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ABSTRACT
This paper aims to introduce jump tests to the actuarial community. In actuarial science, semimartingales 
are extensively used in the models for interest rates, options, variable annuities and equity-linked 
annuities. Those models usually assume without justification that the underlying asset process follows a 
continuous stochastic process such as a geometric Brownian motion, for the market data sometimes tell 
a different story. Choosing between a continuous model and a model with jumps is not only important 
for pricing of insurance products but also crucial for implementing other post-sales risk management 
measures such as dynamic liability hedging. A test for jumps allows actuaries to rigorously test whether 
the underlying asset process has jumps, which is the first critical step in model selection. The ability to 
conduct the test should thus belong to the repertoire of every expert and practitioner working in this field. 
In this paper, we review several major tests for jumps, describe their advantages and disadvantages, and 
offer suggestions for their implementation. We also implement several tests using real data, enabling 
practitioners to apply these tests in their work.
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1. INTRODUCTION

1.1 The set of semimartingales form a very rich grouping that includes the class of jump 
diffusions, the class of pure jump processes, the class of local martingales, and (under fairly 
mild conditions) the class of Lévy processes. Hence, it has been widely used in financial 
modelling. Recently, the semimartingale model has gained popularity among actuaries for 
modelling stochastic behaviour of asset prices such as asset returns, stock prices, and interest 
rates. Two popular choices are (1) the continuous semimartingale model (especially the 
diffusion model)—see, for example, Boyle & Tian (2009), Giovanni (2010), Bernard, Maj 
& Vanduffel (2011), Costabile, Massabò & Russo (2011) and Piscopo & Haberman (2011); 
and (2) the general semimartingale model—see, for example, Biffis, Denuit & Devolder 
(2010), Lin & Li (2011) and Gerber, Shiu & Yang (2013). The diffusion model possesses 
many desirable properties: it makes good integrators that lead to closed-form formulas in 
many cases. This allows one to derive the First Fundamental Theorem of Asset Pricing; see, 
for example, Shreve (2005). However, the diffusion model is a continuous model; this rules 
out the possibility of modelling market noises such as asset price jumps. In contrast, the 
general semimartingale model is able to serve this purpose, because a semimartingale might 
be considered as the sum of a martingale (intuitively, a ‘trendless noise’) and a process of 
finite variation (intuitively, a ‘drift’). Moreover, the general semimartingale model still has 
many useful properties. For example, it obeys a generalised Itô formula; it has an integral 
representation; and it is stable under stopping, stochastic integration, C 2-transformation and 
the change of measures.

1.2 A close scrutiny of the above papers reveals that all of the authors assumed that 
the underlying asset price follows either a continuous semimartingale model or a general 
semimartingale model. However, none of them justified the choice based on a rigorous 
statistical test. In practice, actuaries first need to decide whether jumps are allowed in their 
models before starting the analysis described in these papers. In other words, actuaries 
should first make a decision between a purely continuous model and a model with jumps. 
This decision is of paramount importance because (1) model selection has a direct impact 
on pricing of insurance products, and (2) the effectiveness of post-sales risk management 
activities such as dynamic liability hedging also depends on model selection; see, for instance, 
Hardy (2003). To our best knowledge, no work in the existing actuarial literature discusses 
a rigorous test for such a decision. This paper aims to fill this gap by introducing tests for 
jumps to the experts and practitioners in this area. The major contributions of the paper are 
(1) it reviews several major tests for jumps—to the best of our knowledge no such a review 
paper even exists in the statistical literature; (2) it describes the advantages and disadvantages 
of these tests; and (3) it points out some pitfalls and offers guidelines for practitioners to 
implement these tests.

1.3 Aїt-Sahalia (2002) first introduced a jump test for diffusion models. Since then much 
work has been done to test whether the underlying stochastic process has jumps. We do not 
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intend to give an exhaustive list of all the available tests. Instead, we focus on those that 
are relatively easy for practitioners to implement. The theory of semimartingales and the 
associated statistical theory are two highly technical subjects; readers who are interested in 
technical details may consult Dellacherie & Meyer (1978, 1982), He, Wang & Yan (1992), 
Jacod & Protter (2012) and Jacod & Shiryaev (2003). While we give precise statements, we 
also provide intuitive explanations for each test, hoping that this approach will serve both 
experts and non-experts. In particular, we hope that a number of actuaries working in the field 
would pick up some of the tests reviewed here and use them in their work.

1.4 The remainder of the paper is organised as follows. Section 2 reviews four jump tests. 
Section 3 provides three examples to demonstrate the applications of these jump tests in 
actuarial science. Section 4 concludes the paper with a summary.

2. TESTS FOR JUMPS
2.1 The Carr–Wu Test

Aїt-Sahali (op. cit.) proposed the first jump test based on the sample paths of the 
underlying asset processes. Shortly after the appearance of the Aїt-Sahali test, Carr & Wu 
(2003) proposed a test for the presence of jumps which does not examine the sample paths of 
the underlying asset process.

2.1.1 Assumptions of the CArr–Wu test
The Carr–Wu test makes the following assumptions:

(1)  the market is frictionless without arbitrages: under this assumption, there exists a risk-
neutral measure Q under which St is a solution to the following stochastic differential 
equation (SDE)

  ( )t
t t

t

dS r q dt dB
S

σ
−

= − + +
{ }

( ) ( ) ] [
\ 0

( 1) , , 0, x
t

R

e µ dx dt x dxdt t Tν − − ∈ ∫ ,

 where
 St– is the left-hand limit process of St ,
 r is the continuously compound risk-free interest rate,
 σt is the volatility process,
 q is the continually compound dividend yield rate,
 Bt is a Q standard Brownian motion,
 ( ), µ dx dt  is the random measure that counts the jumps at time t, and
 ν is the dual predictable projection or compensator of μ;

(2) both r and q are assumed to be constant;
(3)  the asset price process St is non-negative and absorbing at the origin; intuitively, this 

means a firm has limited liability; and
(4)  μt and νt are bounded in some neighbourhood of t = 0. Intuitively, this means neither the 

volatility of the firm’s price nor the jump size can be too large.
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2.1.2 intuition
The intuition behind the Carr–Wu test is that the market prices of all at-the-money 

(ATM) and out-of-money (OTM) options written on the asset converge to zero as the maturity  
T goes to zero. However, the speed of convergence implied by continuous processes, purely 
discontinuous processes and hybrid processes are different. Thus, by examining the speed 
with which an option approaches zero as the maturity T goes to zero, we can distinguish the 
nature of the underlying asset process.

2.1.3 the test stAtistiC
2.1.3.1 The Carr–Wu test is based on the asymptotic behaviour of short-maturity 

options. The following table taken from Carr & Wu (op. cit.) summarises the key results.

TABLE 1. Asymptotic behaviour of short-maturity options

Process type OTM options ATM options

Purely continuous process ( )/ , 0c TO e c− > ( )O T

Purely discontinuous process ( )O T ( ) ( ], 0,1 pO T p∈

Combinations ( )O T ( ) ( ], 0,1 / 2pO T p∈

In Table 1, O is the Bachman-Landau O-symbol. Specifically, for two real-valued functions 
f and g defined on a set E, ( ) ( )( ) , f x O g x x E= ∈  means there exists a constant C such 
that ( ) ( )f x C g x≤  for all x ∈ E. Table 1 shows that the prices of OTM options converge 
to zero at an exponential rate if the underlying process is purely continuous. However, if the 
underlying process has jumps, OTM option prices converge to zero at a rate which is at most 
linear. For ATM option prices, the results in Table 1 can be interpreted similarly.

2.1.3.2 In practice, one can implement the Carr–Wu test using the steps that follow.
(1)  First, plot ( )ln /P T  versus lnT of both ATM and OTM options, where P is the price of 

the ATM or OTM option and T is the option term. Following Carr & Wu (op. cit.), we 
call such a plot the term decay plot.

(2)  As the option maturity approximates the valuation date, that is T → 0, the term decay 
plot of ATM options will exhibit a flat line if the underlying asset price process is a finite 
variation pure jump process, a straight line with a downward slope if the underlying 
asset price process has a continuous martingale component or an infinite variation jump 
component.

(3)  As T → 0, the term decay plot of OTM options will exhibit a flat line when the 
underlying asset price process has jumps, a concave curve with an upward slope when 
the underlying asset price process is purely continuous, i.e. the underlying asset price 
process does not have any jumps.

(4)  From the time decay plots of both ATM and OTM options, one can tell whether the 
underlying asset price process has jumps.
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2.1.4 AdvAntAges And disAdvAntAges
The Carr–Wu test is easy to implement if real data of short-maturity options prices are 

available. But the Carr–Wu test does not examine the asset prices directly, instead it looks at 
the asymptotic behaviour of short-maturity options. Therefore, to apply the Carr–Wu test, one 
must have data of short-term ATM and OTM option prices written on the asset. Since such 
data are usually not easy to obtain, this may restrict the implementation of the Carr–Wu test.

2.1.5 suggestions for implementAtion
Though the Carr–Wu test uses only option price data, we recommend that one obtain 

the corresponding asset price data too. According to assumption (4) above, we suggest that 
one first plot the corresponding asset price to make a visual inspection of the data. If any large 
jumps are present, one should remove them as outliers. If the data display large volatility, then 
one should be cautious about the results; in this case, we recommend that at least one more 
different jump test be implemented on the same data for cross-checking. If the plot shows 
no sign of large jumps or volatility, then one can simply follow the above implementation 
procedure.

2.2 the JiAng–oomen test
The Jiang–Oomen test is a jump detection test over a fixed time interval [ ]0, T . It is 

based on Itô’s lemma for semimartingales. Barndorff-Nielsen & Shephard (2006) proposed a 
test which is based on the difference of the realised quadratic variation and bipower variation. 
As pointed out by Lee & Mykland (2008), the Jiang–Oomen test and the Barndorff-Nielsen 
and Shephard test share a similar approach. Therefore, we only review the Jiang–Oomen test 
here.

2.2.1 Assumptions of the JiAng–oomen test
Let Xt = ln St , where St is the underlying asset process. The Jiang–Oomen test assumes 

that:
(1) Xt is a semimartingale represented by

  
1 ,
2t t t t t t t t tdX m dt dB J dNα λ σ σ = − − + + 

 
  (1)

where
 αt is the instantaneous drift process,
 σt is the volatility process,
 Bt is a standard Brownian motion,
 Ñt is a counting process with intensity, and
 λt is a non-zero jump size random variable satisfying  1tJ

tm E e = − ;

(2) the drift process αt is assumed to be predictable and of locally bounded variation;

(3)  the volatility process σt is assumed to be a positive càdlàg process with 
0

T

tdtσ < +∞∫  for 
any T > 0;
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(4)  Xt are observed at every 1   
M

∆ =  units of time over [ ]0, T . Thus, the sampled observations 

are { }0 2, , , , NX X X X∆ ∆ ∆… , where N = MT; and
(5) there is no market microstructure noise.

2.2.2 intuition
The intuition behind the Jiang–Oomen test can be described as follows. If there are no 

jumps of the asset prices, then one can replicate a variance swap using a perfectly hedged log 
contract. (A log contract pays 0ln /TS S  at maturity T.) But if jumps are present, then such 
a replicating strategy will yield stochastic and hedging errors whose discrete-time version 
equals the term ( ) ( )M MSV T RV T−  in the three test statistics below. When we have large 
high-frequency data, this discrete-time version of errors will converge to the true errors. 
Since this quantity is zero if there are no jumps, one can create a test statistic based on it.

2.2.3 the test stAtistiC
We wish to test H0: there is no jump over [ ]0, T  versus H1: there is a jump over 

[ ]0, T . From equation (1), it is clear that the hypothesis is equivalent to 0 : 0tH λ =  for all 
[ ]0, t T∈  versus 0 :  0tH λ ≠  for some [ ]0, t T∈ . There are three associated test statistics:

(1) the difference test statistic:

  
( )

( ) ( )( )1 4ˆ M M

SV

NT SV T RV T= −
Ω

;

(2) the logarithmic test statistic:

  ( )
( )

( ) ( )( )( )0, 
2 4

l /
ˆ

ˆ
nT

M M

SV

V N
T SV T RV T=

Ω
;

(3) the difference test statistic:

  ( )
( )

( ) ( )
( )

0, 
3 4

ˆ

ˆ
T M M

MSV

V N SV T RV T
T

RV T
 −

=   Ω  
;

where

   ( ) ( ) ( )

( )
( )1

0
1 1

2 ln / ,
N

j j
M T

j j

S S
SV T S S

S
∆ − ∆

= − ∆

 −
 = −
 
 
∑

   ( ) 2
, 

1

,
N

M i
i

RV T r∆
=

=∑

   ( )
3 6 6 6

4 6 1
,  

1 1

ˆ ,
9 5

N

SV j k
i k

µ N r
N
µ− −

∆ +
= =

Ω =
− ∑∏
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   ( )

1

, 1 ,0, 2
11

1ˆ , 
T

i iT
i

V r r
µ ∆ + ∆

=

= ∑

   
( )( )/22 1 / 2p

p

p
µ

π

Γ +
= ,

   ( ), 1 .i i ir X X∆ ∆ − ∆= −

Jiang & Oomen (2008) showed that under H0, the asymptotic distribution of these three test 
statistics is the standard normal distribution. Thus, testing can be carried out in a routine way 
once the significance level is given.

2.2.4 AdvAntAges And disAdvAntAges
The Jiang–Oomen test has a fast rate of convergence to its asymptotic distribution. In 

the above discussion, we assumed that there is no market microstructure noise. But the test 
remains valid with a modified asymptotic variance when there is independent and identically 
distributed (i.i.d.) market microstructure noise; for details, see Jiang & Oomen (op. cit.). 
Unlike the Carr–Wu test, which uses price of options written on the asset, the Jiang–Oomen 
test uses asset prices. However, the Jiang–Oomen test relies on high-frequency data.

2.2.5 suggestions for implementAtion
One can see from the above that the implementation of the Jiang–Oomen test is 

relatively straightforward. However, the term ( )4ˆ
SVΩ  involves the summation of finite products, 

where each , j krδ +  is a log difference of asset price and is usually very small. This means the 
Jiang–Oomen test is likely to be subject to numerical errors. One suggestion we have is to 

first multiple each finite product 
6

, 
1

j k
k

γ ∆ +
=
∏  by the coefficient 

3 6
6 1

9 5
N
N

µ µ−

−
 and then carry out 

the summation. We also suggest that one use another jump test to validate the result.

2.3 The Lee–Mykland Test
The Lee and Mykland test is a nonparametric jump detection test that uses high-

frequency data.

2.3.1 Assumptions of the lee–myklAnd test
The Lee–Mykland test makes the following assumptions:

(1) the asset process St takes the following form:

  ln  ,t t t t t td S dt dB Y dNµ σ= + +  (2)

 where μt and σt are the drift and volatility coefficients respectively,
 Bt is the standard Brownian motion,
 Nt is a counting process, and
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 Yt is a predictable process which represents the jump size;
  we also assume that [ ]  tE Y  (the mean process of Yt ) and ( )tVar Y  (the standard 

deviation process of Yt ) are both predictable;
(2) Yt , Bt , Nt are all stochastically independent;
(3)  the process is observed at discrete time points 1, 2, ...t =  and 1 2, , ...Y Y  are i.i.d. random 

variables;
(4) observations of St are made at discrete times 0 10 ... nt t t T≤ < < < = ; and
(5) the drift and volatility do not change dramatically over a short period so that

  
1
2

t t pii t t ti i t
O tµ µ

−∈

≤ ≤ +

 
− = ∆ 

 
  ,

  
1
2

t t pii t t ti i t
O tσ σ

−∈

≤ ≤ +

 
− = ∆ 

 
  ,

where 
Tt
n

∆ =  and Op (“big oh P”) is the standard stochastic O symbol. Specifically, for a 

sequence of random variables ( )nX , ( )1n pX O=  means Xn is bounded in probability. If Yn 

and Rn are two other sequences of random variables, then ( )n p nX O Y=  means n n nX Y R=  and 
( )1 ,n pR O=  where Rn can be considered as the rate at which the sequence Xn is bounded in 

probability. Interested readers can consult van der Vaart (2000) for more details.

2.3.2 intuition
The Lee–Mykland test allows one to tell whether the asset price process defined in 

equation (2) has a jump at a given time ti . When such a jump exists, it is expected that the 
realised asset return would be greater than usual. However, when there is no jump but the 
volatility at ti is high, one may also observe a greater realised asset return. To distinguish the 
two cases, it is natural to consider the ratio of the realised asset return to the instantaneous 
volatility at ti . This leads to the test statistic given below.

2.3.3 the test stAtistiC
2.3.3.1 We wish to test H0: there is no jump at time ti versus H1: there is a jump at 

ti . The test statistic is given by

  ti
T  =

( ) 1
ln /

,
ˆ

t ti i

ti

S S

σ
−

where
  ( ) ( )

1
2

1 1 2
2

1 lnˆ / ln /
2

i

t t t t ti j j j j
j i K

S S S S
K

σ
−

− − −
= − +

=
− ∑ ,

and the constant K is the window size. It should be chosen to be large enough so that the 
effect of jumps on the instantaneous volatility vanishes. But K must be smaller than the 
number of observations n. Lee & Mykland (op. cit.) pointed out that ( )pK O t β= ∆  with 
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2

β− < < −  is a suitable choice. They recommended that the optimal K for one-hour, 

30-minute, 15-minute and 5-minute data are 78, 110, 156 and 270, respectively.

2.3.3.2 To test the above hypothesis, one may carry out the following:

(1) first, calculate ,t ni

n

T C
S
−

 where

   ( )ln ln ln2ln ,
2 2lnn

nnC
c c n

π +
= −

   1 ,
2lnnS

c n
=

   2c
π

= ,

 and n is the number of observations;
(2) for a given significance level α, calculate ( )( )ln ln 1γ α= − − − ; and

(3) if t ni

n

T C
S

γ
−

> , we reject H0; otherwise, we accept H0.

2.3.4 AdvAntAges And disAdvAntAges
The Lee–Mykland test is a robust nonparametric test. The consistency of the test 

statistic at ti is not affected by any jumps that occurred earlier. Also, Lee & Mykland (op. 
cit.) showed that the probability of misclassification is negligible when the frequency of 
observation is sufficiently high. On the other hand, the Lee–Mykland test relies on high-
frequency data. We reiterate, nevertheless, one of the most significant advantages of this test, 
that it can be used to tell whether there is a jump at a given time ti . When it is applied to a 
time series of asset prices, one would be able to tell not only whether there are jumps, but 
also where the jumps occur.

2.3.5 suggestions for implementAtion
The Lee–Mykland test is relatively simple to implement. It also allows one to tell 

whether a jump occurs at an instantaneous moment t. Compared with the three other jump 
tests reviewed in this paper, the Lee–Mykland test might stand out as a good choice. However, 
false discoveries can occur in any statistical test. For this reason, we still recommend that one 
use at least one other test to validate the result.

2.4 The Aït-Sahalia–Jacod Test
The Aїt-Sahalia–Jacod test is another nonparametric jump test using high-frequency 

data.
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2.4.1 Assumptions of the Aït-sAhAliA–JACod test
The Aїt-Sahalia–Jacod test assumes the following:

(1) the underlying process Xt is an Itô semimartingale, i.e.,

  0tX X= + ( )( )( )
0 0 0

, ,
t t t

s s s
E

b ds dB K s x ds dxσ ο µ ν+ + ∆ −∫ ∫ ∫∫

  + ( ) ( )
0

, , ,
t

E

K s x ds dxο µ∆′∫∫
  where Bt and μ are a Brownian motion and a Poisson random measure on  

is the auxiliary measurable space in the definition of random measures,
  ( ) ( ), ds dx ds dxν λ= ⊗  is the predictable projection/compensator of μ with ( )dxλ  

being a finite or σ-finite measure on ,
  K is a continuous function with compact support with ( )K x x=  on a neighbourhood 

of 0, and
 ( ) ( )K' x x K x= − .

 The above equation is called the Grigelionis decomposition of Xt . For a detailed 
discussion of Itô semimartingales, see Jacod & Protter (op. cit.);
(2) the volatility process σt is also an Itô semimartingale and has the form

  tσ = 0
0 0 0

ˆ ˆ ˆ
t t t

s s s s sb ds dB dBσ σ σ ′ ′+ + +∫ ∫ ∫ + ( )( )( )
0

ˆ , , ,
t

E

K s x ds dxο µ ν∆ −∫∫

  + ( ) ( )
0

ˆ , , ,
t

E

K s x ds dxο µ∆′∫∫

 where B' is another Wiener process which is independent of B;

(3)  ˆ
tB is locally bounded, ˆ,t tb σ  and ˆtσ ′ are càdlàg, t∆  and ˆ

t∆  are càdlàg, that is, left-
continuous with right limits, t′∆  are left-continuous with right limits on the stochastic 

interval ( ))0,τ ω , 
( )
( )
, , 

sup  x E

t x
x

ω
γ∈

∆
 and 

( )
( )
, , 

supx E

t x
x

ω

γ∈

∆
 are locally bounded, 

where γ is a non-random non-negative function satisfying ( )( ) ( )2 1
E

x dxγ λ∧ < ∞∫ ;

(4) 
0

0 
t

s dsσ >∫  for all 0t ≥ ;

(5)  Xt are observed at time ni∆  over [ ]0, T , where n
T
n

∆ = . In other words, we have obser-
vations { }0 2, , , , nX X X X∆ ∆∆ … ; and

(6) there is no market microstructure noise.
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2.4.2 intuition
In probability theory, one uses the variance to measure the dispersion of a random 

variable. For a stochastic process X, an analogous concept is called the p-th variation

( )
[ ]

( )

/

1
1

 , ˆ
t n p

n i it n n
i

B p X X
∆

∆ − ∆
=

∆ = −∑ , where { }2, 3, p∈ … . The p-th variation measures the 

dispersion of a stochastic process. Aїt-Sahalia & Jacod (2009) examined the asymptotic 
behaviour of the p-th variation and proposed a jump test. Their test is based on the following 
heuristic argument. When there are no jumps, ( )ˆ , n t

B p ∆  only sums some small increments. 
These small increments are natural for all stochastic processes, hence they are not considered 
as jumps. When there are jumps, ( )ˆ , n t

B p ∆  not only sums these small increments, it also 
sums all the jumps. In this case the power p determines the magnitude of the effect of jumps. 
In particular, when p > 2, the effects from jumps far outweigh those of small increments. 
But there is no simple way to extract the effects of jumps from ( )ˆ , n t

B p ∆ . One way to get 
around this difficulty is to take an appropriately chosen positive integer k and examine the 
ratio ( ) ( )ˆ ˆ, / , . n nt t

B p k B p∆ ∆  Since the effects of jumps prevail in both ( )ˆ ,  n t
B p k∆  and 

( )ˆ , n t
B p ∆  but are of different magnitudes, this ratio allows one to detect jumps.

2.4.3 the test stAtistiC
Suppose that we wish to test H0: there are no jumps during [ ]0, t  versus H1: there are 

jumps during [ ]0, t . The test statistic proposed by Aїt-Sahalia & Jacod (op. cit.) is

  ( ) ( )
( )

, 
, ,

 
ˆ  

,

ˆ
ˆ

n t
n t

n t

B p k
S p k

B p
∆

∆ =
∆

.

For 1 1 12, 3, , 
2 2

k p q
p

 
≥ > ∈ − 

 
 and an asymptotic level ( )0,1 α ∈ , the rejection region is 

given by

  ( )
1

2
, , , ,ˆ ˆ

p

n n tt
S p k k z Vα

− 
∆ < − 

 

where

   
( ) ( )

( ), 2

, 2 , ˆ
ˆ

,ˆ  
n n t

n t
n t

M p k A p
V

A p

∆ ∆
=

∆
,

   ( )ˆ , n t
A p ∆ =

[ ]

( )
( ){ }

/1 /2

1
11

1 ,
tp n p

n
i i qn n X Xi nin nip

X X
m α

∆−

∆ − ∆ − ≤ ∆∆ − ∆=

∆
−∑

   ( ) ( ) ( )( )2 2 2 /2 1
2 ,2

1, 1 1 2  ,p p p
p p k p

p

M p k k k m k k m k m
m

− − −= + + − −

   
/22 1

2

p

p
pm Γ

π
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   ( ), 1 .
p

k pm E U U k V = + −  

2.4.4 AdvAntAges And disAdvAntAges
The Aїt-Sahalia–Jacod test statistic is scale-invariant. It assumes that the underlying 

process Xt is an Itô semimartingale which includes a wide class of processes. But the test does 
not depend on the law of Xt nor its coefficients, which is a good feature of the test. However, 
like the Lee–Mykland test, the Aїt-Sahalia–Jacod test is only applicable to high-frequency 
data. It has three free parameters for users to choose which makes the test data-driven in 
some sense. Also, the Aїt-Sahalia–Jacod test is not applicable when the microstructure noise 
is present. Later on, Aїt-Sahalia, Jacod & Li (2012) gave a robustification of the Aїt-Sahalia–
Jacod test which allows the market microstructure noise to exist; see Aїt-Sahalia, Jacod & Li 
(op. cit.). Another drawback of the Aїt-Sahalia–Jacod test is that the significance level α may 
not be chosen arbitrarily; as Aїt-Sahalia & Jacod (op. cit.) pointed out, an appropriate choice 
of α is between three and five times the average value of σ. This might restrict the use of the 
Aїt-Sahalia–Jacod test in certain cases.

2.4.5 suggestions for implementAtion
To apply the Aїt-Sahalia–Jacod test, one needs to choose several parameters. Aїt-

Sahalia & Jacod (op. cit.) pointed out that a large p emphasises large jumps and when p is 
too close to 3, a poor fit is more likely to appear. Thus, choosing p = 4 seems to be a judicious 
decision. Moreover, one should not take k to be too large. Aїt-Sahalia & Jacod (op. cit.) 
recommended that one take k = 2 and q close to ½. The choice of α depends on σ which 
is unknown. We recommend that one first calculate the sample standard deviation σ̂  and 
then set 4 ˆα σ= . However, if the desirable value of α falls far outside the interval [ ]3 ˆ ˆ, 5σ σ , 
one should not use the Aїt-Sahalia–Jacod test. Also, the calculation of the test statistic is 
relatively involved and numerical errors might occur; we recommend that one apply other 
tests to validate the result.

3. EXAMPLES
In this section, we provide three examples to demonstrate actuarial applications of 

the above tests.

3.1 Example 1
Suppose an insurance firm is developing a 5-year equity-linked annuity (EIA) product 

on 1 June 2012. The product is a single premium contract with 95% of the premium being 
invested in a basket of fixed-interest securities and a 3% guaranteed rate of interest. The 
referred index is S & P 500. The contract pays off the benefit using the point-to-point method. 
The firm is currently in the stage of pricing this EIA. John, a seasoned pricing actuary, knows 
that there is a closed-form pricing formula for such a contract design; see, for example, Hardy 
(op. cit.). However, the formula does not allow jumps for the underlying index. To avoid 
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modelling and pricing errors, John applies the Aїt-Sahalia–Jacod test to see whether jumps 
are present. To run the test, John uses the 5-minute high-frequency data of iShares S&P500 
Index from 9:30 am 1 May 2012 to 16:00 pm 31 May 2012. The dataset is from the Trade 
and Quotes (TAQ) database at Wharton Research Data Services (WRDS) from the Wharton 
School at the University of Pennsylvania. He samples the very first transaction that occurs 
every 5 minutes. The sample data contain 1,738 observations. He first calculates the sample 
standard deviation σ̂ . Then he follows the recommendation of Aїt-Sahalia & Jacod (op. cit.) 
to choose p = 4, q = 0.2, k = 2 and 4 ˆα σ= . Table 2 summarises the key values of the test. At the 
significance level α = 12.15%, the test statistic is in the rejection region. Thus, John concludes 
that there are jumps in the data. This means that a closed-form formula may not be available 
for pricing; some numerical methods and simulation techniques might be called for.

TABLE 2. Key values of the Aїt-Sahalia–Jacod test

p k q σ̂ α ,n̂ tV ( ), , ˆ
n t

S p k ∆
1

2
, 

ˆ
p

n tk z Vα

−
−

4 2 0.4 0.0304 0.1215 0.6288 1.0138 1.0743

3.2 Example 2
As a scrupulous professional, the pricing actuary John in example 1 feels the signifi-

cance level α = 12.15% used in the Aїt-Sahalia–Jacod test is not very satisfactory; also, he 
feels it is a good practice to validate his conclusion using another jump test. Therefore, he 
decides to run the Jiang–Oomen test on the same dataset to cross-validate the result. The key 
values of the test are given in the following Table 3.

TABLE 3. Key value of the Jiang-Oomen test

α ∆ N ( )VSM T ( )MRV T ( )4ˆ
SVΩ T1

5% 5 1,738 2.0059×10–3 2.0068×10–3 1.6381×10–8 –12.092

The asymptotic distribution of T1 is the standard normal distribution and the Jiang–Oomen 
test is a two-sided test. Therefore, at significance level α = 5%, John rejects the null hypothesis, 
confirming that there are jumps in the data. With peace of mind, John hands his analysis and 
conclusion to Megan, the chief actuary at the firm.

3.3 Example 3
Megan, the chief actuary in example 2, receives the report from John. She verifies 

John’s analysis and finds everything is correct. Usually numerical methods and simulation 
would come into play if no closed-form formula is available. But Megan wants to make a 
further analysis to determine how many jumps there are and understand their characteristics 
of magnitude. To this end, she runs the Lee–Mykland test with n = 1,738. Following the 
recommendation of Lee & Mykland (op. cit.), she chooses K = 270. At the significance level 
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α = 5%, the threshold value is found to be 2.97 and the Lee–Mykland test shows that there 
are only three jumps. Figure 1 plots the jumps detected by this test; it shows that the majority 
of the data are far from the threshold and only three data points are detected as jumps. Then 
Megan looks closely at the magnitudes of these three jumps. A summary is given in Table 4. 
Since none of the three jumps is of significant size, Megan decides that a continuous semi-
martingale model might serve as a good approximation to the underlying true and unknown 
model. Therefore, she applies the formula in Hardy (op. cit.) to price the product. In addition, 
however, she applies the Markov Chain Monte Carlo method to verify her results.

TABLE 4. Jump times and sizes

Date Time Jump size (%)
7 May 2012 10:30 –0.269%

9 May 2012 10:10 –0.285%

31 May 2012 11:35 0.351%

FIGURE 1. Test statistics with rejection threshold
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4. SUMMARY
In the current actuarial literature, continuous semimartingales and the general 

semimartingales have been extensively used to model asset prices. Most research has focused 
on the pricing issues in insurance. No work has been introduced to justify the model selection 
using market data. In this review paper, we introduced four jump detection tests to actuaries: 
the Carr–Wu test, the Jiang–Oomen test, the Lee–Mykland test and the Aїt-Sahalia–Jacod 
test. The Carr–Wu test uses short-term option price data while the other three tests use asset 
price data. These tests allow actuaries to choose between continuous models and models with 
jumps using a statistical test. We also demonstrated the actuarial applications of these tests. 
To the best of our knowledge, this is the first paper that introduces rigorous statistical tests for 
jumps to the actuarial community and reviews the major jump tests in the literature. We hope 
that this paper is useful for both researchers and practitioners in actuarial science, insurance 
and risk management.
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