = − + − − = ∂

∂
  = − + − − =  ∂

This results in the following system of linear equations

		
( )

( ) ( )
( )
( ) ( )

,
2

,

1
 ,t h

t h

E Z t E Z t ha
bE Z t E Z t E Z t Z t h

    +        =       +          
with solutions,

		
( ) ( )( )

( ),
,

 ,t h
Cov Z t Z t h

b
Var Z t

+
=

  

		  ( ) ( ) ( ) ( ) ( )
( )

2

,  .t h

E Z t E Z t h E Z t E Z t h Z t
a

Var Z t

  + − +           =
  

Assume that the correlation is sufficiently strong on the period [ ],t t h+  and that the equation 
of the linear predictor of ( )Z t h+ , having the value of ( )Z t , is given by
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		  ( ) ( ) ( ) ( )
( ) ( ) ( )

1
2

, ,  .
V Z t h

L t h E Z t h t h Z t E Z t
V Z t

 +    = + + −            
ρ

We now consider the case where the claims amount is 1 and the number of claims follow a 
conditional Poisson distribution with  parameter ( )2, 2Θ Γ  and 0.03=δ . Then from results 
of Section 3 and 4, we have

  ( ) [ ] ( ) [ ] ( ) ( )

 1 22 2

2
1 1 1 ,   , and ,

2 1

t t t

t h
e e eE Z t E Var Z t E t h

e

δ δ δ

δ
ρ

δ δ

− − −

− +

     − − −
= Θ = Θ =               −     

.

We can compare the simulated value of ( )Z t h+  to the value of ( )L t,h  in the table below for 
different values of t and h.

TABLE 3. Comparison between ( ) ( )simulZ t + h Z t  and ( )L t,h

t h ( )Z t ( ) ( )simulZ t h Z t+ ( )L t,h

1 0.01 0.967 0.998 0.977
1 1 0.967 1.925 1.923
1 10 0.967 9.476 9.351

10 0.01 9.985 9.996 9.992
10 1 9.985 10.895 10.715
10 10 9.985 16.523 16.385

100 0.01 100.1 100.153 100.011
100 1 100.1 100.087 100.059
100 10 100.1 100.624 100.440

7.4	 We find that the difference between the estimated value and the simulated value is 
not very large for small h values relative to t. Similarly, when the value of h becomes large 
relative to t, the estimates are not very good. Obviously the price to pay with the estimated 
value is to calculate simple and joint moments, but with simulation we cannot perform 
sensitivity analysis on the discounted aggregate parameters. When the value of t is high, the 
discount factor cancels the effect of those moments.

8.	 CONCLUSION

8.1	 We have constructed a linear predictor of the compound discounted renewal aggregate 
claims when taking into account dependence within the inter-occurrence times by giving explicit 
formulae for the first two moments of that sum. To evaluate the accuracy of the proposed linear 
predictor, we compare its value to the simulated value of the compound discounted renewal 
aggregate. The techniques used are an extension of Léveillé & Adékambi (2011, 2012).
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8.2	 Possible extensions to this research include the computation of the distribution of that 
sum with the same risk process.
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APPENDIX

A.1	 Pareto inter-arrival claims and Clayton copula dependence

	 As in Albrecher et al. (2011), if ( ),Θ Γ α β  with PDF ( ) ( )
1 , 0f e

α
α βθβθ θ θ

α
− −

Θ = >
Γ

, 

it follows that ( ),iW Pareto α β  with survival function ( ) ( )
1 1PrWF x W x= ≥ =

( ) 1 , 0xL x x
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−
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 
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αβ  The multivariate Pareto survival 

function of 1 2, ,..., nW W W  can then be written as ( ) ( )
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∑  and , 0>α β . The associated copula is the Clayton copula 

given by:

		
1 1

1, , 1 1( ... ) ... 1 .nC u u u u n
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 

α
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α

A.2	 Dependent Gamma inter-arrival claims
	 The gamma distribution with shape parameter ( ]0,1∈α  is completely monotone and 
can be accommodated in the general model introduced in Section 1. We have the following 
result (see Gleser, 1989; Albrecher & Kortschak, 2009).

Let ( ),W Γ α λ  be a gamma distribution with scale parameter λ and shape parameter 
( ]0,1∈α  and PDF

		  ( ) ( )
1 , 0.w

Wf x w e w− −= >
Γ

α
α λλ

α

Then,
		  ( ) ( )

0
,w

Wf x e f d
∞ −

Θ= ∫ θ θ θ

where
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, ,
1

f
−

Θ
−

= ≤ < ∞
Γ − Γ

α αθ λ λ
θ λ θ

θ α α
	 (A.1)

and ( ) 0fΘ =θ  otherwise.

Lemma A.1
	 The Laplace transform of the random variable Θ with PDF (A.1) is

		  ( ) ( )
( )
,

, 0,
s

L s sΘ
Γ

= ≥
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α λ
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where ( ) 1, s t

x

s x t e dt
∞

− −Γ = ∫  denotes the upper incomplete gamma function.

Proof
	 From the Laplace transform of Θ, ( ) ( )

0

sf s e f d
∞

∗ −
Θ Θ= ∫ θ θ θ , we take the derivative of 

( )f s∗
Θ  with respect to s, and obtain
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Thus,
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f s x e dx
∞

∗ − −
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With the change of variable x u=λ , we have ( ) ( )
( )
( )

1 ,u

s

su e duf s
∞ − −

∗
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Using Lemma A.1, we get the generator function of the corresponding copula. This is given 
by
		  ( )1( ) ( ) 1 ,Gt f t Q t∗−

Θ∅ = = −
α

where GQ
α
 represents the quantile function of a gamma distribution with mean α and unit 

scale parameter. From Lemma 2.1, the joint survival function is
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The survival copula associated to the Exponential-Gamma dependent model is given by

		   ( ) ( )( )1, , 1( ... ) 1 1 ... 1 ,n G G G nC u u F G u G u= − − + + −
α α α

where GF
α
and GQ

α
represent the CDF and the quantile function, of a gamma distribution with 

shape parameter α.




