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ABSTRACT
In this paper, we consider the Markovian model for the actuarial modelling of health insurance policies 
modified by the inclusion of durational effects (the time elapsed since entering a given state) on the 
aggregate payment streams, where the force of interest is a diffusion process. We derive differential 
equations for the first moment of the present value of the aggregate amount of benefits. We also give 
two examples to illustrate our results.

KEYWORDS
Multi-state life insurance; semi-Markov model; counting process; first conditional moment; partial 
differential equations; Markov chain

CONTACT DETAILS
Franck Adékambi, Department of Economics and Econometrics, University of Johannesburg, Auckland 
Park Campus; Tel: +27(0)83 779 2398; Email: fadekambi@uj.ac.za

1.	 INTRODUCTION

1.1	 Health insurance plays a vital and increasing role worldwide. It provides financial 
protection in case of unfortunate events such as injury from accidents, sickness, costs of 
healthcare or loss of earnings (Christiansen, 2012). Low cost health insurance may contribute 
towards improving the quality of healthcare among lower- and middle-income groups and in 
particular individuals who cannot afford healthcare.
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1.2	 The computation of the expected present values of a health policy involves 
substantial uncertainty. The source of this uncertainty includes estimates of the probability 
of a policyholder becoming sick, the number of claims received during a life insurance 
contract, and other variables such as the age and the health status of the policyholder. The 
claims received during a life contract are variables whose probability distribution is crucial 
for actuarial estimations. The moments of the probability distribution give insight into the 
likelihood distribution of claims, premiums and reserves and the riskiness of the insurance 
(Norberg, 1995).

1.3	 This paper shows the possibility of presenting a more elegant modelling of the 
actuarial reserves when interest rates take the form of a diffusion process. We then calculate 
the premium by using the equivalence principle where the reserve at time zero is zero in the 
active state.

1.4	 The future cost of healthcare is often dependent on economic behaviour. The 
probability distribution of random pattern states such as being active or disabled, for example, 
may fluctuate considerably during the term of the insurance contract. This variation and the 
behaviour of interest rates may have an effect on the estimation of premiums and benefits 
(Christiansen, op. cit.).

1.5	 A semi-Markov chain is a stochastic process that occurs in continuous time. Under the 
properties of semi-Markov chains, the probability of achieving a particular situation depends 
on the probabilities of transitions and the time spent in each state. Therefore, this paper 
focuses on the calculations of the first conditional moment of present values and premiums 
associated with the time elapsed since entering the current state and the transition from a 
health state.

1.6	 Considerable research has been undertaken in the area of the mathematics of health 
insurance. Pitacco (1995) reviewed a multi-state model for pricing disability benefits using the 
stochastic process framework. He presented a mathematical model for permanent disability 
and lump-sum benefits and illustrated a multi-state model for dread disease insurance and 
long-term care annuities. He outlined the need to find a unified multi-state model for pricing 
disability. He concluded that implementing such a multi-state model tends to be more 
complicated than the classical two-states model, because it requires data on populations 
covered and premiums charged which are very limited. As a result, it can be difficult to 
implement a unified model for disability insurance.

1.7	 In this regard, Norberg (1995) proposed a time-continuous Markov chain model 
for health insurance. He obtained non-central and central higher conditional moments of 
present values of a standard life insurance contract with different policies and interest rates 
for different values of net premium by deriving an appropriate set of differential equations.
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1.8	 Christiansen (op. cit.) calculated the premiums and reserves, erring on the safe side. 
He suggested that other models can be implemented by considering the dependence on the 
age of the policyholder at the time of issuing of the policy and the dependence on the time 
spent in the respective policyholder states.

1.9	 Limited research has been carried out on the estimation of standard insurance products 
whose payments depend on the time elapsed since entering the health status. The question is 
whether a method exists to obtain moments of present values by taking into consideration the 
time elapsed in the respective policyholder states.

1.10	 This work aims to address these challenges by deriving differential equations for the 
first conditional moment of the present values and annuity payment for health contracts with 
a stochastic interest rate.

1.11	 Analysing the durational effects based on the time elapsed in each state using 
semi-Markov properties is possible, because it considers the transition and individual state 
probabilities. This study uses this framework as it is one of the most appropriate approximating 
mathematical frameworks.

1.12	 The stochastic process has been expanded in insurance applications; Stenberg, Manca 
and Silvestrov (2006), for example, developed a model for calculating expectations and 
higher order moments for accumulated rewards for disability insurance contracts using semi-
Markov processes.

1.13	 The differential equations for the first-order moment are the well-known Thiele 
equations. While Thiele introduced his equations for the Markovian framework, Hoem 
(1972) and Helwich (2008) generalised Thiele’s equations to the semi-Markovian framework. 
In the Markovian framework, differential equations are also available for all higher-order 
moments: the variance was obtained as a double integral in the multi-state Markov model by 
Hoem (1969), (see also Amsler (1968) and Norberg (1991)). Norberg (1992) used martingale 
techniques to express the variance as a single integral. Higher order conditional moments 
of present values of payments related to a life insurance policy are presented in Norberg 
(1995). In the semi-Markovian case, Helwich (op. cit.) presented integral equations for loss 
variances.

1.14	 The paper is organised as follows. Section 2 gives an overview of commonly used 
multi-state models for health insurance policies. In section 3, we give differential equations 
for the first moment of present value when the force of interest is of the diffusion type and 
provide examples to illustrate our results. Concluding comments are provided in section 4.
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2.	 MULTI-STATE MODEL FOR HEALTH STATUS
2.1	 Description of the Model

2.1.1	 Throughout this section we follow the presentation and notation of 
Christiansen (op. cit.).

2.1.2	 Let the random pattern of states of an individual policyholder be given by 
a pure jump process ( )( )0

, ,X
t t

P X
≥

Ω ℑ  with finite state space S and right continuous paths 
with left-hand limits, representing the state of the policy at time t ≥ 0. We further define the 
transition space
		   ( ){ }: ,J i j S S i j= ∈ × ≠ ,

the counting processes
		  ( ) ( ]{ } ( ): # 0, , , ,j kN t t X k X j j k Jτ ττ −= ∈ = = ∈ ,

the time of the next jump after t
		  ( ) { }: min ,T t t X Xτ ττ −= > ≠

the series of the jump times
		  ( ) { }0 1: 0, : , 1n nS S T S n−= = ∈ − ,

and a process that gives for each time the time elapsed since entering the current state,

		  [ ] [ ]{ }: max 0, ,t u tU t X X for all u t t= ∈ = ∈ −τ τ ,

also called the duration process. Instead of using a jump process ( ) 0t tX ≥ , some authors 
describe the random pattern of states by a chain of jumps. The two concepts are equivalent.

2.1.3	 We assume that the random pattern of states ( ) 0t tX ≥  is semi-Markovian, 
i.e. the bivariate process ( ) 0,t t tX U ≥  is a Markovian process, which means that for all 

, 0i S u∈ ≥  and 1... 0nt t t≥ ≥ ≥  we have

		  ( ) ( )( ) ( ) ( )( )1 1
, , , ,..., , , , , .t t t t t t t t t tn n n n

P X U i u X U X U P X U i u X U= = =

2.1.4	 We now assume that the initial state ( )0 0,X U  is deterministic. (Note that 
U0 = 0 by definition). In practice that means that we know the state of the policyholder when 
signing the contract. With this assumption and the Markov property of ( ) 0,t t tX U ≥ , the 
probability distribution of ( ) 0,t t tX U ≥  is already uniquely defined by the transition probability 
matrix
		  ( ) ( )( )( ) 2,, , , , ,t t s s j k Sp s t u v P X k U v X j U u ∈= = ≤ = = ,

		  0 , 0u s t v≤ ≤ ≤ < ∞ ≥ .

2.1.5	 We can uniquely define the probability distribution of ( ) 0,t t tX U ≥  by 
specifying the probabilities
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( ) ( )( )( )

( ) ( ) ( )( )
( ) ( )( )

2,
, , , , ,

, , : , , , ,

, , : , .

j k j k S

j k s sT s

j j s s

p s t u p s t u

p s t u P T s t X k X j U u j k

p s t u P T s t X j U u

∈
=

= ≤ = = = ≠

= − ≤ = =

2.1.6	 A third way to define uniquely the probability distribution of ( ) 0,t t tX U ≥  
is to specify the cumulative transition intensity matrix

		

( ) ( )( )( )

( )
( )
( )( ]

2,

,

, , ,

, ,0
, : , 0 .

1 , ,0

j k j k S

j k
j k

j js t

q s t q s t

p s d
q s t s t

p s

∈
=

= ≤ ≤ < ∞
− −∫

τ
τ

2.1.7	 If ( ),q s t  is differentiable with respect to t, we can also define the 
transition intensity matrix
		

		
( ) ( )

( )

( )
( ),

, ,0
, : , ,

1 , ,0
j k S S

j k

j k
j j

d p s td dtt t s q s t
dt p s t

∈ ×

 
 

− = =  − 
 

µ

which is expressed in the form of a multi-state hazard rate. The quantity ( ),j k t t s−µ gives 
the rate of transitions from state j to state k given that the current duration of stay in j is t – s.

2.2	 Application to the Health Insurance Contract
2.2.1	 Payments between an insurer and policyholder are of two types:

–– The amount payable is ( ),j kb t u  if the policy jumps from state j to state k at time t and the 
duration of stay in state j was u. In the Markovian approach the parameter u plays no role, 
and we write ( ) ( ),j k j kb t u b t= . In order to distinguish between payments from insurer to 
insured and vice versa, benefit payments are given a positive sign and premium payments 
are given a negative sign.

–– Annuity payments fall due during sojourns in a state and are defined by deterministic 
functions ( ), ,jB s t j S∈ . Given that the last transition occurred at time s, ( ),jB s t  is 
the total amount paid in [ ],s t during a sojourn in state j. We assume that elements of the 
series ( ), .jB s  are right continuous and of bounded variation on compacts. We count 
the amount paid in state active as negative since this amount is the premium paid by the 
insured.

2.2.2	 We assume that all contractual payments happen only on the time interval 
[0, ]n . In insurance practice, n might be, for example the maximum age of a life table.
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3.	 INTEREST RATE MODELS
3.1	 First Moment of Present Value

3.1.1	 For the insurer to honour its future liabilities towards the insured with 
certainty, it must hold adequate reserves at all times. The interest rate operating on the reserve 
is represented by ( )tδ . We then define a discounting function,

		  ( )
( )

( ) ( )( ), :

t
d

t ssv s t e e
−

− ∆ −∆
∫

= =
δ α α

where ( )u∆  is the log accumulation function defined by ( ) ( )
0

u

u d∆ = ∫δ τ τ .

3.1.2	 We can interpret ( ),v s t  as the value at time s of a unit payable at time t ≥ s.

3.2	 Log Accumulation Function of Diffusion Type
3.2.1	 Here we let ( )u∆  be a stochastic process. Many possibilities exist, but we 

assume that
		  ( ) ( ) ( ) ( )d t t d t t dW tδ σ∆ = + ,	 (1)

where δ and σ are deterministic positive functions and W is a standard Brownian motion. The 
interpretation of this model is given in Norberg & Moller (1996). The interest yield per unit 
of savings in the time interval [ , ]t t dt+  deviates from its mean ( )t dtδ  by a white noise 
term with variance ( )2 t dtσ . The force of interest does not exist in the present model, since  
Δ is not of bounded variation.

3.2.2	 For the model in equation (1), ( )t∆  has independent and normally distrib-
uted increments,

		  ( ) ( ) ( ) ( )2,
t t

s s

t s N d d
 

∆ −∆  
 
∫ ∫ δ α α σ α α ,

which are independent of ( ){ }1,t j tI t U uℑ = = = . Thus, using the formula for the moment 
generating function of a normal variate, the function ( ) ( )[ ], , tt E v t= ℑφ τ τ  is now

		  ( ) ( ), exp
t

t s ds∗ 
= − 

 
∫
τ

φ τ δ ,

with
		  ( ) ( ) ( )21

2
t t t∗ = −δ δ σ .

3.2.3	 Using Itô’s lemma, ( )dv t  can be expressed as

		  ( ) ( ) ( ) ( ) ( ) ( )21
2

dv t v t t dt t dW t t dt = − + − 
 
δ σ σ .	 (2)

3.2.4	 The discounted aggregate sum of all future benefits and premium payments 
is given by
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( ) ( ) { } ( )
( ]

( ) ( ) ( )
( ]( )

1
0 ,

, ,

: , 1 ,

, , .

j lS Sl l
j S l t n

j k j k
j k J t n

A t v t B S d

v t b U dN

∞

≤ < +
∈ =

∈

=

+

∑∑ ∫

∑ ∫

τ

τ

τ τ

τ τ τ 	 (3)

3.2.5	 The quantity ( )A t  is the amount that an insurer needs at time t in order to 
meet all future obligations in respect of the contract. Since we have assumed that there are no 
payments after time n, we have ( ) 0A t =  for t > n.

3.2.6	 Linking our development to Norberg (1995), we may alternatively write

		  ( ) ( ) ( )
( ],

,
t n

A t v t dBτ τ= ∫ ,

where

		

( ) ( ) { } ( )

( ) ( ) ( )
( )

1
0

,

: , 1 ,

, , .

j lS Sl l
j S l

j k j k
j k J

dB v t B S d

v t b U dN

∞

≤ < +
∈ =

∈

=

+

∑∑

∑

τ

τ

τ τ τ

τ τ τ

3.2.7	 ( )B τ  is the random total amount paid in the time interval [ ]0, t .
3.2.8	 Here, we use the result stating that the processes ( )jkM t  defined for j ≠ k 

by
		  ( ) ( ) ( ) ( ),jk jk j jk tdM t dN t I t t U dt= − µ 	 (4)

are martingale processes.

3.3	 Differential Equations for the First Moment of Present Value
3.3.1	 Statement of equation

3.3.1.1	 Our goal is to derive

		

( ) ( ) ( )
( ]

( )

( ) ( ) ( )
( ]

,

,

, , 1,

, 1,

j j t
t n

j t
t n

V t u E v t dB I t U u

t dB I t U u

τ τ

φ τ τ

 
= = = 

  

 = = = 

∫

∫
	 (5)

the first conditional moments of the present value in (3), given the information available at 
time t, where for ,

		  ( ) ( ) ( ) ( ) ( ) ( ), , 1, 1,j t j tt E v t I t U u r t E v I t U uφ τ τ τ   = = = = = =    ,	 (6)

with ( ) ( )1v t r t−= .
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3.3.1.2	 Throughout this paper, we consider that the first conditional 
moment of the present value, ( )A t  exists. In mathematical formulation, we have: 

( ) ( ) 1,j tE A t I t U u = = < ∞  .

3.3.2	T heorem
3.3.2.1	 The functions ( ),jV t u  are determined by the differential equations:

		

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )

2

:

, , , ,

,0 , , , ,

1

0

2

,

j j j j

l
k j j jk

k k j

j

V t u V t u b t u V t u
t r

V t b t u V t u

t

n u

t

t r

V
≠

∂ ∂
+ = − +

∂ ∂
− + −

=

 − 
 

∑

δ σ

µ 	 (7)

valid on ( )0, /n ℘ and subject to the condition

		  ( ) ( ) ( ), , ,j j jV t u B t u V t u− = ∆ + .	 (8)

3.3.3	R emark
Equation (7) implies the existence of the derivatives on the left. They exist, only 

at those ( )0, /t n∈ ℘ where the , ,j jkb bδ  and jkµ  are continuous. The interpretation of 
equation (7) is expressed when writing ( ),jdV t u  on the left and multiplying by dt on the 
right. The resulting differential equation can then be solved. Refer to ¶3.4.4.

3.3.4	 Proof of Theorem
3.3.4.1	 It is easier to work with present values evaluated at time 0 and use the 

function
		  ( ) ( ) ( ), , .j jV t u v t V t u= 	 (9)

3.3.4.2	 We also note that, from equations (2) and (9)

		
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21,
2

, ,

j j
j

j j

dV t u v t I t t dt t dW t t dt

V t u dt v t dV t u

δ σ σ = − + − 
 

+

∑

	 (10)

3.3.4.3	 We denote by t the information carried by the counting processes by time 
t (i.e, the sigma-field generated by ( )j kN τ , j k≠ , 0 t≤ ≤τ ). We define the martingale M by

		  ( )
0

n

tM t E v dB
 

= ℑ 
 
∫ .	 (11)

3.3.4.4	 Upon expanding the expression 
0 0

n t n

t

v dB v dB v dB= +∫ ∫ ∫  with
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		  ( )
0

t

K t v dB= ∫ ,

and from the Markov property, we have

		  ( ) ( ),
n

t j
t

j
j

E v t Vd I t uB
  

ℑ =  
  

∑∫  	 (12)

giving
		  ( ) ( ) ( ) ( )( ),j j

j
I t K tM V ut t+=∑  .

3.3.4.5	 Note that M is right continuous, and ( ),jV t u  is also right-continuous since 
K and Ij are. Since our goal is to derive a differential equation for ( ),jV t u , we need the 
following differential form for M:

		  ( ) ( ) ( ) ( )( )( ),j j j
j

d I t K t V tM t ud +=∑  .	 (13)

3.3.4.6	 We apply the change of variable formula to the terms on the right hand side 
and use the fact that the continuous part of a function X is denoted by X :

	

( ) ( ) ( ){ }( )

( ) ( ) ( ){ }
( ) ( ){ } ( )

( ) ( ) ( ){ } ( ) ( ) ( ){ }

,

, (14)

, (15)

, ,

j j j
j

j j j
j

j j j
j

j j j j j j
j

d I t K t V t u

I t dK t dV t u

K t V t u dI t

I t K t V t u I t K t V t u− − −

+

= +

+ +

 
+ + − + 
 

∑

∑

∑

∑







  	(16)

3.3.4.7	 We express the terms on the right as follows:
–– In expression (14) put ( ) ( ) ( ) ( ),k k

k
dK t v t I t b t u dt= ∑  and use ( ) ( ) ( )k j j jkI t I t I t= δ .

–– In expression (15) the first term disappears since Ij is constant.

3.3.4.8	 The jump term in (16) can be of two types. Firstly, a possible transition 
between states causes a jump of size

		  ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ), , 0 ,jk k j jk
k j

K t v t b t u V t K t V t u dN t− − −
≠

+ + − +∑   .

3.3.4.9	 Secondly, a possible lump sum annuity payment causes a jump of size

		  ( ) ( ) ( ) ( )( ) ( ) ( )( ), , ,j j j
k j

K t v t B t u V t u K t V t u− − −
≠

+ ∆ + − +∑   ,
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which can differ from 0 only at time t∈℘. Here, we replace ( )jI t  by ( )jI t−  since these 
coincide with probability 1 on ℘. Using the same argument, jumps of contractual annuity 
functions and transitions between states are null with probability 1 and can be disregarded.

Since 
n

t

v dB∫  is continuous at each fixed t∉℘, we do not have any further jump terms from 

the functions ( ),jV t u  at such t.

3.3.4.10	 We define the functions , ,j j k jb b B∆ 
  by:

( ) ( ) ( ), ,j jb t u v t b t u= , ( ) ( ) ( ), ,j k j kb t u v t b t u= , ( ) ( ) ( ), ,j jB t u v t B t u∆ = ∆ ,

where
( ) ( ) ( ), : , ,j j jB s u B s u B s u∆ = − −

and we gather:

( ) ( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ) ( )( ) ( ) ( )( ){ } ( )

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }

, ,

, 0

,

, ,

.

,

, ,

jj j j j
j j

k j jk
j k

j j j j
j

j

d I t K t V t u I t dt dV t u

K t V t K t V t u dN t

I t

b t

K t B V t u K t V

u

b t u

t u t u

− − −
≠

− − − −

 
+ = + 

 
+ + − +

+ + ∆ + − +

+

∑ ∑

∑

∑









 



 

3.3.4.11	 Inserting this into equation (13) and then using equation (4) and, noting the 
general rule ( ) ( )X t dt X t dt− = , we obtain:

	

( ) ( ) ( ) ( )( ) ( ) ( )( ){ } ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }
( )

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }

:

, 0 ,

,

,

,

0 ,

,

, ,

,

,

,

k j jk
j k

j j
j

j k j
j k

j

j

j
k j

jk

j j j
j

k

j

dM t b t u

b t u

b t

K t V t K t V t u dM t

I t dt dV t u

I t K t V t K t V t u

t u dt

I t K t

u

B t u V t u K t V t u

− − −
≠

− − −
≠

− − − −

+ − +

+

+ + − +

+ +

− +

=

+

+ − +∆

∑

∑

∑ ∑

∑









 



 

 

µ

	 (17)

3.3.4.12	 From equation (10), the term ( ),jdV t u  appearing inside the parentheses 
multiplied by ( )jI t  has the value

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

21, , ,
2

,

j j j

j

dV t u v t t t V t u dt t V t u dW t

v t dV t u

  = − + −  
  

+

 δ σ σ .	 (18)

3.3.4.13	 But ( ) ( ) ( ), 0jdM t t V t u dW′ = − =σ  since
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( ) ( ) ( ) ( )
0

,
t

jM t V u dW′ = −∫σ τ τ τ  is a martingale, continuous and of bounded variation, it 

must be constant (see Chung & Williams, 1990: 87).

3.3.4.14	 Equation (18) becomes

		  ( ) ( ) ( ) ( ) ( ) ( ) ( )21, , ,
2j j jdV t u v t t t V t u dt v t dV t u = − − + 

 
 δ σ .	 (18a)

3.3.4.15	 We then take equation (18) as a notation.
3.3.4.16	 Now, on the left of equation (17) is the differential of a sum of martingales 

(note that the coefficients of ( )jkdM t  are predictable). Thus, the expression on the right must 
also be the differential of a martingale. Since this martingale is predictable and of bounded 
variation, it must be constant due to the Doob-Meyer decomposition (refer to chapter 2, 
Andersen et al., 1993). We conclude that both the continuous part and the discrete part must 
have increments that are identically 0, and that this is true for all outcomes of the indicator 
processes if and only if

	 ( ) ( ) ( ) ( ) ( ){ } ( )
:

, , 0 , 0, ,,j k j
k

j
k

k jk
j

jb t u d dV t u V t V t u tt t u u tb d
≠

+ + −+ =∑  
  µ 	 (19)

for all j and all ( )0, \t n∈ ℘.

3.3.4.17	 Finally, replacing ( ) ( ) ( ), ,j jb t u v t b t u= , ( ) ( ) ( ), ,j k j kb t u v t b t u=  and 
equation (17) in (19) we have:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ){ } ( )

( ) ( ) ( ) ( )
( ) ( )

( )

2

:

2

:

2

10 , ,
2

, 0 , ,

1 , ,
2

, 0 , ,

, ,1 ,

,

,

,

,

,
2

,

j

jk

j

jk

j

j

j j

k j jk
k k j

j j

k j jk
k k j

j
j

k

j

v t b t u dt

v t b t u v t v t

b t u

b t u

b t u

b t

v t t t V t u dt v u dV t u

V t V t u t u dt

t t V t u dV t u

V t V t u t u

V t u V t u
t t V t u

t u
Vu

≠

≠

 − − + 
 

+ −

 = − − + 
 

+ −

∂ ∂ = − − + +  ∂ ∂ 
+

=

+

+

+

∑

∑

δ σ

µ

δ σ

µ

δ σ

( )( ) ( ){ } ( )
:

, 0 , , .k j jk
k k j

t V t u t u
≠

−∑ µ

			   (20)
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3.3.5	R emark

From ( ) ( ) ( )
( ]

( )

( ) ( ) ( )
( ]

,

,

, , 1,

, 1,

j j t
t n

j t
t n

V t u E v t dB I t U u

t dB I t U u

τ τ

φ τ τ

 
= = = 

  

 = = = 

∫

∫

and since ( ),v t τ  is lognormal, ( ) ( )
( ) ( )1 2

2, ,
t t

t E v t e
δ τ σ τ

φ τ τ
 − − − − 
  = =  . The solutions of 

equations (18) when the force of interest is constant denoted by ( )tδ  are equivalent to the 
case where the log accumulation is following equation (1). We just need to rewrite the 

accumulation function as ( ) ( )
0

u

u d∗∆ = ∫ τ τδ  where ( ) ( ) ( )21
2

t t tδ δ σ∗ = − .

3.4	 Examples
3.4.1	 As analytical solutions for the differential equation (19) are generally out 

of reach, we discuss numerical methods here.
3.4.2	 Under the assumption that the derivatives ( ) ( ), : ,j jb t t s B s t

t
∂

− =
∂

 exist, 

we now discuss a numerical solution method for the ordinary differential equations.

3.4.3	T he Active-Dead Model
3.4.3.1	 We take the following example from Buchardt, Møller & Schmidt (2014) 

where they have only calculated the first moment numerically. Our results allow us to 
calculate all the higher condition moments of their two-states survival model.

3.4.3.2	 Buchardt, Møller & Schmidt (op. cit.) consider a two-state Markov model 
with states 0, alive, and 1, dead. They consider an insured male of age 40 with pension age 
65, and two products:
–– a life annuity, starting at age 65, and
–– a 10-year annuity upon death, if death occurs before age 65.

3.4.3.3	 They also specify the payment functions as follows:
–– ( ) { }25, 37,404 1a tb t u ≥= × , a life annuity, and
–– ( ) { } { }25 10, 18,702 1 1d t u ub t u − < <= × × , a death annuity upon death.

3.4.3.4	 We then have:
–– Log accumulation process, ( ) ( )0.015 0.25d t d t d W t∆ = + , and
–– 0.0005 0.000075858 1.09144x

x = + ×µ

3.4.3.5	 The annuity upon death is dependent on the duration u, since it is only for 
the 10 first years after death that there is a payment.
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3.4.3.6	 We are then in practice in the semi-Markov set-up, even though the transi-
tion rates are not duration dependent, but ( ) 0t tX ≥  is in fact a Markov process.

3.4.3.7	 If the state space consists only of the states a = active and d = dead, explicit 
solutions for the first moment can be derived from the differential equations in (19) by using 
the method of variation of constants.

3.4.3.8	 Since the transition intensity from dead to active is zero, the system of 
ordinary partial differential equations according to equation (19) has for the first moment the 
form
		  ( ) ( ), ,d

dd t u b t u
dt

V
= − 



for the state d = dead and

		
( ) ( ) ( ) ( )1

, , , ,a
d

dd
d t u t u tV u F t u

d
V

t
= +



 µ

for the state a = active, where

	 ( ) ( ) ( ) ( ) ( )( )1 , , , , ,a ad a ddF t s b t u t u b t u uV t= − − +µ  and ( ) ( )1 1, ,tF t u e F t u
∗−=

δ .

3.4.3.9	 The ordinary differential equations can be successively solved by applying 
the method of variation of constants. For the first-order moment conditional on state dead, the 
solution of the homogeneous problem is

		  ( ) ( ) ( ), ,
n

t

t
d dt e u dV u b

∗− −= ∫ τ δ τ τ 	 (21)

3.4.3.10	 This trivial structure of the solution in state dead is due to the fact that there 
is no randomness once the policyholder is in state dead. Now we continue with the ordinary 
differential equations for state active. By applying the method of variation of constants for 
the first-order moment, we obtain

		  ( ) ( ) ( ) ( ) ( )( )( )
( )

, , , , , ,
u, u s dun ad

a d
t

a ad ad
t

t s b u u b u u dV eV
− −∫

= + +∫  
 

τ
µ

τ µ τ τ τ τ

where we may replace ( ),dV u τ  with the explicit formula (21). Similar and successive cal-
culations lead to

		  ( ) ( )
( )( ),

1, ,
u dn ad

t

t
a t s u e dV L

∗− +∫
= ∫ 

τ
δ µ α α

τ τ

with
		  ( ) ( ) ( ) ( ) ( )1 1 1 1, , , , , ,t

aL u F u b u L u e L u
∗−= − =

δτ τ τ τ τ .

3.4.3.11	 Note that ( )1 ,L sτ  depends only on expressions that have already been 
calculated.
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3.4.3.12	 We may also apply the above formulas to a two-state disability model, 
where the disability payment has a durational effect.

3.4.4	T he Disability Model
3.4.4.1	 The example described here is similar to the example set out in Norberg & 

Moller (op. cit.). We change the values of the benefits between transitions and the resulting 
accumulation factor follows a diffusion process. The policy terms are set out below.

3.4.4.2	 The insurance period is n years and the premium is paid continuously with 
a constant rate of P for a period of at most m years, m < n, as long as the insured is in state 1. 
In state 2, an annuity is paid continuously to the insured with a constant rate b and a qualifying 
period of one year before receiving benefits as disabled. This gives that ( ) ( )2 , 1tb t r b I U= ≥ . 
A benefit amount S, the sum insured, is paid immediately upon death within time n. 
Furthermore, the reserve ( )1 ,V t r  is paid to the insured if a transition from state 1 occurs at 
time t. Thus, ( ) ( )12 1, ,b t r V t r= , ( ) ( )13 1, ,b t r S V t r= + , ( )23 ,b t r S=  and ( )21 , 0b t r = . 
We consider the same interest model as in the active-dead model.

3.4.4.3	 Since ( )3 , 0V t r =  it remains to find the equivalence premium and the state 
reserves ( ),jV n r , 1, 2j = , with initial condition ( ), 0jV n r = . Now

	
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1
1

1

: :

,
, ,

, 0 ,,,

,j
j j

k jk jk
k k j k k j

j

jk

dV
b

t r
V t r t r

dt
V t t r t r

t r

b t r

•

≠ ≠

= −

− −∑ ∑










µ

µ µ

3.4.4.4	 We have the following system of differential equations which are similar to 
the corresponding system given in Norberg & Moller (op. cit.):

	

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

1
1

1
1 1

, 0

, 0 , 10

ta
ai i ad

i
ia a i i id

t
t

dV t t V t v P S t
dt

dV t t V t V t vt t
dt

S bI U•


= − + −


 = − + − +

≥







 

µ µ

µ µ µ

or the following matrix representation

 

( )

( )

( )

( ) ( )

( )

( )

( )[ ]

( ) ( )[ ]

1
1

1
1, 0

, 10

0 ta
adai a

i
ia i idi

t
t

V v P S tt V

dV t t t

d t t
dt

tV t
dt

v S bI U

              = +           ≥     

−−

−  − +
  









µµ

µ µ µ

	 (22)

and

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
1

1 1 1, ,i
i i a ia i

t
td

dV t r V t r t vV t t tS bI
d

U
t

= − − + ≥




 µ µ µ .

3.4.4.5	 The premium P is calculated such that ( )1 0 0aV = .
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3.4.4.6	 To solve equation (22) we use the procedure described in Moller (1993) to 
obtain the following differential system for ( ) ( )( )1 1, , 0a itV V t 

	

( )

( )

( )

( ) ( )

( )

( )

( )[ ]

( ) ( )[ ]

1
1

1
1

2

0

, 0
, 0

ta
adai a

i
ia d

t
i ii

d t t
dt

v S

V v P S tt V

dV t t t tV t
dt

b t

              = +               

−−

− − +   









µµ

µ µ µ
	 (23)

where ( )
( ){ }

1

2

t
u dui

tb t be

+
− + •∫

=
δ µ

.

3.4.4.7	 Define the following vectors:

	 ( ) ( ) ( )( )1 1, , 0a it tV V V t ′=  

	 ( ) ( ) ( )( )1 2,H t H t H t ′=

where system (23) can then be written as

	 ( ) ( ) ( ) ( ) , ,dV t t V t H t t I
dt

= Λ + ∈




and where

		  ( )
( )

( ) ( )

0 ai

ia i

t
t

t t

 
 
 
 


−

−Λ



=
−



µ

µ µ
 and ( )

( )[ ]

( ) ( )[ ]2

t
ad

i
t

d

v P S t

t
H t

v S b t

 
 = 

−

− +


 
 

µ

µ

.

3.4.4.8	 A system like (23) is solved by considering the corresponding homo-
geneous system obtained by putting ( ) 0H t ≡ . The unique solution ( )uV t  to the homo-

geneous system with initial condition ( )0 0
uV t X=  for some fixed 0t I∈ , is of the form 

( ) ( )0 0
ˆ , ,uV t t t X t I= ∈ φ , where ( )0

ˆ ,t tφ  is a 2×2 matrix called the fundamental matrix 

or the basic solution chosen such that ( )0 0
ˆ ,t tφ  the unit matrix 1. The initial condition 

( ) ,wV w v a w= ≤ ∞ , is given by

		

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1

1 1

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, , ,

ˆ ˆ, , .

w
w

t
w

w

t
w

w

t

V t v w t a w t w H d

v w t a t w w H d

v t w a t H d

−

− −

− −

= −

= −

= −

∫

∫

∫

 φ φ φ τ τ τ

φ φ φ τ τ τ

φ φ τ τ τ

3.4.4.9	 Let φ̂  be the basic solution to this system. Then with ( )1
1 , 3

ˆ
ij i j

−
≤ ≤

=φ ψ  
we find the equivalence premium as the solution to ( )1 0 0aV = .
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3.4.4.10	 For the disability model example, we have:

		

( ) ( ) ( ) ( )

( ) ( ) ( ){ }

1
11 11

12 2

, ,

,

n n
t t

a ad
t t

n
t

id
t

V t v t S d P v t d

v t S b d

− −

−

= −

+ +

∫ ∫

∫

τ τ

τ

ψ τ µ τ τ ψ τ

τ τµ

τ

ψ τ τ

3.4.4.11	 Using the equivalence principle, we calculate the premium P by setting 
( )1 0 0aV = . We have

		
( ) ( ) ( ) ( ) ( ){ }

( )

11 12 2
0 0

11
0

0, 0,

0,

n n

ad

n

idv S d v S b d
P

v d

+ +
=
∫ ∫

∫

τ τ

τ

ψ τ µ τ τ ψ τ τ τ

ψ τ τ

µ τ
.

3.4.4.12	 Once we have calculated the value P of the premium, using equation (23), 
we have the value ( )1 , 0iV t  of the reserve at the invalid state

		
( ) ( ) ( ) ( ) ( ) ( )( )

( )

1
21 12 22 2

21

, 0 , ,

,

id

n
t

i
t

n
t

t

V t v t S t S b d

P v t d

−

−

= + + 

−

∫

∫

τ

τ

ψ τ µ τ ψ τ τ τ

ψ τ τ

µ τ

and finally

		
( )

( )

( ) ( ) ( ) ( )

( )

1 1
21

1

, ,
s dsn i

t
i ia a id

t

s dsn i
t

t u

V t u e t V t v S d

v e d

− •

− •

+ −

∫
= +  

∫
+

∫

∫

τ
µ

τ

τ
µ

τ

ψ τ µ τ µ τ τ

τ

TABLE 1. Values of the reserves and the premium when S = 4000, b = 2000, i = 3.5%

x = 40 / n = 25 x = 50 / n = 15

P 79.7 131.4
V1 = (5) 92.3 239.1

V2 = (5,0) 13,590.2 7,398.16
V2 = (5,1⁄5) 13,067.6 7,799.6

V1 = (10) 398.2 479.31

V2 = (10,0) 10,102.1 3,815.9
V2 = (10,2⁄5) 11,016.5 4,345.5

V1 = (15) 441.5 –

V2 = (15,0) 7,930.68 –
V2 = (15,3⁄5) 8,063.66 –

 (24)
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3.4.4.13	 We have empty cells in the table because for a 15-year term insurance, at 
year 15, the insured is no longer covered therefore the reserve is zero.

4.	 FORCE OF INTEREST OF DIFFUSION TYPE
4.1	 Model Description

4.1.1	 The model described in section 3.2 is an unsophisticated model of the 
interest rate. A more realistic model could be obtained by modelling the interest rate itself as 
a diffusion process given by a stochastic differential equation

		  ( ) ( )( ) ( )( ) ( ), ,d t t t d t t t dW t= +δ κ δ σ δ ,

where κ and σ are some appropriate functions and W is a standard Brownian motion. Since the 

process is Markovian, the conditionally expected discount rate, ( ) ( ), 1,j tE v t I t U uτ = = 
is now a function of ( )tδ  (as well as t and τ) and we write ( )( ), ,t tφ τ δ .

4.1.2	 We use the Vasicek (1977) model and the Ornstein–Uhlenbeck (OU) 
model which give explicit expressions for ( )( ), ,t tφ τ δ . In the Vasicek (op. cit.) model, the 
differential equation of ( )tδ  is given by

		  ( ) ( )( ) ( )d t t d t dW t= − +δ κ δ δ σ .

4.1.3	 The key feature of this process is that it is mean reverting. If the process 
value, ( )tδ , is below δ  at time t, the drift coefficient ( )( )t−κ δ δ  has a positive value, so 
that the process has a tendency to move upwards. If, on the other hand, the process value is 
above δ , the drift coefficient ( )( )t−κ δ δ  has a negative value, so that the process tends 
to move downwards. So the process is always drawn towards the constant value δ . The 
constant parameter κ controls the rate of mean reversion, that is, how strongly the process 
is drawn back to the value δ . A higher value of κ causes the process to pull more strongly 
towards the value .δ

4.1.4	 The parameter σ is a positive constant.

		  ( ) ( ) ( ) ( )( )2, , ,t N t t∆ −∆ τ µ τ σ τ ,
with

	 ( ) ( ) ( )( ) ( )( )1, 1 u tt u t e t− −= − + − −κµ τ δ δ δ
κ

, and

	 ( ) ( ) ( )( )( )
2

22
3

1, 1 2
2

u tt u t e− − = − + − − 
 

κσσ τ δ
κ
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4.1.5	 It follows that the function in equation (6) now is

		  ( )( ) ( ) ( )21, , exp , ,
2

t t t t = − + 
 

φ τ δ µ τ σ τ .

4.1.6	 Cox, Ingersoll & Ross (1985) proposed to replace σ in the expression 
( ) ( )( ) ( )d t t d t dW t= − +δ κ δ δ σ  with ( )tσ δ . Their model is a reference model in 

financial economics and is represented by the acronym CIR. The CIR model also admits a 
closed formula for ( )( ), ,t tφ τ δ  but, in contrast to the OU model, it cannot take negative 
values. The fact that the CIR model can only take positive values makes it more suitable than 
the OU model to describe the behaviour of interest.

4.2	 Differential Equations for the First Moment of Present Value
4.2.1	 Statement of Equation

Our goal is to derive ( ) ( ) ( ), 1,j j tV t r E A t I t U r = = = , the first conditional 
moment of the present value in equation (3), given the information available at time t.

4.2.2	T heorem
The functions ( ),jV t r  are determined by the differential equations:

		

( )( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( )( ) ( )

( )( )

2
2

2
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,

, ,

, , 0

, , , , , ,

1 , , , ,
2

, 0, , ,

,

,

, 0

j j

l
k j jk

j j

k

j

j j

j

j

k j

b t u t
t u

t t t t

V b t u

V t u t V t u t V t u t

V t u t V t u t

t t V t u t

V n u t

t u
≠

∂ ∂
+ + −

∂ ∂
∂ ∂

+ +
∂ ∂

+ + − =

=

∑

δ δ δδ

σ δ κ δ
δ

δ
δ

δ

δ

δ

µ

δ
	 (24)

valid on ( )0, /n ℘ and subject to the condition

		  ( ) ( ) ( ), , ,j j jV t r B t r V t r− = ∆ + 	 (25)

4.2.3	 Proof
4.2.3.1	 The functions Vj will now depend on not only t and u but also on ( )tδ .

4.2.3.2	 From ( ) ( ) ( )dv t v t t dtδ= − , equation (18) becomes:
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( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
2

2
2

, , , , , ,

, ,

, , , ,

, ,

1 ,

, ,

, ,
2

j j j

j

j j

j

j

dV t u t v t t V t u t dt v t dV t u t

v t t V t u t dt

v t V t u t dt V t u t du
t u

t t d t t t d W t

t t

v t V t u t

v t V t u t

∂ ∂
+

∂ ∂

= − +

= −

 +  
 

+

+

∂
+

∂
∂
∂



κ δ σ δ
δ

σ

δ δ δ δ

δ δ

δ

δ

δ

δ

δ

δ

	 (26)

but
	 ( ) ( )( ) ( )( ) ( ), , , 0jdM t V t u t dW tt t′ = =

∂
∂

δ σ δ
δ

,

since ( ) ( )( ) ( )( ) ( )
0

, , ,
t

j dM t V u W−
∂
∂

′′ = ∫ τ δ σ τ δ τ ττ
δ

 is a martingale, continuous and 

of bounded variation, it must be constant.

4.2.3.3	 Then,

		

( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
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4.2.3.4	 Finally, replacing ( ) ( ) ( ), ,j jb t r v t b t r= , ( ) ( ) ( ), ,j k j kb t r v t b t r=  and 
equation (27) in (19) we have:

		

( )( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

( )( )

:

2
2

2

, , , , , ,

, 0, , ,

1 , ,

,

, ,

, , 0,
2

, ,

, ,

0.

j j j j

l
k j jk

k

j

j

j j

j

k j

V t u t V t u t V t u t

t t V t u t

V t u t

b t u t
t u

V b t u t u

t t V t u t

V n u t

t t

≠

∂ ∂
+ + −

∂ ∂
+ + −

∂ ∂
+

∂ ∂

=

+ =

∑

δ

µ

σ δ κ

δ δ δ

δ δ

δ δ

δ

δ
δ δ

	 (28)



SAAJ 15 (2015)

128 | RESERVES IN THE MULTI-STATE HEALTH INSURANCE MODEL

4.2.3.5	 This differential equation differs from equation (20) in the last two terms.

4.3	 Overcoming Practical Challenges
The differential equation (28) is in general difficult to solve. However, if we only 

have one state and the only payment is a single payment of 1 at time n, then dropping the top 
script, j, and setting all the transition intensities and payments to zero, equation (28) becomes
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where ( )( ), ,V t u tδ  is just the expected discounted factor ( )( ), ,t tφ τ δ . The usefulness of 
stochastic differential equations for reserves is discussed in more detail in Norberg & Moller 
(op. cit.).

5.	 CONCLUDING COMMENTS

5.1	 The economic power of every insurance company is measured by two key indicators: 
solvency and reserves. Solvency indicates the adequacy of an insurance company’s funding. 
The reserves, also called technical provisions, allow for complete and lasting long-term 
liabilities arising from insurance contracts. Reserves are therefore of utmost importance for 
all areas of insurance.

5.2	 For policyholders to be protected, it is essential that reserves are not only calculated 
correctly, but also covered by free and unencumbered assets (called tied assets) throughout 
the contract term. Consequently, reserves determine the level of tied assets. They are used to 
meet claims arising from insurance contracts where an insurance company is found insolvent.

5.3	 This paper gives a general framework for health insurance modelling by taking into 
account duration effect and a random interest rate. The particular application of this paper to 
the South African insurance industry is in disability insurance.

5.4	 For future work, we intend to collect data for the South African market and estimate 
the different transition probabilities.
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