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ABSTRACT
Primary life insurers need to calculate life reinsurance recoverables for excess-of-loss life reinsurance 
treaties for solvency purposes as in Solvency II. However, assuming deterministic mortality, the 
recoverables of excess-of-loss treaties could be zero because the surviving lives are too few to trigger 
the excess-of-loss barrier. Resorting to simulation may be cumbersome as it may call for blending 
into a deterministic mortality model such as those of commercial vendors. In this paper we describe 
an alternative method to avoid simulation that is fast and accurate and can easily be blended into 
existing commercial software. The results can be used in many instances such as supervisory reporting, 
reinsurance pricing and risk management.
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1.	 INTRODUCTION

1.1	 This paper presents a straightforward approach to approximating expected losses in 
excess loss life reinsurance using a closed-form solution based on Lyapunov’s central limit 
theorem. This approach may be used in the calculation of the best estimate of excess loss life 
reinsurance liabilities and reinsurance recoverables.

1.2	 The paper originates from a practical problem that the author faced when he was 
working as a life actuarial analyst at a European primary insurer. The insurer had a number 
of excess-of-loss life contracts and was transitioning to a Solvency II basis for analysing 
and reporting risks. The need in that case was the calculation of the expected reinsurance 
recoverables for the block of life reinsurance treaties. Proportional reinsurance recoverables 
can easily be calculated by multiplying the exposure by the proportion ceded to the reinsurer. 

1.3	 However, excess-of-loss life treaties present a challenge. Most commercial software 
assumes that mortality is deterministic. The life runoff under this assumption exhibits no 
volatility around the mean and the mortality probabilities, qx, behave as percentages. If the 
runoff has many lives outstanding the expected loss may be higher than the excess-of-loss 
barrier. For example, assume 100 lives, with qx = 1% and $1 of sum assured and an excess-
of-loss barrier of $0.5. The expected loss for the 100 lives is $1, higher than $0.5, and the life 
reinsurance has some recoverable value. But as time goes by the pool of survivors reduces. 
With the number of survivors at 40 the expected loss is $0.4, lower than $0.5, and the excess-
of-loss reinsurance is worthless. But this is the deterministic view when the probability equals 
a proportion and does not take into account volatility around the mean. This reinsurance 
treaty even for 40 survivors is not worthless since there is a small but non-zero probability 
that five will die and the reinsurance treaty will be triggered.

1.4	 One way to solve this problem is through simulation. However, this approach requires 
computational resources which can be significant for large portfolios. Moreover, in systems 
where mortality is deterministic it can be cumbersome to include stochastic simulations 
which imply programming effort and more runs. Especially for companies without large 
computational resources this can be a problem. The challenge is to find a calculation method 
beyond the deterministic model, which, in addition, can be easily implemented in commercial 
software or a spreadsheet.

1.5	 One method would be to find a closed-form solution for the calculation in order to 
avoid simulation. To do that, we use Lyapunov’s central limit theorem as an approximation 
to the distribution of  the losses stemming from the excess-of-loss treaty. The Lyapunov 
central limit theorem states that under some conditions the standardised sum of independent 
but not identically distributed random variables with finite mean and variance converge to 
a standard normal distribution. Therefore, we can find the limiting distribution of the total 
losses of the reinsurance contract and calculate its expected value. Using this approach 
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requires breaking the underlying insurance contracts into a sequence of annual loss variables 
as in the individual risk model (see Kaas et al., 2008). These loss variables are of Bernoulli 
type, and their standardised sum can be approximated by the normal distribution.

1.6	 One of the contributions of this paper is to prove formally the application of the 
Lyapunov central limit theorem for life portfolios, which simplifies a vast array of calculations 
by aggregating individual losses into a portfolio loss. This technique may be applied to other 
more complicated reinsurance treaties or as a first step for other more complicated models. 
For example, if mortality can be explained by a simple distribution, then multidimensional 
simulations that include mortality can drop one dimension and save computational resources.

1.7	 The practical use of this formula is that it is analytically tractable and simple, and 
can be implemented easily even in a spreadsheet with limited computational resources. 
The actuary or risk manager can avoid stochastic simulation, especially in cases of primary 
insurers where life reinsurance recoverables must be reported for supervisory purposes.

1.8	 Similar research has not been found in the available literature. Smart (1970) makes 
the argument for a portfolio approach to life reinsurance but does not pin down an explicit 
solution. Broader papers cover topics about reinsurance in general and catastrophic reinsurance 
in particular. Ekheden & Hoessjer (2014) demonstrate the calculation of catastrophic risk 
with a Peaks over Threshold model for catastrophic life (re)insurance but it is rather difficult 
to implement since it hinges on Extreme Value Theory and requires extensive data sets for 
its calibration. Conversely, the model in this paper is simple, easy to integrate within current 
Enterprise Risk Management systems and sufficient for supervisory reporting. There is 
also significant literature covering reinsurance pricing. Refer to Walhin et al. (2001), for 
example, for a general description of methods and recommended papers on the subject. For 
an exposition of Extreme Value Theory refer to McNeil et al. (2005).

1.9	 In the two next sections, we set up the model and validate the specification via 
simulation. Section 4 presents a numerical example. Section 5 concludes.

2.	 Model Setup

2.1	 Assume a random population of i∈ life policyholders with individual coverage 
amounts Ci and independent death probabilities  

ixq  at age xi at a given point in time.1 Each 
year, every insurance policy results in a binomial pay-off. Either insured life dies with a 
specific probability  

ixq , and the primary insurer pays Ci , or the insured life survives with 

1	 Since the model is specified in discrete time, the portfolio of insurance contracts could be seen as 
one cohort with the same starting time in order to eliminate overlapping time periods and keep the 
model simple without loss of generality. This is important in the multiperiod specification described 
later in the paper, which includes conditional survival rates.
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probability1 
ixq− , and the primary insurer pays nothing. The loss of each individual at each 

period of time is described by a random variable of Bernoulli type:
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2.2	 For an excess loss reinsurance contract with loss threshold K, the expected loss for the 
reinsurer for the whole portfolio for an annual reinsurance contract is defined as:
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Further calculations imply:
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2.3	 Equation (2) stems from the fact that the expectation is a linear operator. The pay-off 
to the cedant along the continuum of cumulative losses from the underlying portfolio is the 
same as that of a call option on the loss threshold as strike price (Figure 1).

2.4	 If the probabilities of death and the coverage amounts of insured lives in the insurer’s 
portfolio were identically and independently distributed, then the specification of expected 
total losses using the binomial distribution in equation (2) above would be correct. However, 
if ages and coverage amounts vary within the portfolio, then the binomial approach no longer 
holds. Since the Bernoulli random variable can be shown to satisfy the Lyapunov’s central 
limit theorem (Appendix 1), the standardised total losses (i.e. the sum of the Bernoulli random 
variables) of the underlying portfolio converge, without any reinsurance, to a standard normal 
distribution. The mean μ and the variance σ2 of the total losses without reinsurance are given 
by the following formulas:
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2.5	 Re-arranging equation (2) and standardising the total loss we can write equation (2) as:
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FIGURE 1. Pay-off of excess loss reinsurance contract
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2.7	 Since  
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2.8	 Equation (5) above has an insurance interpretation. Under the assumption of the 
overall loss experience converging to the standard normal distribution, the reinsurer will 
pay one standard deviation of losses, σ, multiplied by the probability of losses reaching 
the threshold, which is the density function of the normal distribution, less the payments 
made by the primary insurer K – μ. The payments of the primary insurer are multiplied by 
the probability that a loss above the threshold of the reinsurance trigger will be realised. 
Otherwise, had the reinsurance trigger threshold not been exceeded, the primary insurer 
would have paid on an expected basis μ < K and not K – μ.

2.9	 The specification above is based on a single-period approximation of expected losses 
but can be extended to a multiperiod set-up by changing the run-off population for each 
time period over the forecast horizon. In practical terms, the insured lives must be sorted 
into demographic brackets and an average coverage amount calculated for each bracket. 
Alternatively, a finer sorting could be established with both ages and coverage amounts 
varying. This two-dimensional vector would then be projected in run-off by multiplying the 
current population at a specific age by the corresponding survival probability to project the 
composition of the population one period ahead.

3.	 MODEL VALIDATION

3.1	 In this section, we validate the proposed model approach by examining the convergence 
of the closed-form approximation equation (5) above and the actual distribution of losses. 
One important question is how many underlying life insurance contracts are required for the 
approximation to be valid.

3.2	 To check convergence, we perform a Monte Carlo estimation of a life insurance 
portfolio with increasing number of insured lives. With this numerical experiment we are 
comparing the Monte Carlo estimate of the expected loss with the loss that is estimated in 
closed-form from equation (5).

3.3	 We simulate first the insured population with randomly distributed coverage levels 
and survival probabilities and next the mortality of the individual lives covered by the desired 
number of insurance contracts. If we seek 100 contracts, for example, we model 100 lives, 
each with unique mortality probability and sum assured.
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3.4	 Second, for each life with known death probability and sum assured, we simulate 
5 000 trials regarding its mortality probability in order to simulate the random variable in 
equation (1). To ensure convergence for the simulation of the loss variable (1) we need 
5 000 trials. Having carried out in total 500 000 simulations for 100 lives we calculate the 
expected loss by averaging the number of events out of the 500 000 simulations that produced 
a loss. We record the loss calculated from the Monte Carlo estimation and check whether the 
simulated loss has surpassed the threshold K.

3.5	 Even if K = 0, where there is no reinsurance, the expected loss without reinsurance μ 
cannot be recovered explicitly from equation (5) for any number of underlying life insurance 
contracts.2 We can judge the quality of approximation, however, as the numbers of underlying 
life insurance contracts increases when K = 0.

3.6	 Figure 2 shows that convergence occurs quickly, after approximately 150 underlying 
life insurance contracts the approximation formula converges to the Monte Carlo estimate.

3.7	 We repeat the process for K > 0 (i.e. with reinsurance) for different numbers of contracts 
and in Figure 3 we see the comparison of the results from the closed-form expression (5) with 
those obtained from Monte Carlo estimation. In this case, convergence is slower than without 
reinsurance, and up to 200 contracts are required to validate the convergence. A crucial issue

FIGURE 2. Quality of approximation (no reinsurance K = 0)3

2	 It is an approximation result which depends on a large number of underlying contracts.
3	 This chart shows the expected loss derived from the simulation of a life insurance portfolio which is 

not reinsured and compares it with formula (5) when K = 0 (i.e. not reinsured portfolio)
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is that the number of iterations per life in the Monte Carlo simulation has to be sufficiently 
high (i.e., more than 5 000 trials per contract).4

4.	 NUMERICAL EXAMPLE

4.1	 This section provides a numerical example of the application of the formula for the 
regulatory capital assessment of mortality risk with excess loss reinsurance under Solvency 
II. Let us assume that a primary insurance company has two life reinsurance treaties, of 
which excess losses have been ceded for thresholds of K = 3 000 and K = 2 000, respectively. 
The company has to calculate its life reinsurance recoverables. The mirror image is the 
reinsurer who sells these treaties and has to calculate expected losses. In addition, the 
insurance company has to calculate regulatory solvency capital. Under Solvency II the 
regulatory solvency capital is the difference in the net asset value (NAV) of the insurer that 
results from an increase to the death probability qx of 15 percent, to 1.15qx . Since reinsurance 
recoverables are recorded as assets, the company also needs to increase the mortality rates for 
the reinsurance treaties in order to correctly capture the hedging effect of reinsurance.

4.2	 To show this, we generate two underlying life insurance portfolios for each treaty by 
randomly drawing for each one 1 000 lives with randomly generated sum assureds and ages. 

FIGURE 3. Quality of approximation (with reinsurance K > 0)5

4	 The closed-form formula needs seconds to calculate the expected losses whereas the Monte Carlo 
simulation requires close to 15 minutes for a portfolio of 5 000 contracts on a desktop PC.

5	 This chart shows the expected loss derived from the simulation of a life insurance portfolio which is 
reinsured and compares it with formula (5) when K > 0, (i.e. reinsured portfolio)
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For each simulated life i = 1,…,1 000 we have a corresponding sum assured Ci and death 
probability 

ixq  for each age xi . Thus, the first two moments (mean μ and variance σ 2) of 
the total loss distribution, without reinsurance, for each treaty can be calculated using 
equations (3) and (4). Once these quantities have been calculated, they are plugged into 
equation (5), which generates expected payments for Treaty #1 and Treaty #2 of 417 and 
1 712, respectively.

4.3	 The results of the calculation are shown in Table 1, which shows the base scenario 
with the expected reinsurance recoverables and the shocked scenario with reinsurance 
recoverables under the assumption of a mortality base rate at 1.15 times base scenario.

TABLE 1. SCR calculation of mortality risk

Basis scenario Shocked scenario
Mean

(equation 2)
Std deviation 
(equation 3) Mean Std deviation

Treaty #1 2 885 1 184 3 318 1 269

Treaty #2 3 617 1 445 4 160 1 549

Threshold #1 3 000 3 000

Threshold #2 2 000 2 000

Expected payments contract #1 417* 681

Expected payments contract #2 1 712* 2 217

Total expected payments 2 130 2 898

*(equation 4)

4.4	 The difference between the total expected payments in those two scenarios would 
be a hedge benefit for the insurer since this is a reinsurance asset. For the reinsurer, the 
difference would be the mortality solvency capital requirement (SCR).

4.5	 This calculation does not take into account the volatility of mortality that could result 
from small samples as noted in a study by the International Actuarial Association (2004), 
which finds that best estimates are very volatile for small samples. In the overall SCR 
calculation, the capital charge for mortality risk would then be subject to the diversification 
effect from combining market risk, non-life risk, credit and health risk.

4.6	 Usually multi-year projections are required, especially if the life reinsurance treaty 
is in force for more than one year. To show how to perform multi-year projections we have 
the following numerical example. We assume 11 000 insured lives arranged in age brackets 
with a total sum assured for each age bracket. For each age bracket there is a corresponding 
survival probability px = 1 – qx for age x. For our calculations we have used the 2008 German 
mortality table.
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TABLE 2. Population of insured lives

Number of contracts Sum assured Age Survival probability

5 000 100 30 99.97%

1 000 50 35 99.96%

2 000 20 40 99.93%

3 000 10 44 99.88%

4.7	 At the present the expected payments of the reinsurance treaty are based on the 
current population. However, one period ahead some lives have died and some have survived. 
Mortality rates for the survivors are not qx but qx+1.

TABLE 3. One-period forward projection of mortality risk

Multiperiod projection

Current year portfolio

Number of contracts Sum 
assured Age Survival 

probability Mean Variance K Expected 
payments

5 000 100 30 99.97% 219.68 15 604.10 220 49.68

1 000 50 35 99.96%

2 000 20 40 99.93%

3 000 10 44 99.88%

One-year forward portfolio

Number of contracts Sum 
assured Age Survival 

probability Mean Variance K Expected 
payments

5000×99.97% = 4998.62 100 31 99.97% 242.82 17 372.16 220 64.79

1000×99.96% =   999.65 50 36 99.97%

2000×99.92% = 1998.56 20 41 99.92%

3000×99.88% = 2996.53 10 45 99.87%

4.8	 The mean total loss without reinsurance μ is calculated by applying equation (3) to 
each age- and sum-assured bracket. 

4.9	 The calculated mean and variance of the total loss, along with the threshold K = 220 
are inserted into equation (5). The result is 49.68 expected payments for the life reinsurance 
treaty. In order to project the population one year forward we multiply the current population 
with the current survival probabilities.6

6	 We see that in the first column of Table 3 where the initial population is reducing, the survival 
probabilities change with the increased age. For example, a life aged 40 has a 99.93% probability 
of survival for one year. If he or she survives to reach 41, the corresponding probability for the next 
year is 99.92%.
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4.10	 For the next projected year, we use the survival probabilities for ages one year forward 
and we recalculate the mean μ and variance σ2 of the portfolio loss using equations (3) and 
(4). The expected payments are now 64.79 one year forward.

4.11	 In addition, one can now calculate the two-year best estimate of expected payments 
at a discount rate of 1% as: 49.68+ 64.79/1.01 = 113.82.

5.	 CONCLUSION

5.1	 This paper presents a straightforward approach to deriving expected losses in excess 
loss life reinsurance using a closed-form solution based on Lyapunov’s central limit theorem. 
The numerical example demonstrates how easily the formula can be applied, significantly 
reducing the computational effort to derive best estimates of excess loss life reinsurance 
losses. Moreover, this simple formula can be included easily in any type of commercial 
actuarial software or spreadsheets without any tweaks or stochastic modelling of non-
stochastic variables such as deterministic mortality.

5.2	 An important assumption behind this formula is that lives are independent. While 
this may be true in the majority of cases; it does not capture any dependencies in cases 
where there could be life-tail risk. This formula is nevertheless useful for plain mortality 
solvency calculations involving excess loss treaties since in many supervisory regimes the 
life catastrophe risk is separately calculated in the total mortality SCR.

5.3	 For life portfolios that may be characterised by significant correlation between 
lives, using the formula without introducing an allowance for this dependency would be 
inappropriate. Such an allowance, however, would lead to a multidimensional integral of qx. 
Moreover, the formula ignores any long-term improvements in longevity; thus it is a static 
model that gives a current snapshot of the risks.

5.4	 Using the methodology described in this paper, primary insurers can assess their 
reinsurance recoverables and calculate the gross best estimate of their liability with ease. 
Reinsurers, on the other hand, could have a first-hand measure of their liability and use the 
method as part of a pricing tool as well. 

DISCLAIMER
The views of the paper are of the author and they do not represent the Bermuda Monetary Authority.
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 APPENDIX 1

Proof of Lyapunov’s central limit theorem for Bernoulli random variables
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whether the Lyapunov condition holds for the Bernoulli random variable in equation (A1) 
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A.3	 We know that the following relationship holds:
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A.4	 In order to calculate the limit in equation (A1), we use the sandwich theorem of 
limits. This theorem states that if the limit of the absolute value of a function is smaller or 
equal to zero, then the limit of the function itself is zero. Substituting the quantities (A2), 
(A3) into (A1) we have to calculate:
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A.5	 The inequality in (A4) stems from the corresponding inequality:

		  [ ]21 2 2 1, 0,1  
i i ix x xq q q− + ≤ ∈ .

Assuming that  0 iC M< ≤ < ∞  for all N, we have:
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and
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according to the sandwich (or squeeze) theorem of limits.


