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ABSTRACT
Under risk-based supervision, mortality risks are generally considered proportional to the number of 
insured lives (N). This assumption is, however, incorrect for volatility mortality risks (this being the key 
justification for life insurance), as this risk is proportional to √N. The main benefits of reinsurance are 
consequently not properly reflected in the risk-based capital requirements under risk-based supervision 
Pillar 1. Similar findings apply to unexpired risks, also called ‘premium risks’, in non-life insurance. In 
this article, volatility risks shall therefore be thoroughly considered in the formulation and assessment 
of the insurer’s reinsurance policy, i.e., under risk-based supervision Pillar 2.
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1.	 INTRODUCTION

1.1	 Many governments around the world have expressed their intention to adopt the 
Insurance Core Principles (ICPs) of the International Association of Insurance Supervisors 
(IAIS)—see IAIS (2018) for their latest version. However, only a few of these, excluding 
the member countries of the European Union, have already finalised and implemented 
the necessary changes to their national insurance law(s) and regulations. Adjusting these 
regulations presents a major challenge, as adopting the ICPs implies adopting the principles 
of risk-based supervision (RBS), including the development and implementation of a model 
that will allow for the calculation of RBC requirements.

1.2	 The key principles of such a risk-based capital (RBC) model are reflected in the 
Solvency II requirements that were introduced in the European Union with effect from 1 January 
2016 (European Commission, 2009, 2015). Simultaneous to the development of Solvency 
II by the European Insurance and Occupational Pensions Authority, but lagging a few years 
behind, the IAIS started developing ‘ComFrame’. This includes International Capital Standard 
Version 1.0 for Extended Field Testing (ICS Version 1.0), which was released recently (IAIS, 
2017). It is expected that ICS Version 2.0, when supported by the local insurance supervisors, 
will be prescribed for all ‘Internationally Active Insurance Groups’ (as defined by the IAIS) 
from 2020 or 2021 onwards.

1.3	 Any RBC model needs to allow for the calculation of proper capital requirements for 
the key quantifiable risks that a (re)insurance company is exposed to. Furthermore, any RBC 
model should provide incentives for proper risk management by generating lower capital 
requirements as a result of having this in place. For insurance, it is important to reward the 
company in this way for having a proper reinsurance policy.

1.4	 This article considers mortality risks in life insurance in more detail. We consider the 
way in which these risks can be mitigated by means of reinsurance and, most importantly, 
how they are generally dealt with in the common RBC models (including Solvency II). 
Similar conclusions can be applied to premium risks as part of non-life underwriting risks 
(however their distributions are more complex).

1.5	 Section 2 briefly discusses the different sub-risks of mortality risks, while Sections 3 
to 5 discuss how these risks are/can be modelled in a RBC model, how they depend on the 
size of the insurance portfolio (number of insured lives/policies), how their levels compare 
with each other as well as with the minimum capital requirement, and how (quota share) 
reinsurance would result in a lower capital requirement. Sections 6 and 7 illustrate and 
further discuss our findings by applying the formulae to a fictitious portfolio of one-year 
renewable micro-term assurance policies with a variable size and reinsurance retention level. 
We conclude with some remarks about other types of underwriting risks (Section 8) and some 
key conclusions (Section 9).
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2.	 THE DIFFERENT TYPES OF MORTALITY RISKS

2.1	 IAA’s Global Framework for Insurer Solvency Assessment (IAA, 2004) distinguishes 
the following four types of mortality sub-risks:

—— level uncertainty,
—— trend uncertainty,
—— volatility risk, and
—— catastrophe risk.

Sub-risks 1 and 2 are generally combined as both refer to uncertainty about the expected future 
mortality, assuming mutual independence of the mortality of the individual insured lives.

2.2	 The common way to calculate a capital requirement for level/trend mortality risks is 
to stress the best estimate mortality rates used in the valuation of the (life) insurance liabilities 
corresponding to an agreed level of risk-aversion like a ‘1-in-200-years event’, and to define 
the capital requirement equal to its effect on the amount of net assets in the economic balance 
sheet (EBS). However, in the European Union, Solvency II also allows for an alternative, 
simplified approach that comprises multiplying the technical provision in the International 
Financial Reporting Standards (IFRS) financial statements by a certain factor that has to be 
calculated on the basis of certain portfolio-specific characteristics; see European Commission 
(2015, article 91). Either way, the correct method and the simplified approach both result in 
a capital requirement that is proportional to the size of the portfolio.

2.3	 Volatility risk refers to uncertainty of actual mortality around the expected mortality 
(when given), again assuming mutual independence. Catastrophic risk also considers 
uncertainty of expected future mortality, but assumes full correlation between the mortality 
of individuals where this may be caused by, for example, an epidemic which would affect 
multiple individuals at the same time.

2.4	 Sub-risks 1 and 2 are generally covered jointly by the capital requirement for mortality 
risk as included in Solvency II and several other (draft) RBC frameworks. Sub-risk 4 is often 
covered separately, but sub-risk 3 is generally fully ignored under RBS.

2.5	 We consider the latter rather surprising. Volatility mortality risk is the key type of life 
insurance (underwriting) risk that forms the motivation and justification for life insurance, as 
this is the only sub-risk which is subject to the law of large numbers and therefore coverable by 
a (re)insurer who is able to pool many similar policies with this type of risk. A possible reason 
for the ignorance of volatility risks in RBC frameworks is the difficulty in distinguishing 
volatility risk, which is only incidental per year, from the more structural level/trend risk 
which affects mortality in the longer run. Yet, particularly for smaller portfolios, volatility 
risks can be significant, and should therefore not be ignored. This will be discussed further in 
the following paragraphs.
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2.6	 Literature available on the different types of mortality sub-risks is limited. The Dutch 
insurance supervisor (de Nederlandsche Bank) originally proposed that insurance companies 
should also recognise volatility mortality risks, but they have subsequently dropped this 
proposal in order to align with Solvency II. Interestingly, Dutch pension funds are required to 
consider these risks in the valuation of their pension liabilities. We refer to Van Broekhoven 
(2002, 2012) for a further discussion of the different mortality sub-risks. However, this 
literature does not discuss the relative sizes of level/trend and volatility risks for a given 
portfolio on N life insurance policies. This is the key subject of the next paragraphs.

3.	 NOTATION

3.1	 We focus on the distribution of the total amount of death benefits that must potentially 
be paid in the first year after the valuation date, considering a portfolio of N mutually 
independent insured lives. To simplify the notation, we refer to average mortality rates and 
sums assured as defined below:

qx	 =	 average annual mortality rate of the individual policyholders;
SA	 =	 average sum assured (death benefit) and
B	 =	 �uncertain amount of death benefits in the next year, net of quota share reinsurance 

with a retention rate of 100 f %, with

		  E(B) = qx . SA . N . f and σ(B) = √{qx . (1–qx)} . SA . √N . f.

3.2	 Furthermore, we define:
—— RCmort

pp	� = �the average capital requirement for level/trend mortality risk per 1 monetary 
value of SA; we assume that this amount follows from the RBC framework, and

—— RCmort	� = �RCmort
pp . N . SA . f = the total capital requirement for level/trend mortality risk.

3.3	 We refrain from using actual mortality rates qx
(i) and actual sums assured SA(i) (i = 1, 

…, N), because that would make the formulae unnecessarily complex. However, recognising 
variability in mortality rates and sums assured would basically increase σ(B) and therefore 
volatility risk; hence, this would make the key message of this article even more relevant.

3.4	 Other types of reinsurance, in particular excess-of-loss and surplus reinsurance, are 
ignored because they are less relevant for smaller portfolios. Instead, these types primarily 
serve for reducing volatility due to deaths of individual policyholders with higher sums assured 
and higher death benefits at portfolio level caused by events affecting more policyholders at 
the same time.

4.	 ASSUMING A NORMAL DISTRIBUTION FOR FUTURE DEATH BENEFITS

4.1	 Now, let us first assume that B is N[E(B), σ(B)] distributed, with N[•] being the normal 
distribution (in ¶4.2 we make an alternative assumption more suitable for smaller portfolios).
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4.2	 As mentioned before, it is generally difficult to assess whether an extreme observed 
amount of death benefits is due to an error made in the choice for the expected level of the 
mortality rate qx or due to regular random volatility around this level. Here we suppose that 
we are very certain of qx, meaning that an extreme outcome is a consequence of regular 
volatility. This raises the question: what is the minimum number of insured lives, N, required 
in order to ensure the (fixed) capital requirement RCmort (which is now redundant for covering 
level/trend uncertainty) is sufficient to cover this volatility risk.

4.3	 This minimum number for N follows from requiring VaRN[α] = N[α] . σ(B) < RCmort 

with VaRN[α] equal to the Value at Risk at confidence level 100α%:, i.e.,

	 N > {N[α] / RCmort
pp}2 . qx . (1–qx).

We call this minimum number N(1,A).

4.4	 Volatility risk is relatively high for low numbers of insured lives. Following the 
formula for σ(B), it is less than proportional to N because it is proportional to √N. On the 
other hand, level/trend mortality risk is fully proportional to N (see the formula for RCmort). 
Consequently, there is a minimum number of insured lives, N(1,A), for which volatility risk is 
lower than level/trend risk. This minimum does not depend on the possible level of quota share 
reinsurance, i.e. the retention rate f, because both VaRN[α] and RCmort

pp net of reinsurance are 
proportional to f. Moreover, it does not depend on the level of the sum assured (SA).

4.5	 When the RBC framework includes a minimum capital requirement RCmin, and 
we ignore the capital requirements for risks other than mortality risks, then the minimum 
requirement for N would follow from

	 VaRN[α] = N[α] . √{qx . (1–qx)} . SA . √N . f < max[RCmort
pp . SA . N . f ; RCmin].

Therefore, N should at least be equal to N(1,B) = RCmin / (RCmort
pp . SA . f ) when

	 RCmin > RCmort
pp . SA . N . f.

4.6	 For N < N(1,B) the level/trend mortality risk is fully covered by the minimum capital 
requirement RCmin. However, when N(1,B) < N < N(1,A), RCmin is insufficient for covering 
level/trend mortality risk and the (higher) capital requirement for this sub-risk is insufficient 
for covering volatility mortality risk. This is the case when VaRN[α] > RCmin, i.e., when

	 N > {RCmin / [N[α] . √{qx . (1–qx)} . SA . f ]}2 = N(1,C).

Note that N(1,C) < = N(1,B) < = N(1,A).
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4.7	 These findings are equally applicable for multi-year and one-year renewable insurance 
contracts. The RBC regime accounts for this difference in the way the capital requirement 
for level/trend mortality risk must be calculated. For volatility mortality risk we focus on the 
next year only, meaning that it does not matter whether the policy continues after that or not.

4.8	 Summary
—— When N < N(1,C) there is no problem at all because both level/trend and volatility mortality 
risk are sufficiently covered by RCmin.
—— When N > N(1,A) there is no problem either, because level/trend mortality risk is covered 
by RCmort (> RCmin) and volatility mortality risk is lower than level/trend mortality risk.
—— However, when N(1,C) < N < N(1,B) level/trend mortality risk can still be covered by RCmin, 
but more capital would be required for covering volatility mortality risk.
—— Furthermore, when N(1,B) < N < N(1,A) there isn’t a problem with level/trend mortality risk 
because it is covered by RCmort. However, there would still be more capital needed for 
covering volatility mortality risk.

5.	� USING A NORMAL POWER APPROXIMATION FOR SMALLER 
PORTFOLIOS

5.1	 It is a well-known fact that the distribution of B is poorly approximated by the Normal 
distribution when the number of insured lives is relatively low. To address this, several 
alternative distributions, e.g., the shifted Gamma distribution and the Poisson distribution, 
have been proposed in literature; see Kaas et al. (2008: 33–34). We propose to use the normal 
power (NP) approximation; here VaR[α] in P(B – E(B) > VaR[α]) = α is defined as

		  VaRNP[α] = VaRN[α] + σ(B) . γ(B) . (N[α]2– 1)/6 . f.

with VaRN[α] and σ(B) defined as before and γ(B) equal to the skewness of the distribution.

It can be shown (see Appendix) that the latter parameter γ(B) for the sum of N identically 
Bernouilli (qx) distributed variables is equal to

		  γ(B) = (1–3qx+2qx
2) / {√qx . (1–qx) . √(1–qx) . √N }.

5.2	 The NP adjustment of VaRN[α], i.e. the term σ(B) . γ(B) . (N[α]2 – 1)/6 . f, is positive 
when qx < 0,5. Hence, VaRNP[α] > VaRN[α]. This is the logical consequence of the fact that 
the distribution of B is skewed to the right for smaller levels of N.

5.3	 After inserting the formulas for σ(B) and γ(B) into the formula for VaRNP[α] we get

		  VaRNP[α] = VaRN[α] + SA . (1–3qx+2qx
2) / (1–qx) . (N[α]2 – 1)/6 . f.
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Consequently, VaRNP[α] = RCmort . f implies for determining N(2,A) that

	 N[α] . √{qx .  (1–qx)} . √N(2,A) + (1–3qx+2qx
2) / (1–qx) . (N[α]2 – 1)/6 = RCmort

pp . N(2,A).

5.4	 This equation, which is a second-order polynomial in √N(2,A), can be solved for N(2,A) 
by calculating its two null points and ignoring the smallest one that is only due to the use of 
the NP approximation. Note that N(2,A), like N(1,A), does not depend on the parameters f and SA.

5.5	 N(2,B) does not differ from N(1,B) because it is not related to VaRNP[α]: N(2,B) = N(1,B).

5.6	 However, N(2,C) differs from N(1,C) because it is derived from VaRNP[α] = RCmin, i.e., 
by solving N(2,C) from

  [N[α] . √{qx . (1–qx)} . SA . √N(2,C) + SA . (1–3qx+2qx
2) / (1–qx) . (N[α]2 – 1)/6 ] . f = RCmin.

This will be the case for

  N(2,C) = {[RCmin – f . SA . (1–3qx+2qx
2) / (1–qx) . (N[α]2 – 1)/6] / [N[α] . √{qx

.(1–qx)} . SA . f ]}2.

6.	 EXAMPLE: ONE-YEAR RENEWABLE MICRO-TERM INSURANCE

6.1	 It has been suggested in Uganda that ‘micro-insurance organisations’, defined as 
insurers that only sell micro-insurance products, do not need reinsurance cover because the 
sums assured of these policies are relatively low. In particular, it has been suggested that 
exempting them from the minimum requirements imposed on regular insurers regarding their 
retrocessions with local reinsurers would stimulate the establishment of such organisations, 
and, consequently, insurance penetration. This section discusses the fairness of this 
suggestion by making specific assumptions for the parameters used above, and considering 
the consequences of these for such a portfolio under different levels of the retention rate f 
under quota share reinsurance.

6.2	 We assume in ¶¶6.6 and 6.7 that:
—— α 	 = 0,5%, so N[α] = 2,82,
—— qx 	 = 0,005,
—— SA 	 = �UGX 5M (= 5M Ugandan shillings; UGX 100M equals approximately ZAR 380 000 

or US$ 27 500),
—— RCmort

pp	 = �10% of 0,005 times UGX 1 = UGX 0,0005, i.e., we assume a 10% level/trend  
shock for calculating the capital requirement for level/trend mortality risk,

—— RCmort	 = RCmort
pp . SA . N . f = UGX 2 500 . N . f, and

—— RCmin MR	 = �UGX 100M (for level/trend mortality risk only, with another UGX 100M for 
other risks, net of diversification and tax benefits, so RCmin = UGX 200M).
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6.3	 The parameters and amounts applied in this section are used to illustrate some key 
principles regarding mortality risks and reinsurance. More precise calculations can be made 
by setting the parameters equal to the ones that can be derived from the local regulatory 
requirements, and by using amounts that are in line with the actual portfolio held.

6.4	 For instance, Financial Soundness Standard for Insurers (FSI) 4.2 in South Africa 
prescribes a 15% shock for mortality rates, instead of 10% mentioned above, for calculating 
the capital requirement for level/trend mortality risks for regular life insurers. This would 
result in 50% higher amounts for RCmort and RCmort

pp. Furthermore, RCmin in South Africa, 
called the Minimum Capital Requirement (MCR), is not a fixed amount but a percentage of 
the ‘Solvency Capital Requirement’ (SCR).

6.5	 However, micro-insurers in South Africa, surprisingly, do not need to calculate a SCR 
that is the aggregate of RBC requirements for individual types of (sub) risks (see Prudential 
Standard Financial Soundness of Micro-insurers (FSM) 1). We therefore recommend that 
micro-insurers in South Africa, for this type of analysis, apply the FSI 4.2 requirements as 
prescribed for regular insurers.

6.6	 The two null points of the equation for N(2,A) are now, following the assumptions of 
¶6.2, approximately, N(2,A) = 32 and N(2,A) = 160 000, but the first null point should be ignored 
because it is only caused by the NP approximation.

6.7	 Furthermore, we find N(2,B) = N(1,B) = RCminMR / (RCmort
pp . SA . f ) = 40 000 / f. 

The lower the retention rate f is, the higher N(2,B) is. For f = 25%: N(2,A) = N(2,B) = 160 000.

6.8	 Finally, again approximately, N(2,C) = 10 110 / f 2 – 1 160 / f + 33, whereby the second 
and third term are a consequence of the NP approximation. It can be shown that N(2,C) < N(2,B) 
when f, again, is larger than, approximately, 25%.

7.	 GRAPHICAL PRESENTATIONS

7.1	 Figures 1 and 2 below show the locations of N(2,A), N(2,B) and N(2,C) for f = 100% and 
f = 50% respectively, while Figure 3 shows that for f = 25% these numbers coincide. The 
approximate numbers are as follows.

TABLE 1. Critical values for portfolio sizes

f 100% 50% 25%

N(2,A) 160 000 160 000 160 000

N(2,B) 40 000 80 000 160 000

N(2,C) 9 000 38 000 160 000
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FIGURE 1. Capital requirements for non-catastrophic mortality risks, retention f = 100%

FIGURE 2. Capital requirements for non-catastrophic mortality risks, retention f = 50%
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7.2	 The shaded areas in the graphs represent the areas where the volatility mortality risk 
exceeds the capital that is held, i.e., RC = max[RCminMR; RCmort]. These areas are called the 
‘danger zones’ for the corresponding levels of the retention rate f, as, for the corresponding 
numbers of insured lives, the fact that volatility mortality risks are higher than the capital that 
has to be held is ignored.

7.3	 The numbers for N(2,A) and N(2,C) in Table 1, i.e., the intersections A and C in the 
graphs, are sensitive to the chosen level of α (while the locations of B and C are sensitive for 
the level of RCminMR). Increasing α from 0,5% to the more common level of 5% lowers N[α] 
from 2,82 to 1,96 and therefore lowers N(1,A) by about 50% but, more importantly, increases 
N(1,C) by about 100%. The effect on N(2,C) is higher, while the effect on the much higher N(2,A) 
is only marginal. Hence, the lower α, the more stretched the danger zone around N(1,B) (= 
N(2,B)) will be.

7.4	 The successive figures clearly reveal that the size of the danger zone decreases when 
the retention rate is lower, i.e., when more reinsurance is taken up. The explanation is that a 
lower retention rate will shift N(2,C) and N(2,B) to the right towards N(2,A), which is fixed, i.e., 
independent of the level of the retention rate. Actually, taking up more reinsurance is more 
effective for decreasing volatility mortality risk than it is for decreasing level/trend mortality 
risk: N(2,C) < N(2,B), but both converge to N(2,A) when f decreases to f = 25%.

FIGURE 3. Capital requirements for non-catastrophic mortality risks, retention f =25%
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7.5	 There are two other ways to decrease the size of the danger zone:
—— by increasing the ‘overall’ minimum capital requirement, and/or
—— by increasing the minimum capital requirement for level/trend mortality risk per policy 
(RCmort

pp) through imposing a higher stress factor for calculating this requirement (e.g., a 
15% shock of mortality rates, instead of 10% as assumed above).

7.6	 Option A should (generally) be considered too blunt, as it would increase the barrier 
for new insurers to enter the insurance market. We even recommend licensing and setting 
minimum capital requirements per product group (life) and class of business (non-life); 
micro-insurance should then be considered a separate product group/class of business. These 
minimum capital requirements must always be sufficient to cover the expected administration 
costs of winding up the corresponding policies when necessary. These costs are generally 
relatively low. However, such low minimum capital requirements should only be allowed 
when the company is adequately reinsured, i.e., as long as N < N(2,C) for the retention rate 
chosen. The insurance supervisor should be authorised to impose ‘capital add-ons’ for 
companies with solvency problems, e.g., when the company is insufficiently reinsured.

7.7	 Option B is also rather blunt; however, it recognises that volatility mortality risks 
are hard to distinguish from level/trend mortality risks, implying, under common RBC 
frameworks, that they should also be covered by the capital requirement for level/trend 
mortality risks. The prescribed stress level for calculating this capital requirement should 
therefore definitely not be too low.

7.8	 Nevertheless, we believe that insurance supervisors, under the common RBC 
frameworks that, so far, ignore volatility mortality risks, should stimulate, and maybe even be 
authorised to force companies to lower their retention rate, i.e. to take up more reinsurance, 
when the portfolio size is still small but higher than N(2,C). Insurance builds on the benefits of 
pooling, i.e., the law of large numbers, because this reduces relative volatility. Reinsurance is 
just a way to benefit more from this ‘law’. Hence, reinsurance is an effective risk management 
tool, particularly for mitigating volatility mortality risks.

7.9	 The suggestion that micro-insurance organisations can be exempted from mandatory 
retrocession requirements with local reinsurers is therefore very much in conflict with 
the interests of their policyholders (who are particularly vulnerable because of their low 
incomes). It has also been suggested that their minimum capital requirement could be much 
lower than that for regular insurers. On the contrary, when their portfolios grow significantly, 
the minimum retrocession requirements should definitely be set much higher in order to serve 
the policyholders’ interests because of the volatility risks.



SAAJ 18 (2018) | © ASSA licensed under  3.0

12 | T MOURIK

8.	 OTHER TYPES OF UNDERWRITING RISKS

8.1	 Catastrophic mortality risks, when covered by a local insurer without reinsurance, 
are proportional to the portfolio size (N). However, when covered by a globally operating, 
geographically well diversified (re)insurer this risk will be more proportional to √N.

8.2	 The principles in this article apply equally to other types of underwriting risks 
in insurance, in particular to lapse/surrender risks in life and premium risks in non-life 
insurance, when the RBC requirement for these risks is defined as a fixed factor times the 
technical provision and unearned premium reserve, respectively. The reason for this is that 
such a capital requirement, like the common RBC requirement for (level/trend) mortality 
risks in life insurance, primarily covers uncertainty about the level (/trend) of the expected 
future underwriting losses, not the uncertainty about the level of the actual losses around their 
expected levels, i.e., the random volatility of the actual losses.

8.3	 Even expense risks, also considered as an underwriting sub-risk, can be split between
—— level uncertainty: what level of expenses should be allocated to individual policies,
—— trend uncertainty: what will the future expense inflation be, corrected for the effects of the 
company’s cost savings programmes including expected future IT benefits,
—— volatility risks: how large can the ‘random’ elements in the annual expenses be, and, 
finally,
—— catastrophic risks like the ones that should be addressed in the company’s business 
continuity plan(s).

8.4	 The law of large numbers, strictly speaking, does not apply to expense risks. However, 
start-up companies generally suffer from relatively high expenses per policy due to a lack 
of economies of scale. Therefore, as long as the company’s portfolio size is still relatively 
small, it may also be better to also consider expense risks proportional to the square root of 
the number of policies (√N), instead of proportional to the number itself (N).

8.5	 Reinsurance is less appropriate for covering expense risks. A better way to do this 
is by means of minimum requirements for the company’s working capital during their start-
up phase, i.e., on top of the minimum capital requirement but decreasing gradually in time 
down to nil when the portfolio size has grown sufficiently that economies of scale have been 
achieved to cover the expenses from the premium tariffs. Expenses that are still proportional 
to √N should be covered by certain (decreasing) ‘capital add-ons’ during start-up phases.

8.6	 Expense losses during start-up phases can also be covered, at least partially, by means 
of acquisition commissions received from reinsurers. This is basically another reason for 
taking up more reinsurance when the portfolio size is still small. This could even be a more 
sound way than raising and amortising deferred acquisition costs in the IFRS balance sheet 
(always to be ignored as an asset in the EBS under RBS).
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9.	 CONCLUSIONS

9.1	 Under compliance-based (insurance) supervision (CBS) there is poor recognition of 
specific (sub) risk types, e.g., level/trend, volatility and catastrophic risks as sub-risks of 
mortality risks. At most, capital requirements under such a regime are proportional to the size 
of the portfolio. However, volatility risk, which can also be a significant sub-risk under lapse/ 
surrender risks in life and premium risks in non-life portfolios, is proportional to the square 
root of the number of policies.

9.2	 Reinsurance is particularly helpful for mitigating volatility risks. CBS frameworks 
therefore do not, or only poorly, recognise reinsurance as an effective tool for risk mitigation.

9.3	 Under RBS, there should be no less than three critical values for the size of the insured 
portfolio:

—— the number of policies above which the volatility risks are higher than the minimum 
capital requirement; this number, notated N(2,C) in the previous paragraphs, is proportional 
to the square root of the number of policies (√N);
—— the number of policies above which the level/trend risks are covered by the corresponding 
capital requirement. This level, notated N(2,B) > N(2,C), is proportional to N; and
—— the number of policies above which the capital requirement for level/trend risks exceeds 
the capital that is needed to cover volatility risks; this level is called N(2,A) > N(2,B) > N(2,C).

9.4	 Both N(2,C) and N(2,B), but not N(2,A), are a decreasing function of the retention rate 
under quota share reinsurance. Hence, taking up more reinsurance makes the numbers N(2,C) 
and N(2,B) higher and therefore less critical. Insurance companies, and also the insurance 
supervisors applying RBS, should therefore recognise that reinsurance is a powerful risk 
management tool, particularly when the portfolio size is (still) relatively small (but higher 
than the critical level N(2,C)) and volatility risks are still relatively large.

9.5	 Unfortunately, volatility risks are not properly reflected in the existing RBC 
frameworks under Pillar 1 of RBS, and therefore also not in (most of the) ones that are still 
under development. It is therefore important for both insurers and insurance supervisors to 
consider them critically in the development and assessment of the adequacy of the company’s 
reinsurance policy, respectively, i.e. under Pillar 2 of RBS.

9.6	 This conclusion is particularly relevant for insurance companies that operate in less 
mature insurance markets, because their portfolios are generally relatively small due to a low 
level of insurance penetration.
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APPENDIX A
The Skewness of the Sum of N Independent Bernouilli Processes

The skewness parameter γ for the distribution of a random variable B is defined as

	 γ(B) = E{B – E(B)}3 / [E{B – E(B)}2]3/2.

When B reflects the outcome of the sum of N independent Bernouilli (qx) processes, the 
numerator equals E{B – E(B)}3 = N . SA3 . qx . (1 – 3qx + 2qx

2) and the denominator equals 
[E{B – E(B)}2]3/2 = [N . SA2 . qx . (1–qx)]3/2.

As a result, γ(B) = (1 – 3qx + 2qx
2) / {√qx . (1–qx) . √(1–qx) . √N}.




