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ABSTRACT
This paper investigates catastrophe risk for South African life insurers by considering the additional 
deaths that could arise from a 1-in-200 year mortality shock. Existing South African academic research 
on catastrophic risk has mostly focused on property losses and the resulting impact on property 
insurance companies. Life catastrophe risks have not been extensively modelled in a South African 
context. Local research would be beneficial in terms of quantifying these catastrophic risks for South 
African life insurers, and would assist firms when assessing their own catastrophe mortality solvency 
requirements under the new Solvency Assessment and Management (SAM) regime by providing a 
summary of data relating to various past catastrophes.
  In this paper we model a wide range of catastrophes to assess such mortality risk faced by life 
insurance companies in South Africa. An extensive exercise was undertaken to obtain data for a wide 
range of catastrophes and these data were used to derive severity and frequency distributions for 
each type of catastrophe. Data relating to global events were used to supplement South African data 
where local data were sparse. Data sources included official government statistics, industry reports 
and historical news reports. Since, by nature, catastrophic events are rare, little data are available for 
certain types of catastrophe. This means there is a large degree of uncertainty underlying some of the 
estimates. Simulation techniques were used to derive estimated distributions for the potential number 
of deaths for particular catastrophic events. The calculated overall shock for the national population 
was 2.6 deaths per thousand, which was lower than the SAM Pillar 1 shock of 3.2 deaths per thousand 
for the same population.
  It has been found that a worldwide pandemic is by far the main risk in terms of number of deaths in 
a catastrophe and, given that this is the most significant component of catastrophe risk, prior research 
on this risk in an South African context is summarised and revisited.
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1.	 INTRODUCTION

1.1	 The Solvency II Directive (Council of the European Parliament, 2009) is a principles-
based regulatory regime which will apply to insurers in all 27 European Union (EU) 
member states and is set to be implemented from 1 January 2016. The United Kingdom’s 
Financial Services Authority (FSA)1 describes Solvency II as “[setting] out new, stronger 
EU-wide requirements on capital adequacy and risk management for insurers, with the 
aim of increasing protection for policyholders. The strengthened regime aims to reduce 
the possibility of consumer loss or market disruption in insurance”.2 The Solvency Capital 
Requirement (SCR) is the minimum capital requirement to avoid regulatory intervention, 
while the lower Minimum Capital Requirement (MCR) is the absolute minimum required 
level. The Solvency II Directive (Council of the European Parliament, op. cit.: 51–52) states 
that all quantifiable risks should be included in the calculation of the SCR, and the capital 
requirement for each risk module calculated as the 99.5% (1-in-200 year) Value-at-Risk of 
basic own funds.3 Different classes of risk are divided into modules, which are then further 
divided into sub-modules. Article 104 of the Directive sets out life catastrophe risk as a 
compulsory sub-module of the life underwriting risk module.

1.2	 South Africa’s Financial Services Board (FSB) has embarked on establishing a risk-
based supervisory regime for insurers in South Africa that, while taking local circumstances 
into account, is also aligned with Solvency II and meets the EU’s requirements for third 
country equivalence.4 This regime (Solvency Assessment and Management (SAM)) is set to 
be implemented in South Africa from 1 January 2016.

1	 The FSA is now the Prudential Regulation Authority (PRA) in this context.
2	 Background to Solvency II. www.fsa.gov.uk/ about/what/solvency/background, retrieved 

24 February 2013.
3	 Basic own funds is defined as the difference between assets and liabilities. The liabilities should 

not include the risk margin of technical provisions and should not include subordinated liabilities 
(EIOPA, 2012: 117).

4	 Solvency Assessment and Management (SAM) Roadmap (2010). www.fsb.co.za/Departments/
insurance/Documents/FSBSAMRoadmap.pdf, retrieved 17 July 2014.
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1.3	 When calculating the SCR for each of the risk modules, companies have a choice: to 
use the Standard Formula as set out in the FSB’s Technical Specifications5 and subsequent 
Final Position Papers, or to develop a full or partial internal model. Internal models are more 
appropriate when a company believes that a model tailored to their specific exposures would 
demonstrate a better measure of their risk (Buckham, Wahl & Rose, 2011: 74). This internal 
model would then enable a more accurate calculation of the capital required to cover those 
risks. Both partial and full internal models are subject to tight standards and scrutiny by the 
regulator, and are subject to an approval process by the insurer’s regulator (for example the 
PRA or FSB) before they may be implemented (Council of the European Parliament, op. cit.: 
26). For a more accurate reflection of risk, an insurer may seek to develop an internal model 
for the life catastrophe shock.

1.4	 The model behind this research aims to derive an appropriate mortality shock for the 
Standard Formula life catastrophe (CAT) risk sub-module in a South African context. The 
shock is defined as the additional deaths per 1000 policyholders (relative to expected), as a 
result of a 1-in-200 year catastrophic event. The resultant change in basic own funds from 
this shock gives the 99.5% Value-at-Risk (VaR), and hence the capital requirement for this 
sub-module. The SCR for the life catastrophe sub-module is defined as:

		  LifeCAT = ΔBOF | life CAT shock

where:
ΔBOF = change in the value of basic own funds,6 and

�life CAT shock = instantaneous increase of x per thousand to the mortality rates which 
are used in the calculation of technical provisions to reflect the mortality experience 
in the following 12 months where x reflects the number of deaths as a result of the 
1-in-200 life catastrophe shock

The above framework is as laid out in the Technical Specifications documents (FSB, 2013: 
SCR 7.7).

1.5	 The aim of this research is to find the number of deaths in South Africa resulting 
from a 1-in-200-year catastrophe event, this figure being converted to deaths per 1000 in the 
mortality shock. An insurer would then use this information to determine the capital charge 
for this sub-module. They would do this by looking at their spread of sums assured and 
determining the expected increase in mortality benefits payable due to the shock. The actual 
calculation of capital charges is beyond the scope of this paper.

5	 South African Quantitative Impact Study version 3 (SA QIS3) (2013).
6	 While the default option is to exclude the changes in the risk margin of technical provisions, 

companies can choose to include the change in risk margin (FSB, 2013: SCR 1.2.1).
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1.6	 The European Institute and Occupational Pensions Authority’s (EIOPA) Technical 
Specifications (2012: 194) suggest a life catastrophe mortality shock of 1.5 per thousand in 
the Standard Formula for EU insurers. This is supported by an epidemiological model which 
showed that the 1-in-200 year influenza pandemic stress for most developed countries is 
between 1.0 and 1.5 per mille for insured lives (Swiss Re, unpublished). The same study’s 
shock for South Africa was heavier, at around 2.5 per thousand.

1.7	 The FSB’s Technical Specifications (FSB, 2013) suggest a catastrophe mortality 
shock that is a function of the underlying mortality rate. The rationale is that HIV-positive 
persons are likely to be more adversely affected by a pandemic than HIV-negative persons. 
The instantaneous increase in mortality due to a catastrophe shock is given by the following 
formula:7
		 Mort CAT Shock = 12 * min [max (0.2 * MortRate + 0.105; 0.125); 0.3]/ 1000

MortRate is the exposure weighted average underlying mortality rate per mille per month.

1.8	 The above formula produces a shock that varies between 1.5 and 3.6 per mille. One 
of the aims of this study was to investigate the reasonability of the standard formula shock.

1.9	 The main aim of this study was to identify and document catastrophe data from 
various sources for insurers wishing to derive their own catastrophe risk model as part of an 
internal (or partially-internal) model.8 However, insurers utilising the standard SAM Pillar 1 
formula need to assess its validity with respect to their own liabilities. Even if insurers choose 
not to derive an internal (or partially-internal) model, the data and methods in this paper 
should provide a useful source and starting point for economic capital calculations.

1.10	 The SA QIS3 results indicate that the life catastrophe risk (mortality and morbidity 
combined) is the fifth largest of the life underwriting risks for life insurers in general, 
accounting for 13.4% of the total life underwriting risk capital requirement (FSB, 2015). We 
expect that for insurers focusing on the funeral market this risk will be even more significant, 
given that the SAM Pillar 1 formula is dependent on the underlying mortality rate.

1.11	 The general approach adopted has been to fit distributions to past events. This gives 
rise to two general shortcomings. Firstly, no consideration is given to event types that have not 
occurred (at least somewhere in the world) before, thus future risk is underestimated in this 
regard. Secondly, historical data based on the last 100 or 200 years are highly unlikely to be 
sufficiently credible in the tail of the distribution. This gives rise to considerable uncertainty 

7	 FSB Position Paper (v 5) FINAL.pdf (2015). www.fsb.co.za/Departments/insurance/Documents/
Position%20Paper%2062%20(v%205)%20FINAL.pdf, retrieved 15 October 2015.

8	 FSB: Internal model approval process press release. ftp://ftp.fsb.co.za/public/media/
pressrelease21042011.pdf, retrieved 18 August 2013.
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in the results which is further compounded by the questionable relevance of past data when 
estimating future risks.

1.12	 The research and model results are based on the impact of catastrophes on the national 
population and thus assume that the risk profile and geographic spread of an insurer’s 
policyholders are similar to the general population. The reason for this approach is that there 
is very limited data, even on a national scale, for modelling purposes. This might make the 
results less relevant for insurers with life insurance policyholders concentrated in specific 
regions, in the event of localised catastrophes affecting their target market. However, even 
for these insurers, a countrywide pandemic might affect their policyholders in a similar way 
to the national population. The information and data provided in this paper may be useful for 
such insurers to recalculate a mortality catastrophe shock appropriate to their circumstances. 
The study also does not model impacts per socio-economic group; the appropriateness of this 
is briefly considered in section 3.6.

1.13	 War risk (including civil war) has not been included in the study. Wars that have led 
to significant South African deaths in the last 100 years include the second Anglo-Boer War,9 
World War 1,10 World War 211 and the Angola/Namibia war.12 It is very difficult to use past 
information for assessing this risk due to changes in political and social factors that contribute 
to the risk of war, and changes in the methods and weapons used in warfare. The creation of 
supra-national organisations (such as the United Nations) to promote dialogue is one factor 
that could be expected to reduce the risk of such large-scale conflicts impacting South Africa 
in the future. The exclusion of this risk from our study may be a significant omission given 
that most South African insurers do not have war exclusions, although active participation 
in combat is likely to be excluded. Assessing war risk requires a method that gives suitable 
weight to current political and social factors. As this requires a different approach to the risks 
modelled in this study, further research is required for assessing war risk.

1.14	 As with war risk, terrorism risk has not been analysed in this study and this could 
be a significant risk, but is unfortunately difficult to quantify. While South Africa has not 
experienced such attacks in the recent past, the risk of extremist groups operating in other 
African countries may in future pose a threat to South Africa. South Africa has been placed 
on terrorism alert in recent years, for example following the Kenyan Westgate shopping 
centre attack in September 2013. This risk is of particular concern to insurers with geographic 
concentration of risk, and is considered the second most important key risk to life (group life) 
writers, after pandemics.13 Further research is required for assessing terrorism risk.

9	 South African deaths include 6000 Boers and 40 524 deaths in concentration camps (League of 
researchers of South African historical battlefields; www.icon.co.za/~dup42/abw.htm).

10	9592 deaths (Commonwealth War Graves Commission, Annual Report 2013–14).
11	11 906 deaths (Commonwealth War Graves Commission, Annual Report 2013–14).
12	1804 SADF deaths 1966–89 (https://sites.google.com/site/sabushwarsite/Home/bushwar-statistics).
13	www.theactuary.com/features/2012/08/modelling-the-1-in-200-risks/
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1.15	 The model assumes that the risk of an influenza pandemic far outweighs, in terms 
of potential deaths, other pandemic risks and hence does not explicitly allow for other 
pandemics. The recent Ebola outbreak in central Africa highlights this limitation, but may 
ultimately lend weight to the validity of the assumption (at the time of writing, there had been 
no Ebola cases reported in South Africa from the outbreak).

1.16	 In aggregating the various types of mortality catastrophe risks to derive an overall 
shock, this study assumed that catastrophe events were statistically independent of one 
another. It would, however, be reasonable to expect positive correlation between some 
events, for example, natural events triggering industrial and/or nuclear accidents (such as the 
Japanese tsunami of 2011, which affected the Fukushima nuclear power plant).

2.	 TYPES OF EVENTS CONSIDERED

2.1	 The FSB’s Technical Specifications (FSB, 2013: SCR 7.7) describe catastrophe risk 
as follows:

Catastrophe risk stems from extreme or irregular events whose effects are not sufficiently 
captured in the other life underwriting risk sub-modules. Examples could be a pandemic event 
or a nuclear explosion.

It goes on to exactly define the life CAT shock (defined earlier), which refines this catastrophe 
definition to look at instantaneous increases in mortality. The life catastrophe shock can be 
interpreted as a rare event leading to a sudden accumulation of deaths. Here ‘rare’ means that 
the event type itself (or an observed severity level) has not occurred often enough so that its 
effects are captured in underlying mortality data used for calculating reserves.

2.2	 The HIV/AIDS pandemic, although a catastrophe to a particular human life, does not 
match the criteria for the mortality catastrophe shock. The reasoning is that AIDS deaths have 
been occurring over a long period and that the disease is now established. A certain number 
of additional deaths each year are therefore expected and can be anticipated. It would be 
reasonable to consider whether an allowance should be made for a strain of disease (currently 
unknown) with similar characteristics to HIV/AIDS developing in the future. However, unless 
this new strain causes multiple early deaths, the life catastrophe shock is not the correct risk 
sub-module to allow for this risk: the life mortality risk module is more appropriate for this 
risk as it should allow for any long-term changes in mortality rates resulting from widespread 
disease and its treatment.

2.3	 The SAM Pillar 1 correlation between the life catastrophe and life mortality (and 
disability) sub-modules is a (fairly weak) positive correlation of 0.25. This correlation could 
be interpreted as a catastrophe-type event causing an immediate accumulation of deaths, but 
then also a permanent increase in underlying mortality rates. This correlation is therefore 
used when the various shocks for the sub-modules need to be aggregated to form the life 
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underwriting risk module (see Figure D.1 in Appendix D for a visual overview of how the 
risk modules relate to each other).

2.4	 A nuclear disaster is a good example of this: those near the plant would suffer severe 
radiation sickness and are expected to die soon after exposure (catastrophe shock), while the 
cohort of individuals exposed to lower doses of radiation may suffer a permanent long-term 
increase in mortality rates (cancer risk). The short-term effects qualify as a life catastrophe 
risk, whereas the longer-term after-effects should be allowed for in the other life underwriting 
risk sub-modules.

2.5	 In light of the above definition, and after consideration of many catastrophe types, 
the risks that were modelled included natural hazards (such as floods, earthquakes and 
tornadoes), man-made disasters (including industrial, energy and transportation accidents) 
and pandemic diseases. These event types, together with war and terrorist attacks, appear to 
be the standard mass casualty events modelled in the industry (see for example RMS14 and 
Milliman).15 Terrorism risk is relatively new but, in some countries, a potentially significant 
source of catastrophe risk; for example “9/11” was one of the single costliest life insurance 
events in history, with an estimated $1.5 billion (current dollar terms) in life insurance claims 
(Insurance Information Institute).16 For reasons discussed in Section 1, war and terrorism risk 
have been excluded from the model, and should be considered in future research.

2.6	 Kraut & Richter (unpublished) state that perils causing extreme levels of mortality 
are generally low-frequency, high-severity events, and that the characteristics of these perils 
can differ significantly from each other or from usual risks. Hence catastrophic risks fall into 
the lower right or ‘tail area’ of a typical loss distribution. See Figure D.2 in Appendix D as an 
example. Banks (2005) shares the low-frequency/high-severity view, stating that catastrophic 
risk is hard to measure due to its relative infrequency. He goes on to state that catastrophes 
can either be sudden or prolonged.17 Table 1 summarises Banks’s general classification of 
catastrophe frequency types. Note how the different types have varying degrees of data 
availability.

2.7	 Diers (2009) writes (in the context of general insurance) that natural catastrophes 
clearly involve severe loss potential, and this matter is further complicated by the small 

14	Mortality-driven risks: Calculating capital requirements for Solvency II (White Paper). www.rms.
com/liferisks/papers, retrieved 23 June 2013.

15	www.milliman.com/uploadedFiles/insight/life-published/pdfs/managing-extreme-mortality-risk.
pdf.

16	Insurance Information Institute (2008): 9/11 and Insurance: the eight year anniversary—insurers paid 
out nearly $40 billion. www.iii.org/press_releases/9-11-and-insurance-the-eight-year-anniversary.
html, retrieved 26 September 2013.

17	Recall the distinction made previously; this report is more interested in sudden catastrophes whose 
deaths fall under life catastrophe rather than the life mortality risk sub-modules.
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number of observations we have, so that long “return periods pose a great challenge to 
modelling for most companies”.18 For this reason, Diers suggests using empirical data from 
a time period reaching as far back as possible. However, due consideration should be given 
to whether such old data are still relevant.

TABLE 1. Types of catastrophe events

Description Examples

Non-repetitive Occurs only once in a particular area, 
and can never be repeated in the same 
location to yield the same results

Collapse of a dam in a specific location; 
terrorist bombing of a landmark building

Irregular Does not appear with any degree of 
statistical regularity

Tsunami generated by an earthquake

Regular Characterised by regular (though long 
and gradual) accumulation of forces that 
lead to the triggering of an event

Earthquake on a known fault line; 
volcanic eruption

Seasonal Has the potential of occurring on a 
regular basis in a general location during 
a given time period/season

Hurricanes; floods; droughts

    Source: Banks (op. cit.: 7)

3.	 DATA & METHODOLOGY
The catastrophes considered were those for which past data and information existed 

that could be reasonably used as the basis for assessing the current risk in South Africa. 
These were floods, earthquakes, tornadoes and pandemics (natural catastrophes), as well as 
industrial and mining, road and rail, commercial airliner and nuclear accidents (man-made 
events). Assessing war and terrorist-related risks requires a different approach that gives 
appropriate weight to current political and socio-economic factors. These risks have been 
excluded from this study and require further research.

3.1	 Data
3.1.1	 For event types that have the potential to be a South African life catastrophe 

risk, a search for reliable and complete data was made in an attempt to build a comprehensive 
database of relevant past events. In order to increase the statistical significance of results, or 
simply to have enough points to sensibly fit a distribution, data were not necessarily restricted 
to recent events. For example, in order to obtain three (severe) influenza pandemic data 
points, one needs to go back 100 years. Contrast this with road accidents, where many data 
points can be accumulated from the last 10 or so years. However, for certain risks, older data 
become less relevant due to fundamental changes in underlying conditions. For example, 

18	Return period is defined as “the expected length of time between recurrences of two natural 
catastrophe events” (Diers, op. cit.). This is the inverse of the frequency. For example, in throwing 
a dice, we expect a 1 with frequency 1/6. The return period is hence (1/6)–1 = 6 (throws).
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medical advances have altered flu pandemic risk, and better air travel safety has altered the 
risk of fatalities from airliner accidents, which is discussed in section 3.10.

3.1.2	 As far as possible official records were used to build the dataset—such as 
Caelum: a history of notable South African weather events by the South African Weather 
Service (Viljoen, 1991), or statistics provided by well-respected independent organisations 
such as the World Health Organization (WHO). For smaller or more localised catastrophes, 
newspaper articles were sometimes the only available data source. In this case an attempt 
was made to verify each data point from two independent news sources. Details of the data 
collected for the various catastrophes can be found in Appendix B.

3.2	 General Methodology
3.2.1	 An annual frequency was estimated for each event type, defined as 

(number of events over period of investigation) / (number of years investigated).19 This is 
the maximum likelihood estimator for Poisson and Bernoulli mean parameters. Since an 
attempt was made to keep the model as simple as possible, a Bernoulli distribution was used 
where appropriate. This assumes a maximum of one event per annum, which is sensible for 
non-repetitive event types, for example, a nuclear reactor meltdown or very low-frequency 
events such as an airliner crash.20 For repetitive event types where more than one occurrence 
per annum is possible (such as road accidents, floods, mining accidents, etc.), the Poisson 
distribution was the natural choice for modelling the number of events per annum.

3.2.2	 For each catastrophe type, the following method was used: the historical 
data points were assumed to be observations of independent and identically distributed 
random variables from an unknown distribution, and a probability density function (pdf) 
was fitted to each. This simplifying assumption might not always be valid. For example, 
improvements in medical technology or other advances may have the effect of lowering death 
rates resulting from catastrophe events, while greater population density might increase death 
rates as a pandemic spreads more easily. The resulting severity distribution then represents the 
random variable of the number of deaths from a certain event type, given that an event of that 
type has occurred. A Microsoft Excel add-on (EasyFitXL) was used to fit over 60 different 
distributions, with the best-fit parameters chosen using the method of maximum likelihood 
(i.e. maximising the log likelihood). The program performs three goodness-of-fit tests for 
each distribution: The Kolmogorov–Smirnov, Anderson–Darling and Chi-square tests.

3.2.3	 In terms of fit, there was usually a clear best choice: a distribution which 
performed the best on all three statistical goodness-of-fit tests. However, for the purposes of 
this investigation, a good fit in the extremities or tail of the distribution is of most concern. 
Hence, when comparing distributions, particular attention was given to observations in the 

19	This was not the case for earthquakes, airliner, and nuclear accidents, where a different method of 
estimating the frequency was used. See Sections 3.4, 3.10 and 3.11 for more detail.

20	While a number of airliner accidents have made headlines in 2014, the trend for a number of decades 
has been a steadily reducing number of accidents. Even for 2014, the Bureau of Aircraft Accident 
Archives show that there were 78 airliner accidents (involving 6 or more passengers) worldwide by 
1 September, compared to 139 in 2013.
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upper right corner of the QQ-plot.21 Of the better-fitting distributions suggested by EasyFit, 
the distribution with the best fit in this tail area was chosen, even if overall it was not the best 
fitting distribution. Despite this approach, the tails of some of the chosen distributions may 
still not be sufficiently long, given some extreme observations in the data. It is, however, 
difficult to know how much weight to assign to single outlier tail observations at the expense 
of down-weighting data between the tails and worsening the overall fit.

3.2.4	 A worst-case scenario or cap on the possible number of deaths for each 
event type was investigated and, where a cap has been used the reasoning and derivation 
behind each figure is provided. Without a cap (where relevant), the model could return values 
that are out of the realms of possibility. For example, it is not possible for an earthquake in 
Cape Town to kill a greater number of people than the actual population, so a cap equal to the 
population was used to keep the model results sensible.

3.2.5	 For some of the catastrophe types (pandemic, earthquake, airline, and 
nuclear events), a slightly different method was used—either due to lack of data to fit a 
severity distribution or a better method being available. Where this is the case, an additional 
note on the method has been given.

3.2.6	 Over the course of one year, the random variable representing the number 
of deaths (South African population deaths) from a certain catastrophe (CAT) type, i, can be 
written as:
		

1

Ni

i ij
j

Y X
=

=∑
a compound random variable, where:

Ni = random variable representing the number of CAT events of type i over the year.
Ni = 0,1,2, … where if Ni = 0 then Yi is defined to be zero
Xij= total number of deaths from the j th event of type i
Xi1, Xi 2,… are independent and identically distributed random variables, from a 

certain probability distribution which can be different for each i
Ni and Xi j are independent for j = 1,2, …

Suppose we have m catastrophe types included in our model. Then, the total number of 
deaths over one year from CAT type events can be represented by the random variable Z—the 
convolution/summation of these compound random variables ,  1,2,...,iY i m= . In summary 
form this can be written as:

		
1 1 1

Nm m i

i ij
i i j

Z Y X
= = =

= =∑ ∑∑

In the model, the Ni’s are all assumed to be either Bernoulli or Poisson random variables. 
The maximum likelihood estimator for the parameter for these distributions is the sample 

21	A QQ-plot is a plot of the empirical quantiles of the observed data against the corresponding 
quantiles from the assumed underlying distribution and provides a graphical representation of the 
goodness of fit.
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mean. This parameter was investigated separately for each CAT type. For each of the Xi’s, 
the distribution was estimated by fitting a probability density function to historical death data 
from CAT type i.

3.2.7	 The above random variable Z is then simulated 500 000 times (by 
independently simulating the Ni’s and Xi’s above). An empirical distribution is thus derived, 
and from this the 99.5th percentile or 1-in-200 year death toll from a catastrophe event(s) is 
derived. Simulation is used because it is not feasible to derive this distribution analytically. 
This figure can be interpreted as an estimate of the total number of population deaths occurring 
in South Africa, due to a 1-in-200 year catastrophic event(s). Assuming these deaths are 
distributed randomly (uniformly) over the population, not being any more or less likely to 
affect an insured life from a specific company,22 we divide the result by 52.98 million (the 
South African population estimate at mid-year 2013, Statistics South Africa)23 and convert 
this to get the additional deaths per 1000 members of the population.

3.2.8	 In aggregating the various types of mortality catastrophe risks to derive 
an overall shock, this study assumed that catastrophe events were independent. There may 
be positive correlation between some events, for example, earthquakes and industrial and/or 
nuclear accidents. This aspect should be further researched.

3.3	 Floods
3.3.1	 Globally, floods are the most widely experienced natural disaster causing 

property damage, economic disruption, and loss of life (Montz & Tobin, 2010). Multiple 
deaths from the flooding of rivers, during and after heavy rains, are not uncommon in South 
Africa. This is evidenced by 48 flood events in the last 57 years causing five or more deaths 
each. The Department of Provincial and Local Government (DPLG)’s National Disaster 
Annual Report 2006/07 states that, of all natural hazards in South Africa, floods have caused 
66% of observed deaths.24

3.3.2	 The distinction between riverine and flash flooding is important in assessing 
potential loss of life. The Flood Awareness document by the National Disaster Management 
Centre (DPLG)25 defines riverine flooding as the natural, seasonal flooding of a river, such 
as occurs with the river Nile. Hence it is largely predictable and dwellings are not built in 
the flood plain. For this type of flooding, probabilities of exceeding prior high water levels 
are of interest in the field of extreme value theory. This is in contrast to flash floods which 
occur when “an excessive amount of rain falls during a short period of time, or when large 
amounts of water are released from a dam or blockage in a river” (DPLG).26 These largely 

22	See Section 7: Recommendations for further research.
23	Mid-year population estimates 2013, released July 2014. http://beta2.statssa.gov.za/publications/

P0302/ P03022014.pdf.
24	DPLG, National Disaster Management Centre: Annual report 06/07. 

www.info.gov.za/view/DownloadFileAction?id=85534, retrieved 19 June 2013.
25	DPLG, National Disaster Management Centre: Flood awareness. www.preventionweb.net/

files/7569_SHARPISDRFLOOR120081211164914.pdf, retrieved 05 April 2013.
26	DPLG, National Disaster Management Centre: Annual report 06/07, supra.
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unpredictable and highly localised flash floods are the cause of high levels of death and 
destruction. It is believed that urbanisation contributes to a flash flooding hazard: instead of 
water infiltrating the ground, the water flows over and around impervious land surfaces and 
concrete structures, increasing human exposure to flash flood hazards and the potential for 
damage and injuries (Coles, 2010). Various factors influence the likelihood and extent of a 
flood. Grobler (unpublished) provides a holistic overview of these factors.

3.3.3	 KwaZulu-Natal and the Eastern Cape are the provinces most frequently 
affected by flash flooding. In particular, De Villiers and Maharaj (1994) describe the 1987 
KwaZulu-Natal flood as being amongst the most devastating to have occurred in South 
Africa, resulting in nearly 400 deaths. This was the result of 400–600 mm of rain falling over 
five days in the Mdloti catchment area, immediately following a wetter-than-usual two weeks 
in terms of average rainfall. Another notable disaster was the 1981 Laingsburg flood. Large 
parts of the small Karoo town were destroyed when the banks of the Buffalo River burst. 
With more than twice the annual expected rainfall falling over just one weekend, the volume 
of water in the Buffalo River (which flows through the town) was simply too high. Over 100 
lives were lost27 in this disaster.

3.3.4	 All the data used for modelling were local and included each major flood 
event dating back to 1956. The South African Weather Service’s publication Caelum (Viljoen, 
1991) provided most of the historical flood data up to 1989, and newspaper articles were used 
for more recent data due to an absence of alternative data sources.

3.3.5	 The data show that more than one flood causing multiple deaths can occur 
in a single year in South Africa. A Poisson distribution was thus chosen for the frequency 
distribution. The method of maximum likelihood gives the Poisson parameter λ = 0.83. This 
means that, in the model, 0.83 floods are expected per annum. There was insufficient statistical 
evidence to reject the fitted model, with the Chi-square goodness-of-fit test indicating a 
p-value of 0.267.

3.3.6	 A three-parameter lognormal distribution fitted the historical death data 
the best for the severity distribution, with a p-value of 0.8289 on the Kolmogorov–Smirnov 
goodness-of-fit test. See Appendix C, Table C.1.

3.4	 Earthquakes
Earthquakes involve the travel of elastic, or seismic, waves of energy through the Earth’s rigid 
crust. They result from the sudden liberation of accumulated stress and strain along Fault lines, 
which are planar discontinuities in the crust. Around the world, more than 3,000 seismic events 
occur each year, but few of them are damaging or lethal. However, when major earthquakes 
occur in highly populated areas, they can cause major destruction and death tolls in the 
thousands.	 — Alexander (2010)

27	South African History Online: At least 100 people drown in a flood at Laingsburg. www.sahistory.
org.za/dated-event/least-100-people-drown-flood-laingsburg, retrieved 19 June 2013.
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3.4.1	 In terms of loss of life, the risk is substantial: the 7.5 magnitude (M)28 
earthquake that hit China in 1976 resulted in 255 000 deaths. In Swiss RE’s 2013 Sigma29 
report over half of the 40 worst (in terms of loss of life) catastrophes from 1970 to 2013 
were earthquakes. The potential death toll from a future earthquake disaster in a city such as 
Tehran, with three geological fault lines running through the urban centre, has been estimated 
at between 400 000 and 3.4 million people (Alexander, op. cit.). From this brief introduction 
it might appear that seismic events should count for a large part of any company’s life 
catastrophe SCR. However, past events are concentrated in certain areas, known to be on or 
near geological fault lines.

3.4.2	 Research undertaken by Kijko and Visser for Aon Benfield30 suggests that 
Cape Town and Durban are exposed to the highest risk of an event (as these locations have 
experienced the most significant seismic events in South African history). A recent study 
by Kijko, Smit & Van De Coolwijk (2015) provides an estimated assessment of the seismic 
hazard and risk (potential losses) to infrastructure due to a strong seismic event in the Cape 
Town area, and concludes that “seismic hazard is a justifiable concern in South Africa. In 
particular, seismic hazard in Cape Town must be taken into serious account as a potential 
threat to its citizens and to infrastructure.”

3.4.3	 Various studies identify the Cape Town area as an earthquake cluster 
area; see for example Singh, Kijko & Durrheim (2009). They do, however, also state that 
no earthquakes have been recorded in the area since instrumental recording began in 1972. 
The area is considered a risk due to the fault line that runs approximately eight kilometres 
offshore of Milnerton, and then cuts almost directly through the Cape Flats. In 1809, an 
earthquake estimated at M = 6.3 occurred on this fault, just 10 km from the present Cape 
Town central business district (CBD). Aon Benfield31 describes the effect on the Cape Town 
CBD of a worst-case scenario 6.87 M earthquake as ‘ruinous’.

3.4.4	 Several small earthquakes have been recorded in Gauteng, specifically in 
the mining regions, with a few leading to loss of life in the mines. Singh, Kijko & Durrheim 
(op. cit.) state that while it is difficult to distinguish between natural seismic activity and 
the tremors or blasts from gold and other mining activity, most seismicity originates in the 
gold-mining districts of the Witwatersrand basin. The most recent incident at the time of 
finalising this paper was the earthquake on 5 August 2014 with its epicentre near Orkney, a 
gold-mining town 177 km south-west of Johannesburg. This event measured M = 5.5 on the 
Richter scale according to the Council for Geoscience.

28	Magnitude (M) refers to severity on the moment magnitude scale, which replaced the less accurate 
Richter scale. The two measures are approximately equivalent, except at the upper extreme of 
measurability.

29	http://www.swissre.com/sigma/
30	Aon Benfield (2013). South Africa spotlight on earthquake. http://thoughtleadership.aonbenfield.

com/Documents/201006_mega_eq_report.pdf, retrieved 13 February 2015.
31	Ibid.
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3.4.5	 Aon Benfield32 believe that tectonic and mining-related events are largely 
uncorrelated. They point out that the reduction in mining activity in the Gauteng area due to 
depletion of reserves is decreasing the risk of mining-related seismicity.

3.4.6	 Singh , Kijko & Durrheim (op. cit.) provide a summary of all seismic events 
in South Africa with M ≥ 5 since 1809, which shows no recorded events in Johannesburg. 
While there have been significant earthquakes (of M ≥ 5) in other mining regions, including 
Carletonville (West Rand), Klerksdorp (North West province) and the Free State, property 
damage and loss of life were mostly limited to these regions. The Carletonville earthquake 
(M = 4.7) of 1992 caused some property damage but no loss of life in Johannesburg. The 
Johannesburg area has therefore been excluded from our model.

3.4.7	 Aon Benfield33 believe that for an earthquake (5 ≤ M < 6) to cause damage 
in Durban, the epicentre needs to be less than 45 km away. They estimate the return period for 
this type of event to be 735 years, and the return period for an event (6 ≤ M < 7) to be about 
5 000 years.

3.4.8	 Notable South African events include the earthquake that occurred 
in 1809—referred to in paragraph 3.4.3—on what is now known as the Milnerton Fault. 
The magnitude has been estimated to be between 6 and 7, which would make it one of the 
largest earthquakes to have occurred in South African history. The greatest structural damage 
occurred near Milnerton itself. There was not much infrastructure built there at that time, 
and eyewitnesses reported the after-effects of the earthquake as fissures along the ground 
(Hartnady, 2003). In 1969 an M = 6.3 earthquake in Ceres caused more than R500 m in 
insured damage34 in today’s terms (Grobler, op. cit.). This event resulted in 12 lives lost and 
many buildings of historical significance damaged in the town of Tulbagh.

3.4.9	 Earthquake data (since 1809) summarised by Singh, Kijko & Durrheim 
(op. cit.) have been used to obtain a frequency estimate for M ≥ 5 earthquakes in the Cape 
Town region. Swiss RE’s annual Sigma reports from 2004 to 2012 were used to gather data 
on the number of deaths experienced as a result of earthquakes worldwide. The earthquake 
death counts were segmented into 5 ≤ M < 6, 6 ≤ M < 7 and M ≥ 7, since these were the 
frequencies estimated for Cape Town (see below).

3.4.10	 Singh, Kijko & Durrheim (op. cit.) state that the most striking feature of 
the data they have collected is that no earthquake greater than magnitude 6.3 has occurred 
anywhere in South Africa since the 1969 Tulbagh earthquake. They argue that this may either 
be due to crustal pressure being relieved since the 1969 event, or simply that South Africa 
is on a stable continental region, with a long return period (low frequency) for earthquakes 
of this magnitude. Data summarised by Singh, Kijko & Durrheim (op. cit.) show 63 seismic 
events with intensity M ≥ 5 since 1809 in South Africa, with five of those occurring around 
the Cape area. Based on this past data one could expect an earthquake of magnitude greater 
than 5 in the Cape area roughly once in every 41 years (corresponding to an annual frequency 

32	Ibid.
33	Ibid.
34	R200 m quoted at 1996 price level, assuming 6% inflation year on year, gives R539 m.
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of 0.02451). The same data show that there was one event in the Cape with intensity M ≥ 6 
since 1809 (corresponding to an annual frequency of 0.004878). Grobler (op. cit.) reports the 
South African Council of Geoscience as estimating that Cape Town can expect an earthquake 
of M ≥ 7 once every 500 years (annual frequency 0.002). Frequency estimates for Durban are 
taken from Aon Benfield.35

3.4.11	 One approach to modelling earthquake fatalities would be to use existing 
general insurance damage models and then try to link the rand amount of damage to the number 
of deaths. In low GDP countries, insurance penetration is not high, and buildings are not built 
according to stringent standards to be able to resist the impact of earthquakes. Earthquake death 
counts are subsequently very high in these countries, but insured losses low (Gutiérrez et al., 
2005) when compared to an earthquake in a developed country. While buildings in a developed 
country are usually built to a good seismic standard, they would still be damaged by a high 
intensity earthquake, resulting in large insurance losses. However, they would not be expected 
to suffer a full collapse, thereby decreasing a potential death count. While the South African 
Bureau of Standards (SABS) has issued minimum building standards36 to be implemented in 
areas of high seismic risk (including the mining belt covering Gauteng, North West province 
and the Free State, as well as the greater Cape Town region), Davies & Kijko (2003) could 
not establish the extent of adherence to these requirements. Since too few earthquakes causing 
loss of life in South Africa have occurred, a distinct South African death-to-damage ratio could 
not be estimated and the proposed method was abandoned.

3.4.12	 The approach when modelling the severity of an event was to use recent 
earthquakes from around the globe as data points. This enables fitting distributions to death 
counts from earthquakes of different intensities, where few earthquakes resulting in casualties 
have occurred in South Africa. Drawing inferences from contingent data can influence the qual-
ity of a model, according to Banks (op. cit.), but is one of the few available options when direct 
data are lacking. For each intensity range (5 ≤ M < 6, 6 ≤ M < 7 and M ≥ 7) of interest, a separate 
severity probability density function was fitted, using death tolls from past global earthquakes 
as data points. Although the numbers vary widely (depending, for example, on location of epi-
centre, size and density of population, building structure codes enforced), the simplified model 
adopted did not attempt to allow explicitly for the location of epicentre and other factors.
–– For the 5 ≤ M < 6 earthquake data (average death count ~23), a Wakeby distribution best 

fitted the data, with a p-value of 0.1358 on the Kolmogorov–Smirnov test.
–– For the 6 ≤ M < 7 earthquake data (average death count ~1208), a Pareto 2 distribution best 

fitted the data, with a p-value of 0.40785 on the Kolmogorov–Smirnov test.
–– For the M ≥ 7 earthquake data (average death count ~20 784), a Frechet distribution best 

fitted the data, with a p-value of 0.43223 on the Kolmogorov–Smirnov test.

3.4.13	 Gutiérrez et al. (op. cit.) analysed 300 past earthquakes that had resulted in 
deaths. They consider a high mortality earthquake to be one that results in the death of 15% 

35	Aon Benfield, supra.
36	SABS 0160 1989 (as amended 1990, 1991 and 1993).
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of the population within 50 km of the epicentre. If one assumed the worst possible epicentre, 
a 50 km radius can cover much of greater Cape Town or Durban. Using the 2011 census 
estimates for the city population sizes, this gives a cap of 561 004 deaths for Cape Town (15% 
of 3.74 million) and similarly 516 354 deaths for Durban. For a given year, the magnitude of 
the single most severe earthquake (if any) in each centre is considered. It is assumed that if 
M < 5, then no deaths will result. As discussed above, for Cape Town P(M ≥ 5) = 0.02451 and 
so P(M < 5) = 0.97549 . We also have the points P(M ≥ 6) = 0.004878 and P(M ≥ 7) = 0.002. 
The model then returns, for Cape Town:
–– No fatal event, with probability P(M < 5) = 0.97549
–– A 5 ≤ M < 6 earthquake with probability P(M ≥ 5) – P(M ≥ 6) = 0.019632
–– A 6 ≤ M < 7 earthquake with probability P(M ≥ 6) – P(M ≥ 7) = 0.002878
–– A M ≥ 7 earthquake with probability P(M ≥ 7) = 0.002

The corresponding assumptions for Durban are:
–– No fatal event, with probability P(M < 5) = 0.99844;
–– A 5 ≤ M < 6 earthquake with probability P(M ≥ 5) – P(M ≥ 6) = 0.00136;
–– A 6 ≤ M < 7 earthquake with probability P(M ≥ 6) – P(M ≥ 7) = 0.0002;
–– A M ≥ 7 earthquake with probability P(M ≥ 7) = 0.

Given a 5 ≤ M < 6, 6 ≤ M < 7 or M ≥ 7 earthquake in each of Cape Town and Durban, a death 
count from the respective historical severity distribution was thus drawn.

3.5	 Tornadoes
A tornado is a violently rotating column of air in contact with the ground. It usually forms 
under a cumulonimbus (thunderstorm) cloud and is visible as a condensation funnel or by 
the dust and other debris incorporated into the rotation. About 1500 tornadoes are recorded 
annually around the middle latitudes of Earth, and they typically cause 100 to 300 deaths.

— Schmidlin (2010)

3.5.1	 Goliger et al. (1997) includes a database of past South African tornadoes 
and resultant casualties and damages. It is clear from this work that tornadoes are present 
in South Africa, with 47 known past events resulting in human casualty. Historically, South 
African tornadoes have occurred in the late afternoon in the summer months. Worldwide, the 
occurrence of tornadoes typically coincides with the annual peak in thunderstorm frequency, 
as this is the period with greatest atmospheric instability (Schmidlin, op. cit.). In the South 
African context, while tornadoes may result in irregular incidents with a few deaths, the 
historical evidence suggests that they do not pose a life catastrophe risk, especially when 
compared to other possible catastrophes. The 1952 Albertynsville (a township near 
Johannesburg) tornado killed 24 people and injured more than 600, destroying 500 houses 
completely (Goliger et al., op. cit.).

3.5.2	 Severity data from worldwide tornadoes would not be relevant in determining 
possible South African deaths. Unlike, for instance, industrial accidents, this hazard is very 
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specific to a geographic location, being more severe among the mid-latitudes where the death 
toll is notably higher (Goliger et al., op. cit.). For this reason, South African-only data are 
used, despite being quite limited. The simulations do not make up a large part of the final life 
catastrophe shock, so the following frequency and severity estimates are not critical.

3.5.3	 A tornado leading to at least five deaths has occurred on average once 
every ten years in South Africa. A Bernoulli random variable with parameter 0.10 was thus 
used to simulate the number of tornado events per annum.

3.5.4	 The deadliest tornadoes in recent decades have occurred in Bangladesh; in 
particular, on 29 April 1989 a tornado struck and killed 1300 people. Casualties arise from 
tornadoes as a result of high winds, flying debris and the collapse of buildings, Schmidlin 
(op. cit.) noting that weak structures offer little protection. This could be a reason for the 
most severe South African incident having occurred in the Albertynsville township. In terms 
of local tornado severity, the log-logistic distribution fitted the data the best, with a p-value 
of 0.96808 on the Kolmogorov–Smirnov test.

3.6	 Influenza Pandemics
3.6.1	 Lloyd’s paper ‘Pandemic: potential insurance impacts’37 notes that much 

of the recent industry focus has been on an influenza pandemic. The WHO states “experts 
at WHO and elsewhere believe that the world is now closer to another influenza pandemic 
than at any time since 1968” (unpublished a), referring to the world as being in an ‘inter-
pandemic’ phase, which stresses the belief that the next pandemic is inevitable. Catastrophist 
Gordon Woo (2011: 43) states that of all possible emerging infectious diseases, “influenza 
stands out as the persistent historical and future human threat”. This is due, he says, to the 
fact that the influenza virus is not eradicable.

3.6.2	 As mentioned in section 1, EIOPA ultimately settled on a mortality 
catastrophe shock in the Standard Formula that is in line with the 1-in-200 year influenza 
pandemic scenario modelled by Swiss Re (op. cit.). This would suggest that pandemics are 
the leading life catastrophe risk, or at least are regarded as such by the regulators. RMS38 
modelled life catastrophe events and found infectious diseases to be the main driver behind 
their modelled life catastrophe shock. The reason they give is that the “global footprint” of a 
pandemic leads to a significantly larger susceptible population, compared to a more localised 
event such as an earthquake. Kraut & Richter (op. cit.) share this view, suggesting that, whilst 
terrorism or natural catastrophes depend heavily on proximity to urban areas and coastlines/
earthquake zones respectively, pandemic risk will affect a book of lives more homogeneously 
in terms of location.

3.6.3	 Influenza is a virus that attacks the upper respiratory tract. There are three 
types of influenza (A, B and C), of which only two (A and B) cause widespread disease in 

37	Lloyd’s Emerging Risks Team Report (2013). ‘Pandemic: Potential insurance impacts’. 
www.lloyds.com/~/media/Lloyds/Reports/Emerging%20Risk%20Reports/ ER_Pandemic_ 
InsuranceImpacts_V2.pdf, retrieved 17 July 2013.

38	Mortality-driven risks: Calculating capital requirements for Solvency II (White Paper), supra.
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humans. Whereas Type B is only found in humans, Type A is also carried by other mammals 
and birds (“avian influenza”). Subtypes of Type A that are present in birds have the potential 
to cross over to humans when there is close contact between humans and infected birds, for 
example, in poultry markets in developing countries. The possibility of a new strain being 
introduced to the human population as a result of such contact is cause for concern in terms 
of a global pandemic (WHO, unpublished a). The main reservoirs of Type A influenza are the 
vast flocks of birds in China, which are in close contact with large human populations (Woo, 
2011: 43).

3.6.4	 The WHO (unpublished a) gives a generic description of how a pandemic 
may evolve. In summary, influenza viruses evolve easily and unpredictably, with influenza 
from one species being able to trade genetic information with influenza from another, in a 
process known as re-assortment. It is when genes between human and animal influenza are 
exchanged that a lethal virus can be created (Woo, 2011). In this way, a new hybrid virus is 
produced, against which humans have no immunity (as it is brand new), and for which no 
vaccines are available. This can result in an unusually severe disease, infecting large numbers 
of people. Such a pandemic could conceivably encircle the globe within three months (WHO, 
unpublished a).

3.6.5	 The European Centre for Disease Control and Prevention (ECDC) (un-
published b) says that “by the time it is realised a pandemic has started, the virus is far too 
widely distributed to be constrained”. They go on to say that there is no way of knowing 
when the next pandemic will occur, and that “influenza viruses are inherently unpredictable”. 
Gunderman and Brown (2007) describe four requirements that need to be met for the next 
full-blown influenza pandemic to occur:
1.  A new strain of influenza must emerge.
2. � This disease must be spread to the human population, usually a transmission from birds 

to human beings.
3.  The disease must be readily and sustainably transmitted from human to human.
4. � The disease must be capable of causing serious health effects in human beings, witnessed 

by a high case mortality rate.

3.6.6	 1918 (H1N1 Spanish Flu)
3.6.6.1	 This influenza pandemic, referred to commonly as the “Spanish Flu”, is 

often used as a benchmark or worst-case scenario when measuring pandemic risk (RMS;39 
Lloyd’s40), and is described as “the single most devastating infectious disease outbreak ever 
recorded” (WHO, unpublished a).

3.6.6.2	 This unusually severe strain of Type A virus occurred just after World 
War I, and killed more people than the war itself (Woo, 2011: 43). Estimates of the death toll 
vary considerably, but most fall in the range of 30–50 million within the first 12 months of the 
pandemic. For example, the WHO (unpublished a) has the death toll at 40 million, whereas 

39	Ibid.
40	Lloyd’s Emerging Risks Team Report, supra.
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Johnson & Mueller (2002: 115) suggest “of the order of 50 million”, but add that “even this 
vast figure may be substantially lower than the real toll, perhaps as much as 100 percent 
understated”.

3.6.6.3	 Johnson & Mueller (op. cit.) estimate excess mortality per thousand lives 
as being between 2.5 and 5.0 for the global population, but with a large variation between 
individual countries. Their estimate for the USA is 6.5 (Swiss Re, op. cit.) puts the USA 
figure at 5.3, whereas South Africa was one of the worst hit countries with an estimated 
mortality rate of 44 per thousand (approximately 300 000 deaths).

3.6.6.4	 Whereas it is usually older people and infants that are most at risk of 
developing complications and dying from influenza (Boslaugh, 2008), the Spanish Flu was 
unusual in that at least half of the resulting deaths were of young adults. This is usually attributed 
to the “cytokine storm” effect (see, for example, Swiss Re, op. cit.: 20), an overly aggressive 
response to the virus from the body’s immune system, which can itself lead to respiratory 
problems; and which appears to be more likely in younger, otherwise healthy, individuals.

3.6.7	 1957 (H2N2 Asian Flu)
This Type A virus originated in China. It arose as a mutation between avian and 

seasonal human viruses (Woo, 2011). It spread through Asia and eventually reached the 
United States. Death toll estimates again vary but most are around two million (Woo, 2011: 
43). It was a milder virus than that of 1918 and the world was better equipped to cope, with 
most excess deaths confined to infants and the elderly (WHO, unpublished a). Swiss Re (op. 
cit.: 28) estimated the excess mortality per thousand lives in the USA to be approximately 0.4.

3.6.8	 1968 (H3N2 Hong Kong Flu)
This strain began in Asia, and eventually spread to the United States (via troops 

returning from Vietnam) and Europe (WHO, unpublished a). The virus descended from 
H2N2 by antigenic shift, causing up to one million deaths worldwide (Boslaugh, op. cit.). 
Symptoms were milder and mortality lower than the 1957 Asian Flu (again with highest 
mortality in the elderly), with the disease spreading slowly in most countries (WHO, 
unpublished a). The excess mortality per thousand lives in the USA was approximately 0.2 
(Swiss Re, op. cit.: 28).

3.6.9	 1997–Present (H5N1)
3.6.9.1	 This ongoing strain may well be the next pandemic. The WHO considers 

H5N1 avian influenza a public health concern, going so far as to say it is the strain most likely 
to cause a pandemic. First affecting humans in 1997 in Hong Kong, it has gradually extended 
its reach from Asia to Europe and Africa, having become “deeply embedded” in poultry 
in some countries (ECDC, unpublished b). There is direct human contact with these birds, 
hence the ECDC (unpublished a) stating there is a “constant risk of humans being infected 
and the virus adapting to them”.

3.6.9.2	 Boslaugh (op. cit.) writes in the Encyclopaedia of Epidemiology that H5N1 
is not yet capable of causing a pandemic because it is not transmitted efficiently between 
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humans, one of the prerequisites of a pandemic. “The small number of human cases, despite 
tens of millions of poultry infected, over vast geographical areas, for more than two years, 
support this conclusion.” (WHO, unpublished a). However, H5N1 has had a high case 
mortality rate, at over 60%, for those few who have been infected (Lloyd’s).41 It has been 
described by the ECDC (unpublished a) as being a severe disease with high mortality—a lot 
higher than is usually the case when animal influenzas infect humans.

3.6.9.3	 At present, having already made the inter-species jump (albeit with 
low rates of human infection), it has met three of the four necessary factors to become a 
pandemic. WHO (unpublished c) says that H5N1 does have the potential to mutate into a 
form more transmissible between humans, which would have it fulfilling the last of the four 
requirements, and so develop into a full blown pandemic. The hope is that if it were to change 
to become more contagious, the virulence would be reduced in the process.

3.6.10	 Swiss Re Model
3.6.10.1	 The model developed by Swiss Re (op. cit.) appears to be the most 

respected and widely-referenced model for possible influenza pandemics. It is a complex 
epidemiological model that can simulate the progression of a pandemic with a given lethality 
and contagiousness, allowing for demographic characteristics and possible interventions 
(both pharmaceutical and non-pharmaceutical).

3.6.10.2	 One advantage of the Swiss Re approach over many of the other attempts to 
model influenza pandemics is that, instead of considering just two or three chosen scenarios, 
thousands of different scenarios can be simulated by randomly drawing the lethality and 
contagiousness parameters from statistical distributions. These distributions have been 
chosen by calibrating the model to historical pandemics, taking into account the changes in 
demographics, medicine and government preparedness over time. By running large numbers 
of simulations, it was possible to attach probabilities to pandemics of differing severity.

3.6.10.3	 The model divides the global population into 37 territories (countries or 
groupings of countries) and into 5-year age bands, as a result of which the different effects 
of a pandemic across the age spectrum and between different countries can be modelled. 
The modelled excess mortality (for the general population, but age-weighted to represent 
a typical insurance portfolio) at the 1-in-200 year probability level ranged from 1.0 to 1.5 
per thousand for developed countries and 1.5 to 4.0 per thousand for developing countries 
(approximately 2.5 for South Africa).

3.6.11	 The Committee of European Insurance and Occupational Pensions Super
visors (CEIOPS) consultation paper no. 49 (unpublished a) provided the draft advice for 
implementing the standard formula for the life underwriting risk. This paper referenced 
the Swiss Re model in support of the 1.5 per thousand mortality shock that had been used 
for QIS4, but then went on to propose an increase in the shock to 2.5 per thousand, citing 
(unpublished a: 36):

41	Ibid.
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–– Potential weaknesses in the Swiss Re model, i.e. “not adequately allowing for the 
probability of flu jumping across species such as from birds to humans, not allowing 
for non-influenza pandemics (e.g. AIDS, drug-resistant TB, Ebola virus/MRSA/SARS) 
or other causes of mortality catastrophe such as terrorism or physical catastrophes such 
as earthquakes.”

–– Concerns that “due to sparse historical data on pandemics, there is a significant degree of 
uncertainty around the calibration of any pandemic model”.

–– The fact that “the 1918 flu pandemic, which is the most significant mortality catastrophe 
for which data is available, gave rise to death levels of above 5 per mille”.

3.6.12	 In responses to the draft paper (CEIOPS, unpublished b), many companies 
objected to the proposed increase, largely on the basis that the reference to the 1918 
pandemic, seemingly without any consideration for how the world had changed since then, 
was of questionable relevance. Swiss Re themselves refuted the criticisms of their model and 
disagreed with the suggestion that 2.5 per thousand was a better estimate of a 1-in-200 year 
mortality shock. In the end, the final advice document (CEIOPS, unpublished c) reverted to 
1.5, but the concerns raised were kept in the document.

3.6.13	 The annual pandemic frequency assumed for our model is 1/30, which 
is the same as that used by Swiss Re (based on the fact that 10 to 13 epidemics have been 
recorded over the last 300 years). Woo (2011: 43) notes that epidemiologists “look to history 
for guidance on the frequency of influenza pandemics, which is approximately every 30 years 
on average”.

3.6.14	 It was assumed that the pandemic severity follows the lognormal distribu-
tion (which was the type of distribution chosen for the lethality input parameter in the Swiss 
Re model, although their modelled outputs would not have followed any parametric distribu-
tion). The parameter was then chosen so that the 1-in-200 year shock would be of similar 
magnitude to that modelled by Swiss Re for South Africa (i.e. 2.5 per thousand). It should be 
emphasised, therefore, that the output of the model is obtained with reference to the Swiss Re 
paper and is not an independent verification of the Swiss Re result.

3.6.15	 While the simplified “frequency and severity” approach does produce a 
similarly shaped distribution of results to the Swiss Re model, the lognormal assumption 
does not fully replicate the more complex model. For example, when the parameter is chosen 
to give a similar 1-in-200 year result, the 1-in-400 year mortality shock is approximately 3.7 
for this model compared to 4.5 for the Swiss Re model.

3.6.16	O ther models: outside of South Africa
3.6.16.1 The models discussed below typically consider a very limited number of 

scenarios, without attaching probabilities to these scenarios. While this may be helpful to 
establish what a “most-likely scenario” or “worst-case scenario” pandemic might look like, 
neither of those are necessarily of much use in deciding what a 1-in-200 year scenario would 
look like—other than to provide some upper and lower bounds.
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3.6.16.2	 RMS42 investigates the likely capital requirements for a UK insurer under 
Solvency II. The catastrophe mortality rate arising from infectious diseases was calculated 
to be 0.9 per thousand for a typical insurer. Sensitivity analysis based on varying company 
characteristics “within plausible ranges”, resulted in the figure ranging from 0.5 to 1.5 per 
thousand.

3.6.16.3	 The Society of Actuaries (Toole, unpublished) investigated the potential 
effects of an influenza pandemic on US insurers. They considered a moderate scenario 
(comparable to 1957) and a severe scenario (comparable to 1918). The excess deaths in the 
general population were taken to be 0.7 per thousand and 6.5 per thousand, respectively, 
which were the observed historical rates. It was estimated that the excess deaths for the 
insured population would be 0.4 and 5.0, respectively, per thousand.

3.6.16.4	 Moody’s43 also considered a moderate (“1957/1968-like”) scenario and 
a severe (“1918-like”) scenario, but they allowed for the fact that “a virulent 1918-type 
influenza would not be as deadly (today) as it was in 1918”. The estimated excess deaths 
for US insurers were 0.5 and 2.0, respectively, per thousand. Standard & Poor’s44 also 
modelled two scenarios, coming up with estimates of 0.625 and 1.5 for the excess mortality 
per thousand.

3.6.17	O ther models: South Africa
3.6.17.1	 Three papers consider the potential impact of an avian flu pandemic in this 

country, using a multiple-state Markov chain approach.
3.6.17.2	 Stipp et al. (unpublished) split the population into 5-year age categories as 

well as by gender, province, AIDS status and rural/urban status for modelling purposes. They 
modelled a mild scenario, a base (severe) scenario, an alternative scenario (the base scenario 
adjusted to allow for the fact that there is a finite limit on the number of general ward and ICU 
hospital beds in the country) and a worst-case scenario (in which the mortality by age was 
assumed to follow a similar pattern to the 1918 pandemic, with significant deaths at younger 
ages). The excess mortality rates (per thousand) estimated for the different scenarios were:
		  Mild: 1.3    Base: 15.0      Alternative: 21.0    Worst case: 25.0.

3.6.17.3	 The Stipp et al. model was the underlying model used by Dreyer, Kritzinger 
& de Decker (unpublished) in a paper which sought to assess the potential impact of a 
pandemic on the life insurance industry in South Africa.

3.6.17.4	 McLaren & Lewis (unpublished) also split the population into 5-year age 
bands and by gender, but unlike Stipp et al. (op. cit.) they then used HIV status (not AIDS 
status) and Living Standard Measures (LSM) categories (not province or rural/urban status) 
to further differentiate the population. In addition to estimating the demographic impact, this 
paper looked at the possible financial cost of a pandemic for the South African life insurance 

42	Mortality-driven risks: Calculating capital requirements for Solvency II (White Paper), supra
43	Bird Flu Risk for U.S. Life Insurers: A Tail Event. Moody’s Investors Service. April 2007.
44	Determining the Insurance Ramifications of a Possible Pandemic. 2005. Proprietary research paper.



SAAJ 15 (2015)

CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM | 73

industry in the form of excess claims (for each of individual life, group life and funeral 
cover policies). Two main scenarios were modelled (one equivalent to Asian influenza and 
one equivalent to Spanish influenza), with the effect of HIV and of mortality improvements 
since the time of those pandemics each being quantified under a small number of different 
assumption sets. The excess mortality (per thousand) under the moderate (Asian) scenario 
was modelled to be:
		  Base: 1.0 With HIV: 1.0–1.1 With mortality improvements: 0.7–0.9

The excess mortality (per thousand) under the severe (Spanish) scenario was modelled to be:
		  Base: 8.6 With HIV: 9.2–10.1 With mortality improvements: 6.7–7.6

3.6.18	 Experts are unable to predict with any degree of certainty how severe the 
next pandemic might be, which leads Broekhoven et al. (unpublished) to the conclusion that 
the only possibility is to consider ‘what-if ’ scenarios. Historical pandemics are then obvious 
choices for starting points, as illustrated by the models discussed above, but pandemics have 
been characterised by a widely varying number of deaths (Dawood, Iuliano & Reed, 2012).

3.6.19	 The ECDC (unpublished b) state that it is impossible to predict the number 
of people that might be infected by the next pandemic, but assume a 30% population infection 
rate in their pandemic severity index. Infectiousness (which affects the number made ill) and 
lethality (or virulence) together determine the number of pandemic deaths, and for a severe 
pandemic the virus needs to be both fast spreading and highly lethal.

3.6.20	 Different countries might well be affected differently. Dawood, Iuliano & 
Reed (op. cit.) say that regional or country differences could be due to differences in access 
to and quality of healthcare, presence of malnutrition or underlying medical conditions, 
age profile of the population and the use or availability of vaccines. They further state that 
estimates from previous pandemics indicate that mortality rates vary significantly between 
countries, quoting a study showing that excess seasonal influenza mortality (for those 65 and 
older) is at least three times higher in South Africa than in the USA.

3.6.21	 There are certain factors45 that would make a modern repeat of the 1918 
pandemic less severe: RMS46 suggests a healthier and better informed population, with 
modern treatments more readily available, as mitigating factors. However, other modern 
developments could make a current pandemic more severe. International travel is faster and 
populations more dense, especially in cities, which could hasten the spread of an emerging 
virus. RMS47 concluded that mortality rates would be lower than in 1918. Broekhoven et 
al. (op. cit.) estimate the probability of a pandemic of 1918’s severity being less than 1-in-
400 years. Moody’s48 state that “some experts would argue that the influenza of 1918 is the 
worst pandemic in terms of virulence over the past 500 years, making it a 1-in-500-year 

45	See Lloyd’s Emerging Risks Team Report, supra, for a more comprehensive list of factors, p 8.
46	Mortality-driven risks: Calculating capital requirements for Solvency II (White Paper), supra.
47	RMS (2013). Managing influenza pandemic risk. https://support.rms.com/ /Publications/Influenza_

Pandemic_Risk.pdf, retrieved 10 February 2013
48	Bird Flu Risk for U.S. Life Insurers, supra.
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event”. Swiss Re (op. cit.) go even further, suggesting that “the annual likelihood of an event 
resulting in a general population mortality rate equivalent to 1918 is about 1 in 3000”.

3.6.22	 The SAM Pillar 1 catastrophe shock allows for excess mortality varying 
from 1.5 per thousand to 3.6 per thousand, depending on the underlying mortality of the 
insured lives. This raises the question of the appropriateness of assuming that a pandemic can 
have such different effects on different sub-populations in the same country. Most pandemic 
models allow for different excess death rates for different age groups. To the extent that it 
is those age groups with a higher underlying mortality rate, for example, new-borns and the 
elderly, that will be worst affected by a pandemic, it is sensible to suggest that the shock 
should increase as underlying mortality increases.

3.6.23	 Both of the South African models mentioned in section 3.6.17 make 
explicit allowance for either HIV-positive or AIDS-sick status, on the assumption that the 
excess mortality as a result of a flu pandemic will be higher for this sub-population than 
for the general population. Research suggests that seasonal flu death rates are significantly 
higher for those suffering from AIDS (Lin & Nichol, 2001).

3.6.24	 It is argued by Swiss Re (op. cit.) and Toole (op. cit.) that the excess mor-
tality for the insured population (of a given age) is likely to be lower than that for the general 
population, as a result of the selection effect of underwriting (healthier lives, with fewer 
chronic illnesses) and the socio-economic effect (those who take out insurance are likely 
to have a higher standard of living, perhaps with better nutrition, access to information and 
access to medical care). The same arguments could presumably be applied to different types 
of insurance policies, since the level of underwriting and the average living standard of 
policyholders would vary between individual life, group life and funeral cover policies.

3.6.25	 As a result of the cytokine storm effect, the excess mortality arising from 
the 1918 pandemic did not follow the usual “U-shape” (with most of the deaths being at 
very young or older ages) but rather a “W-shape” with the additional spike arising from 
significant deaths in the 20–30-year-old bracket. It has been noted that one of “the most 
disturbing aspects of the 1918 pandemic” was that it “showed an affinity for young, healthy 
lungs”. (Toole, op. cit.: 17) If this were to be true of a future severe pandemic, it could mean 
that the pandemic hits those with lower underlying mortality even harder than the rest of 
the population. The Swiss Re model (op. cit.: 65) bears this out in that for the 1-in-400 year 
scenario the age bracket with the heaviest mortality is the 25–29 year old bracket.

3.7	 Industrial
3.7.1	 Many people working in a concentrated area, often under dangerous 

conditions, can lead to a large number of deaths from the same incident or peril, for example 
the April 2013 collapse of a garment factory in Bangladesh caused over 1000 deaths, hence 
the inclusion of industrial accidents as a possible life catastrophe risk. Note that the large 
accumulation of risk for an insurer providing group life cover to the workers in a single 
factory is not fully captured by the methodology adopted in this paper.

3.7.2	 The world in general is seeing a declining number of deaths from industrial 
accidents. A report from the Organisation for Economic Co-Operation and Development 
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(OECD) (2013) lists three main reasons: medical advances offering better treatment to 
those involved in an accident; secondly, a change in industry mix from secondary industry 
to the tertiary sector; thirdly, automation of processes—making intervention by humans in 
otherwise dangerous activities unnecessary.

3.7.3	 Woo (2011: 49) recognises this progressive improvement in industrial 
safety standards, but says there is still opportunity for catastrophes, even in the most advanced 
nations. Woo cites human error as one of the most significant contributors to industrial 
risk. He believes there are latent factors which are conducive to an accident, such as lax 
corporate culture, organisational processes or risk management procedures—stating that 
most investigations of past accidents reveal that had one of these latent factors not existed, 
the accident being investigated may well not have occurred.

3.7.4	 According to the International Labour Organisation (ILO), South 
Africa’s occupational fatality rate is about 20 per 100 000 people per annum.49 Assuming 
8 million employed, this equates to 1600 people. Whilst this is a large number, it is not as 
a result of a single event and thus cannot be considered a catastrophe using our definition. 
Recall that we are looking at large accidents, resulting in many deaths, rather than the 
aggregate deaths from a large number of independent events. There have not been many 
large industrial accidents in South Africa to date. However, the potential for disaster is 
evident from worldwide data.

3.7.5	 To complement direct data from South Africa, mining and industrial 
accidents from Swiss RE’s Sigma reports50 from 2004 to 2013 have been included. The 
data obtained for industrial accidents were under the ‘major fires and explosions’ section. A 
good indicator of the completeness of the report is that Sigma included the Paarl printing fire 
accident in 2009, which resulted in only nine deaths.

3.7.6	 The high frequency and severity of accidents in countries such as China, 
Brazil and India may lead one to think that using data from these countries is not relevant to 
South Africa. However, Baskin (2007) produced a table showing that South Africa had the 
highest industrial fatality rate per 100 000 employees compared to any of the BRIC countries. 
Thus, any industrial death data from China, India, Brazil or Russia may be considered relevant 
for estimating accident severity.

3.7.7	 There have been 172 large industrial accidents around the world over the 
last 10 years. Five of these occurred in South Africa, which gives a frequency estimate of 
around 0.5 accidents per annum.

3.7.8	 A study done by Hamalainen, Takala & Saarela (2006) shows that all the 
key emerging markets have high occupational fatality (and accident) rates compared to more 
developed economies. They state that this is due to a combination of reasons: a lot of work 
still being undertaken in construction and resources (particularly high-risk sectors); weak 

49	International Labour Organisation (2005). Safety in numbers: pointers for global safety culture at 
work. www.ilo.org/public/english/region/eurpro/moscow/areas/safety/docs/safety_in_numbers_
en.pdf, retrieved 18 September 2013.

50	Swiss RE Sigma: Natural catastrophes and man-made disasters. Reports 2004–2013. 
http://media.swissre.com/documents, retrieved 21 March 2013.
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enforcement of legislation; and finally low penalties or compensation for victims’ families. A 
Burr distribution fitted the data the best according to the Kolmogorov–Smirnov test (p-value 
of 0.127).

3.8	 Mining
3.8.1	 The National Disaster Management Council (NDMC)51 states that South 

Africa’s deep-level gold mines are among the most dangerous work environments in the 
world, with the death toll this century being estimated between 69 000 and 100 000. They list 
rock falls (the gold is reached by blasting), methane gas explosions and fire as the main death 
hazards.

3.8.2	 Mining accidents have been separated as an event type on their own because 
mining is such a large industry in South Africa that the frequency of mining accidents alone is 
still relatively high. Also, an insurer will know whether or not they have exposure to people 
working in mines (for instance by a group life arrangement). This would determine whether 
simulated mining deaths should contribute at all toward the life catastrophe shock.

3.8.3	 Historically, the largest industrial disasters in South Africa have occurred 
in the mining sector. In particular, the Coalbrook accident in 1960, due to a partial mine 
collapse and methane explosion, took 437 lives (Van der Merwe, 2006). However, this event 
is not included as a data point, due to improved mining safety standards (NDMC),52 and 
improvements in technology over time. There has been a movement toward improved mine 
safety and an increased sense of corporate responsibility, with the government having set out 
new mining safety regulations (DME).53

3.8.4	 The Sigma reports show only two mining events leading to multiple deaths 
in South Africa from 2003 to 2012. Further investigation was deemed necessary, as this 
figure appeared to be too low. Two more events resulting in five or more deaths were found 
over the period of interest (2003–2012), bringing the total events to four over 10 years.54 
The authors suspect that there may have been more mining incidents; but mining companies 
would presumably not wish to encourage news reporting of deaths and national statistics 
are also not readily available. For instance, the website of the South African Department 
of Minerals and Resources has an Accident Statistics section, but the page has been ‘under 
construction’ for at least two years at the time of writing.

3.8.5	 Swiss RE’s annual Sigma reports were used to list all mining accidents 
globally since 2003. The vast majority of these occurred in China, and the largest peril was 
gas explosions (at least half of the events). Note that the death counts from these global 
mining accidents are only used to fit a distribution to the number of deaths occurring in a 

51	National Disaster Management Centre: Mine disasters. 
www.ndmc.gov.za/Hazards/Natural/OtherDisasters/MineDisasters.aspx, retrieved 9 April 2013.

52	Ibid.
53	Department of Minerals and Energy: National nuclear disaster management plan. www.info.gov.za/

view/DownloadFileAction?id=124577, retrieved 18 July 2013.
54	The Marikana and other strikes were not classified as mining accidents; they would fall under civil 

unrest which is not included in this report.
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typical mining accident (not for the frequency estimate). This gives a better idea as to the 
shape of the curve, especially the tail of interest, than would a fit to the scarce South African 
data. A four-parameter Burr distribution fitted the data the best, with a p-value of 0.21 on the 
Kolmogorov–Smirnov test.

3.9	 Road and Rail
3.9.1	 Even though South Africa experiences close to 14 000 road deaths 

annually,55 this in itself is not a catastrophe in a SAM context. Catastrophe risk arises from 
single events that lead to multiple deaths. For example, in the last 15 years there was one 
accident with 51 deaths. This leads one to consider what the 1-in-200 year scenario might 
look like. Consider a full capacity train with multiple carriages (up to 800 passengers) hitting 
a large bus (up to 100 passengers) on a crossing and derailing—an event such as this is within 
the realm of possibility.

3.9.2	 Notable past events in South Africa include a commuter train with 800 
passengers derailing near Durban on 9 March 1994. Reports on the death toll vary between 
47 and 63 people. Notable bus accidents include the bus which was driven into a reservoir in 
Bethlehem on 1 May 2003, resulting in 51 deaths by drowning (Swiss RE: Sigma, 2004),56 
and the bus that drove over a bridge into the Westdene Dam on 27 March 1985 causing 42 
children to drown.57

3.9.3	 An extensive search was carried out for the most severe South African trans-
port accidents. Unfortunately, whilst Arrive Alive58 or other organisations keeping national 
statistics report total mortality figures on South African roads for a given year, the data are 
not broken down into separate events, so these figures are not helpful. Instead, events were 
investigated one by one, with newspaper articles being the main source. Where possible, Sigma 
reports were used to verify the death data. There were sufficient South African events to use 
local-only data to estimate frequency and severity of road deaths and rail deaths, respectively. 
Road and rail accidents were investigated as separate events. The severity densities will show 
that they represent different distributions. Historically, severe rail accidents have occurred less 
frequently.

3.9.4	 On average, there were two reported road events per annum since 1997 with 
five or more deaths. This may appear low; note, however, that the average deaths per accident 
from these events was close to 17, which may indicate that only very severe accidents tend to 
be reported in newspaper articles.

3.9.5	 Historically, a severe rail event has occurred on average every four years 
since 1994. A Poisson parameter of 0.25 was used.

3.9.6	 A generalised Pareto distribution best fitted the road severity data, with a 
p-value of 0.89 on the Kolmogorov–Smirnov test.

55	Arrive Alive (2009). Road Traffic Report for the Calendar Year 2009. www.arrivealive.co.za/
documents/Year_2009_-_Road_Traffic_Report_-_V2.pdf, retrieved 14 August 2013.

56	Swiss RE Sigma: Natural catastrophes and man-made disasters. Reports 2004–2013, supra.
57	www.westdene1985.co.za, retrieved 22 October 2015. 
58	Arrive Alive (2009), supra.
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3.9.7	 A Cauchy distribution best fitted the rail severity data, with a p-value of 
0.98 on the Kolmogorov–Smirnov test.

3.10	 Commercial Airliners
3.10.1	 A commercial airliner crashing with many insured lives on board would 

certainly put stress on an insurer’s reserves. A full-scale crash is at the back of many people’s 
minds when travelling by air, perhaps because an airliner crash is such a dramatic event, 
attracting a great deal of media attention, and not quickly forgotten by the public. This part 
of the research investigates historical frequencies and potential severities for a commercial 
airliner crash to determine how much of a life catastrophe risk this poses for a life insurer.

3.10.2	 Past South African events include the 1987 flight SAA 295 Helderberg 
crash. The flight took off from Taiwan but, due to multiple mechanical failures, it crashed 
into the Indian Ocean just before reaching Mauritius, with the loss of 159 lives. There is still 
ongoing controversy about the ‘true’ circumstances of the loss (Young, 2007).

3.10.3	 This paper considers relatively recent airline data. Although more data are 
gained by using a longer period, results become less relevant in light of modern air travel 
safety conditions. For example, the Boeing Statistical Summary of Commercial Jet Airplane 
Accidents Worldwide Operations (1959–2011)59 shows a phenomenal improvement in airline 
safety (in terms of accident rates). The 1960 fatality rate was around 35 fatal accidents per 
million departures compared to the 2010 rate of around 1 only. It is also generally agreed that 
the 1950s and 1960s were “not the best period for flight safety when taken in a worldwide 
context” (Young, op. cit.).

3.10.4	 Boeing lists their fatal accident rate for scheduled commercial passenger 
operations departures (averaged over 2002–2011 and 174.2 million departures) as 0.34 fatal 
accidents per 1 million departures (i.e. 60 fatal accidents). These figures were based on 
government reports. However, deaths from terrorist activity were excluded (for example, 
the events of 11 September 2001). Including the lives lost in the four “9/11” plane crashes 
increases the fatal accident rate to approximately 0.367 fatal accidents per 1 million departures. 
This figure was used as a baseline estimate for accidents involving planes departing from or 
landing in a South African location. Since this report is interested in loss of South African 
lives, the problem then is to estimate the number of departures from South African airports 
each year. The major drivers of this figure are OR Tambo, Cape Town International and King 
Shaka (KS) airports, with the remaining smaller airports’ total movements roughly equalling 
KS. Combined, these airports experience an estimated 200 000 commercial departures per 
year.60 This leads to a rough estimate of a frequency of fatal accidents per annum departing 
from a South African airport as 0.367*(200 000/1 000 000) = 0.0735 or one fatal accident 
approximately every 14 years.

59	www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf, retrieved 21 July 
2013.

60	Airports Company of South Africa. 2013. Archives. www.acsa.co.za/home.asp?pid=100, retrieved 
9 August 2013.
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3.10.5	 Assuming SAA’s recent accident frequency history is a better representation 
of risk in South Africa, an estimate of SAA’s fatal accident frequency was made. SAA has, in 
its 73-year history, suffered 22 serious accidents, 11 of which were ‘total hull loss’ (Young, 
op. cit.). In light of the aforementioned safety improvements, only the period since 1968 (the 
date of the last major crash prior to the 1987 Helderberg incident) was used as the exposure 
period. A crude estimate based on this 45-year period (1968–2013) is 0.044 incidents per 
annum or one every 22.5 years.

3.10.6	 The estimated frequency based on Boeing’s experience is more credible 
due to greater exposure, and hence the estimate of 0.0735 accidents per year was used. A 
Bernoulli distribution with parameter 0.0735 was chosen to simulate whether or not an airline 
incident occurred.

3.10.7	 To estimate severity, the types of airliner in the South African Airways 
(SAA) current fleet were investigated. The seating capacity of each airliner was of most 
interest when estimating potential casualties should an accident occur. Drawing an airliner 
capacity at random in the model’s simulations from this fleet assumes that SAA’s fleet is 
a good proxy for all flights departing domestically and internationally from South African 
airports.

3.10.8	 Whilst the number of seats on board an airliner is a good indication of the 
maximum number of casualties, the actual number of casualties is likely to be lower. The US 
Department of Transportation61 provides the mean occupancy rate for US flights as 82.52%. 
Assuming this figure for South Africa, the model then assumes a normal distribution centred 
around this figure (limited to between 0 and 100%), with an assumed 10% standard deviation. 
However, not everyone dies in a crash that leads to fatalities. 37% of accidents take place 
on final descent and landing,62 so one can envisage a landing gone wrong causing a high 
number of fatalities but not killing everyone on board. In fact, the Aviation Safety Network63 
did analysis on previous hull loss crash data and found a fatality rate of 76.1% of those on 
board. In addition, deaths outside the plane are also considered. Corresponding to Boeing’s 
4 547 on-board fatalities from 2002–2011, there were 214 (~5%) external fatalities. Each on-
board death toll simulated is thus increased by 5% to allow for this. The resulting (simulated) 
severity distribution displays a bimodal distribution of death counts for all accidents. The two 
peaks are due to the composition of SAA’s fleet; one can almost draw a line between ‘small’ 
or ‘large’ airliner. The normal curve around these two peaks is as a result of the assumed 
normal occupancy distribution.

3.10.9	 The model used is based on SAA’s fleet, and the annual number of 
departures from South African airports. In summary, for a given year, the model:
–– simulates whether an event occurred or not, using the previously derived frequency;

61	Bureau of Transportation Statistics: Load factor (passenger-miles as a proportion of available seat-
miles in percent (%)). www.transtats.bts.gov/Data_Elements.aspx?Data=5, retrieved 16 April 2013.

62	Boeing. Statistical summary of commercial jet airplane accidents worldwide operations 1959–2011. 
www.boeing.com/news/techissues/pdf/statsum.pdf, retrieved 21 July 2013.

63	Aviation Safety Network: Boeing 747 statistics. http://aviation-afety.net/database/type/type-stat.
php?type=104, retrieved 22 July 2013.
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–– given an event, randomly chooses an airliner from the SAA fleet to determine the number 
of seats;

–– draws an occupancy rate from the assumed normal distribution (capped at 100%), with 
mean 82.52%;

–– assumes a fatality rate of 76.1% of those on board (Aviation Safety Network64);
–– adds on 5% of that number as external fatalities; and
–– returns the total number of deaths (or zero if no event occurred).

3.11	 Nuclear Accidents
3.11.1	 Africa’s only nuclear power plant, Koeberg, lies around 26 kilometres 

north of the Cape Town CBD. The city has been expanding rapidly, so that close to 300 000 
people are expected to live within a 16-kilometre radius of Koeberg by 2015 (Rontiris & 
Crous, unpublished).

3.11.2	 Nuclear reactors operate at extremely high temperatures, and in an attempt 
to regulate the power output, or in the event of an emergency shutdown, a large volume of 
water is needed to cool down the reactor. If this water is not available, it can lead to core 
damage or meltdown. The following events are seen as the most likely causes or triggers of 
loss of coolant (see for example USNRC65; Cohen, 1990): loss of electric power, burst pipes, 
seismic events or human error.

3.11.3	 For Koeberg in particular, a threat to the station is loss of sea water cooling, 
so the addition of a large backup water cooling tower is being considered (Koeberg Public 
Safety Information Forum).66 Another threat is seismic activity. Several small earthquakes 
have been recorded from the Milnerton fault, the most recent being in May 2009. Koeberg has 
been built to withstand a nuclear event of 7 Richter—around 9 M.67 Aon Benfield68 estimate 
the upper limit earthquake for this area as 6.87 M. Cohen (op. cit.) provides a summary: “All 
of these accident scenarios lead to a loss of water. The chain reaction cannot go on without 
water, so it is shut down, but one must still worry about heat from radioactivity causing the 
fuel to melt. This can only be prevented if water cooling is very rapidly restored to the reactor 
core (where the fuel is located).”

3.11.4	 Nuclear reactors are sealed inside a very robust structure known as the 
containment—more than a metre wide of cement reinforced by thick steel rods. Cohen (op. 
cit.) describes the dual functionality of the containment. Firstly, it protects against external 
forces, such as an airplane flying into it or an explosive device detonated against it; secondly, 

64	Aviation Safety Network: Boeing 747 statistics, supra
65	United States Nuclear Regulatory Commission (USNRC): Severe accident risks: An assessment for 

five US nuclear power plants (1990). www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1150/
v1, retrieved 8 September 2013.

66	Koeberg Public Safety Information Forum (2012). Minutes of the Koeberg public safety information 
forum (PSIF), 27 September 2012. www.nnr.co.za/wp-content/ uploads/2011/07/PSIF-held-on-27-
September-2012-at-Bulk-Stores-6.pdf, retrieved 18 July 2013.

67	Ibid.
68	Aon Benfield, supra.
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in the case of a meltdown the function of the containment is to hold or ‘contain’ the radioactive 
material. An accident would involve the containment being breached (an unlikely scenario, 
see 3.11.9 below) rather than a more publicly feared ‘mushroom explosion’. Technology 
today is such that an explosion is next to impossible with current safety standards; for 
example, the modifications to Koeberg over the last 10 years have reduced the Core Damage 
Frequency (the likelihood of the core being damaged in an accident) by a factor of about 
ten.69 The worst-case feasible scenario is what is known as a core meltdown, resulting in the 
release of radioactive material: “A very serious emergency at Koeberg could, at worst, result 
in a release of radioactive material. This radioactive material would be blown downwind 
from the station and dispersed” (Eskom Emergency Plan70).

3.11.5	 Deaths are more likely to result from radiation poisoning rather than 
from an explosion. The Department of Minerals and Energy (DME)71 classifies radiation 
exposure risks into three time periods: the early phase, where radioactive cloud is the risk; 
the intermediate phase—deposited radioactivity; and the late phase—radioactivity in food 
and water. This research only considers deaths in the early phase, which would contribute to 
a mortality shock over one year. In their severe accident analysis report for US nuclear power 
plants, the USNRC72 also differentiates between the number of early fatalities “expected to 
occur within one year of the accident and the latent cancer fatalities expected to occur over 
the lifetime of the exposed individuals.”

3.11.6	C hernobyl
A city in Ukraine, Chernobyl, is the site of one of the world’s worst nuclear disasters. 

On 26 April 1986, two explosions at the plant led to the core experiencing a partial meltdown. 
The disaster was the result of unauthorised tests being run while the plant’s cooling system 
was inoperative. The meltdown emitted large amounts of radioactivity into the atmosphere, 
and trace amounts were picked up as far afield as Western Europe and North America. 
According to The Hutchinson Encyclopaedia (2013), the only immediate deaths were the 
31 workers at the plant itself, dying of acute radiation poisoning. However, it is estimated 
that an additional 20 000 to 40 000 cancer deaths will be attributable to this disaster within 
about 60 years from 1986.

3.11.7	T hree Mile Island
Three Mile Island was the site of a nuclear power plant near Harrisburg, Pennsylvania 

in the United States. In March 1979, a “series of mechanical problems, human errors and poor 
decisions” led to a partial meltdown (Chambers Dictionary of World History, 2005). There 

69	Koeberg Public Safety Information Forum (2012), supra
70	Koeberg Emergency Plan (EP) Calendar (2013). www.eskom.co.za/Whatweredoing//

ElectricityGeneration/KoebergNuclearPowerStation/EmergencyPlanning/Pages/Emergency_
Planning.aspx

71	Department of Minerals and Energy RSA (2005): Understanding radioactivity & radiation in 
everyday life. www.gov.za/documents/download.php?f=107435.

72	USNRC: Severe accident risks, supra.
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was no threat to the containment (Cohen, op. cit.), but the event still released dangerous 
radioactivity. Nobody was immediately killed, but the event cast a shadow on the use of 
nuclear energy as an alternative power source.

3.11.8	 Fukushima
On 11 March 2011, a magnitude 9 earthquake occurred off the coast of Japan. This led 

to a tsunami, which subsequently flooded the Fukushima nuclear power plant with seawater. 
Equipment failure led to loss of coolant, and partial nuclear meltdown in three of the six 
reactors, leading to a release of radioactivity. The accident caused no immediate deaths, and 
even the most concentrated areas received very low doses of radiation, so very few cancer 
deaths are expected as a result (WHO, unpublished b).

3.11.9	 The United States Nuclear Regulatory Commission (USNRC)73 has 
general guidelines for core damage frequencies allowable for various degrees of damage. 
According to the USNRC, the “large early release frequency (LERF)” is a good surrogate 
for early fatality risk. Their maximum allowable annual frequency is 10–5, or once every 
100 000 years. In his book The Nuclear Energy Option (1990), physicist Bernard L. Cohen 
neatly summarised two ends of the spectrum of frequency estimates. First, a pro-nuclear 
estimate of the probability of core damage by the USNRC called the “Reactor Safety Study” 
(RSS). Here they estimate a reactor meltdown may be expected around once every 20 000 
years of reactor operation. Second, an anti-nuclear group called the Union of Concerned 
Scientists (UCS) responded with an estimate of one meltdown every 2 000 years, a tenfold 
increase in frequency. An exposure analysis based on available information shows that the 
worldwide experience base of nuclear energy was approximately 10 000 in-service reactor-
years in 2003/4 (Encyclopaedia of Energy, 2004). With approximately 440 nuclear power 
plants in the world, this figure will have risen to approximately 14 000 in-service reactor 
years by 2014. The three historical worldwide core damage events over this exposure number 
yield an estimated frequency of 1/4666 accidents per in-service reactor year. This frequency 
will be used in the model.

3.11.10	 A meltdown or core damage does not necessarily imply disaster. The 
containment vessel of thick concrete with supporting steel would still need to be breached, 
and is expected to maintain its integrity for a long time—so in most cases the fatalities should 
be zero (Cohen, op. cit.). Eskom has a warning and evacuation plan to reduce human exposure 
to radiation, should a nuclear event take place. Eskom notes that the population within a 5 km 
radius is the most at risk, but “it is highly unlikely that the entire area within the 16 km radius 
surrounding Koeberg will be affected by a release of radioactive material during a general 
emergency. The radioactive material would travel downwind from the power station”.74 To 
mitigate the effects of a disaster and allow swift evacuation, systems are in place to control 

73	Quantitative guidelines from the framework for risk informing (2002, 10 CHR part 50). 
http://pbadupws.nrc.gov/docs/ML0221/ML022120663.pdf, retrieved 18 July 2013.

74	Koeberg Emergency Plan (EP) Calendar 2013, supra.
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the population density around Koeberg. For example, no development that would lead to a 
population increase is permitted in the 5 km radius zone, and this zone must be capable of being 
evacuated within four hours; whilst development in the 5–16 km zone is permitted, provided 
compliance with the 16-hour evacuation plan can be shown (Jones et al., unpublished).

3.11.11	 For the possible outcomes of a core meltdown, the reactor safety study 
estimates given by Cohen (op. cit.) were used. Hence, it was assumed that in 1 out of 5 melt
downs there would be over 1000 immediate deaths, in 1 out of 100 there would be over 
10 000 deaths and 1 in 100 000 meltdowns there would be approximately 50 000 deaths. This 
assumes that the population density around Koeberg is in line with the average US nuclear site 
investigated in the RSS study. The modelled result was not particularly sensitive to nuclear 
frequency or severity parameters used in the model, and this point was not investigated further.

3.11.12	 A worst-case scenario is based on the projected 300 000 lives within the 
16 km zone, and assuming 50 000 of these are within the 5 km radius. A worst case scenario 
(actual breaching of containment/successful terrorist operation) would result in 75% fatality 
of the 5 km zone and 25% fatality of the 16 km zone, giving 100 000 (immediate) deaths.

4.	 MODEL RESULTS AND SENSITIVITY TESTING
4.1	 The Overall Shock

4.1.1	 The model shows that an overall 1-in-200 year life catastrophe mortality 
shock for the South African general population is 2.59 additional deaths per thousand people.

TABLE 2. Model results

Upper 99.5% value Additional
South African population deaths 137 304
Deaths per person 0.00259
Deaths per thousand 2.5906

4.1.2	 Looking at each catastrophe individually, the (independent) 1-in-200 
events are shown in Table 3.

TABLE 3. Individual shocks

Individual CAT Highest simulated 
deaths

99.5th percentile deaths
General population 

deaths Deaths per ’000

Pandemic 1 473 000 135 422 2.555
Flood 4 023 813 0.015
Industrial & mining 4 129 717 0.014
Airline 389 267 0.005
Road & rail 1 067 212 0.004
Earthquake 561 004 41 0.001
Nuclear 21 290 0 0
Tornadoes 179 22 0
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4.1.3	 The model results show that a pandemic poses the largest life catastrophe 
risk to a life insurer, with the pandemic shock on its own being 98% of the total shock. 
Consequently, the sensitivity of the total life CAT mortality shock will be largely driven by 
the sensitivity of the pandemic shock.

4.1.4	 The 2.555 per thousand figure for pandemics, while appearing low relative 
to some of the worst-case scenario projections, exceeds that of the European Standard Formula 
(1.5 per thousand). This is not necessarily unexpected, given that there are differences in 
access to healthcare, HIV prevalence and government preparedness between South Africa 
and the EU countries. In light of the above, this risk is the most important in terms of further 
work and research, the result being highly sensitive to the choice of distribution and the 
assumed annual likelihood of a future pandemic.

4.2	 Sensitivity Testing
4.2.1	 Frequency Estimates

A doubling of the frequency of all types of catastrophe other than pandemic was 
carried out. This resulted in almost no change to the final shock: it increased by around 0.8% 
(i.e. 0.02 per mille). While there could be large parameter errors in the frequencies estimated 
(due to using limited data to estimate the 1-in-200-year tail probabilities), the overall result 
is dominated by pandemic risk.

4.2.2	 Severity Estimates
The model was then tested for sensitivity to the severity estimates for other catastrophe 

types. Here, the severity for all catastrophes other than pandemics was doubled by multiplying 
each death figure drawn from the appropriate distribution by two. Again, the life CAT shock 
showed almost no change, increasing by around 1% (i.e. 0.03 per mille).

4.2.3	P andemic Parameter Sensitivity
Table 4 summarises the results of multiple scenarios used to determine the sensitivity 

of the overall shock to the assumptions underlying the pandemic section.

TABLE 4. Influenza pandemic parameter sensitivities

Scenario Effect on shock Comment
Doubled the assumed pandemic frequency Increased by ~ 43% to 3.7 Significantly sensitive

Increased mean of lognormal distribution for 
severity by 50%, by changing the spread 
parameter

Increased by ~ 47% to 3.8 Very sensitive

Changed to an exponential distribution for 
severity, with the same mean

Increased by ~8% to 2.8 Moderately sensitive

4.2.4	 While the above sensitivities were based on a doubling of parameters, it 
must be emphasised that the level of parameter uncertainty is very high, and that the estimates 
may well be out by multiples in the tail. Apart from scarcity of data in the tail, there is the 
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additional uncertainty of applying past data to future projections—if the underlying risk 
changes over time, historical data are of little relevance.

5.	 SUMMARY

5.1	 SAM requires the study of effects of various shocks on a South African insurer’s 
business. This research calculated a life catastrophe shock for a South African insurer with an 
insured population with similar risk profile and geographic spread as the national population, 
the shock being defined as the additional deaths per thousand people due to an extreme event. 
The application of this excess mortality estimate to determine a company’s solvency capital 
requirement is beyond the scope of this paper.

5.2	 A number of potential catastrophe events were investigated. For the event types 
deemed relevant to South Africa, the annual frequency of occurrence and the potential death 
counts per occurrence were estimated. These estimates were derived from historical data, 
using both South African-specific and, in some cases, global data.

5.3	 Once these estimates for the frequencies and severities had been derived, potential 
outcomes for future years were simulated using Monte Carlo techniques. Identifying the 
1-in-200 year shock involved determining the 99.5th percentile of these possible outcomes.

6.	 CONCLUSION

6.1	 The model produced a life catastrophe mortality shock of 2.6 additional deaths per 
thousand lives. For an insurer with an insured population similar to the national population 
and experiencing a mortality rate similar to the national mortality rate (of 9.8 per mille75 per 
annum), the SAM Pillar 1 shock is 3.22 per mille, which is higher than the rate suggested 
above. A limitation of this study has been the exclusion of certain risks (in particular, war and 
terrorism) resulting in a potential understatement of the overall catastrophe risk.

6.2	 There may be justification for a mortality shock (in particular for pandemic risk) 
that is dependent on the socio-economic profile of the insured population and this should be 
investigated further.

6.3	 The results show that pandemic risk is by far the biggest risk. Inclusion of some of 
the risks not considered, for example, war and terrorism, would increase the weight given to 
non-pandemic risks.

75	Statistics South Africa 2011 deaths as a proportion of the 2011 census population.
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6.4	 Underlying Assumptions and Limitations
6.4.1	 Main assumptions
–– Insured lives are exposed to the same non-pandemic catastrophes as the general population, 

hence they are not more or less likely to be affected. (Insured lives may be more exposed 
to certain risks, for example, airliner, earthquake, nuclear and terrorism risks, while being 
less exposed to others, for example, flooding. Even in the insured population the risks are 
unlikely to be the same across all sums insured.)

–– The Swiss Re (op. cit.) model is the most suitable source for quantifying pandemic risk.
–– Catastrophe events are independent from each other.
–– The severity of industrial accidents, mining accidents and earthquake events in South 

Africa (given that one of these events has occurred), is from the same distribution as the 
severity observed worldwide.

6.4.2	L imitations
–– The scarcity of data for catastrophe-type events, which, by their nature are rare, limits the 

credibility of the analysis.
–– Other countries’ catastrophe data, which has been used for some of the event types, may 

be of questionable relevance for South Africa.
–– The effect of all other catastrophes is swamped by the pandemic result, which is itself 

reliant on the suitability of the Swiss Re (op. cit.) model.
–– The exclusion of certain risks (in particular, war and terrorism).

6.4.3	 Users of the model should note how sensitive the result is to the choice of 
pandemic severity. All the other catastrophe events could be ignored and the result would not 
be materially affected.

6.4.4	 This attempt at deriving the life catastrophe mortality shock is not 
particularly sophisticated. It treats observed past events as being single realisations from 
their respective, and assumed independent, distributions, and then considers the tail of this 
combined distribution. Banks (op. cit.: 68) emphasises that “catastrophe modelling is not 
an attempt to predict when a disaster might occur, but a process that allows users to create a 
meaningful distribution of future events so that associated expected and extreme loss patterns 
can be developed.”

7.	 RECOMMENDATIONS FOR FURTHER RESEARCH
The approach that was used to model catastrophes is limited in a number of ways. The 

aim of this section is to recommend areas for further research to address these shortcomings 
and to investigate alternative methods for modelling catastrophe deaths.

7.1	 Scenario-based Approach
This may be the most appropriate approach for hypothesised catastrophes which have 

not yet occurred. It involves constructing possible catastrophe scenarios, and estimating the 
potential loss of life and the proportion of those lives covered by the specific insurer for 
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each scenario. The probability for each event occurring would have to be estimated. This 
method is not as reliant on data as the distribution-fitting approach and involves a degree of 
subjective judgement.

7.2	 Generalising Catastrophes
Under this method, catastrophes are generalised into one class, with no distinction 

between event types. This is similar to a model developed by Ekheden and Hössjer (2014), 
who used the Peaks Over Threshold model. The frequency of a ‘catastrophe event’ is 
estimated, and a single severity curve for number of casualties is fitted from the pooled 
historical data.

7.3	 Permanent Total Disabilities
Taking permanent total disabilities (PTDs) into account could give a better estimate 

of the loss from an event, as a PTD often results in an accelerated death benefit. When 
modelling deaths, PTDs can be modelled as a proportion of deaths occurring, for example 
Alexander (op. cit.) reports specialists in earthquake injury as using a ratio of one death per 
three significant injuries.

7.4	 Segmenting Death Data by Income Groups
This could give a better estimate of whether the deaths were insured and, if so, the 

likely size of the sum assured. For example, the majority of historical South African flood 
deaths have been residents of informal settlements, whereas an airliner disaster is likely to 
affect a wealthier sub-section of the population. Given the same death count for the two 
catastrophe types, an insurer is likely to have more and larger claims arising from the airliner 
crash.

7.5	 Group Life Policies
Modelling group life and individual policies separately could give more accurate 

results. Group life policies can lead to an accumulation of risk in a specific area or industry, 
which could materially increase the importance of some of the catastrophe types considered, 
for example, an industrial accident. If terrorism were to be modelled, these group life policies 
pose the largest risk. This is due to the concentration of lives, usually in high-value target 
areas in urban city centres.

7.6	 War and Terrorism (incl. Nuclear and Biological Risks)
This should be included in further research. Terrorism may be one of the most 

difficult life catastrophe event types to quantify, due to the added human element. The 
method should give consideration to the current political climate as well as socio-economic 
and other relevant trends. Industry practice has been to rank potential targets by the terrorists’ 
“expected utility” (Woo, 2002). Utility may be influenced by the symbolic value of the target, 
economic damage or number of casualties.
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7.7	 Heatwaves
The inclusion of heat waves as a mass mortality event could also be warranted. 

There are several international examples through history, the most memorable being the 
2003 European heat wave. Some sources have 70 000 deaths attributed to that event (see, for 
example, Robine et al. (2008) for further information).

7.8	 Other Risks
Other risks that should be assessed include shipping disasters, arena/stadium-type 

disasters, meteorological catastrophes as well as some allowance for completely new and 
unanticipated types of catastrophes.

7.9	 Correlation between Catastrophes
This paper assumed independence between catastrophes. However, one could expect 

some positive correlation between events. For example, an earthquake giving rise to a 
tsunami that causes both mass floods and further accidents (as occurred in Fukushima in 
March 2011, when a tsunami disabled the cooling systems of nuclear reactors). The effects of 
such correlations could be investigated in further research.

ACKNOWLEDGEMENTS
We would like to thank Old Mutual and in particular Messrs R Brown, N Verster and L Wanliss for the 
initial suggestions and guidance received. We would also like to thank Mr Matthew Brinckmann from 
Ernst & Young Advisory Services for review comments received on the original paper presented at 
the 2014 ASSA Convention, as well as the anonymous reviewers for the SAAJ. The National Research 
Foundation (NRF) is hereby acknowledged for their financial assistance. The authors are solely 
responsible for the shortcomings, accuracy and conclusions of the final report.

REFERENCES
Alexander, D (2010). ‘Earthquakes’, in B Warf (ed.), Encyclopaedia of Geography, SAGE Publications, 

Inc., Thousand Oaks, CA, pp. 811–6, retrieved 5 August 2013, doi: 10.4135/9781412939591.n309
Banks, E (2005). Catastrophic risk: analysis and management. John Wiley & Sons, Hoboken, NJ
Baskin, J (unpublished). Corporate Responsibility in the Russian Federation: Recent Trends. Paper 

presented at OECD: Seminar on recent developments in Russia’s investment environment and 
policy, Helsinki, May 2007

Boslaugh, S (2008). Influenza, in Boslaugh, S.(ed.). Encyclopaedia of Epidemiology. Vol. 1:533–6. 
SAGE Publications, Thousand Oaks, CA

Broekhoven, H, Alm, E, Tuominen, T, Hellman, A & Dziworski, W (unpublished). Actuarial reflections 
on pandemic risk and its consequences. www.gcactuaries.org/documents/pandemics_web.pdf, 
retrieved 17 July 2013



SAAJ 15 (2015)

CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM | 89

Buckham, D, Wahl, J & Rose, S (2011). Executive’s Guide to Solvency II. John Wiley & Sons Hoboken, 
NJ

CEIOPS (unpublished a). CEIOPS-CP-49/09. Consultation Paper no. 49—Draft CEIOPS’ Advice 
for Level 2 Implementing Measures on Solvency II: Standard formula SCR—Article 109 c, Life 
underwriting risk.

CEIOPS (unpublished b). CEIOPS-SEC-112009. Summary of Comments on CEIOPS-CP-49/09.
CEIOPS (unpublished c). CEIOPS-DOC-42/09. CEIOPS’ Advice for Level 2 Implementing Measures 

on Solvency II: Standard formula SCR—Article 109 c, Life underwriting risk.
Chambers Dictionary of World History (2005). ‘Three Mile Island’. Chambers Harrap, London
Cohen, B (1990). The nuclear energy option. Plenum Press, New York
Coles, A (2010), ‘Flash floods’, in B Warf (ed.), Encyclopaedia of Geography, SAGE Publications, 

Inc., Thousand Oaks, CA, pp. 1124–6, retrieved 5 August 2013, doi: 10.4135/9781412939591.n435
Council of the European Parliament. 2009. Directive 2009/138/EC of the European Parliament and of 

the Council of 25 November 2009 on the taking-up and pursuit of the business of insurance and 
reinsurance (Solvency II). http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0
001:0155:EN:PDF, retrieved 17 November 2012

Davies, N & Kijko, A (2003). Seismic risk assessment: With an application to the South African 
insurance industry. South African Actuarial Journal 3, 1–28

Dawood, F, Iuliano, A & Reed, C (2012). Estimated global mortality associated with the first 12 months 
of 2009 pandemic influenza A H1N1 virus circulation: A modelling study. The Lancet Infectious 
Diseases 12(9), 687–95

De Villiers, T & Maharaj, R (1994). Human perceptions and responses to floods with specific reference 
to the 1987 flood in the Mdloti river near Durban, South Africa. Water SA 20(1), 9–13

Diers, D (2009). Stochastic modelling of catastrophe risks in internal models. German Risk and Insur-
ance Review 5(2), 1–27. www.risk-insurance.de/aufsaetze/200901/ Diers.pdf, retrieved 8 February 
2013

Dreyer, A, Kritzinger, G & de Decker, J (unpublished). Assessing the Impact of a Pandemic on the Life 
Insurance Industry in South Africa. Paper presented at the 1st IAA Life Colloquium, Stockholm, 2007

ECDC (unpublished a). European Centre for Disease Prevention and Control. Annual report on Commu-
nicable Diseases in Europe 2010. http://ecdc.europa.eu/en/publications/Publications/1011_SUR_An-
nual_Epidemiological_Report_on_Communicable_Diseases_in_Europe.pdf, retrieved 2 July 2013

ECDC (unpublished b). Q&A on influenza pandemics. http://ecdc.europa.eu/en/healthtopics/pandemic_
preparedness/basic_facts/Pages/QA_pandemic_preparedness.aspx, retrieved 2 July 2013

EIOPA (2012). DOC-12/362: Technical Specifications for the Solvency II Valuation and Solvency 
Capital Requirements Calculations (Part I). http://hb.betterregulation.com/external/Technical%20
Specifications%20for%20the%20Solvency%20II%20valuation%20and%20Solvency%20
Capital%20Requirements%20calculations%20%28Part%20I%29.pdf, retrieved 6 February 2013

Ekheden, E & Hössjer, O (2014). Pricing catastrophe risk in life (re)insurance. Scandinavian Actuarial 
Journal 2014 (4), 352–67

Encyclopaedia of Energy (2004). ‘Nuclear power: Risk analysis’. Elsevier Science & Technology, 
Oxford



SAAJ 15 (2015)

90 | CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM

Financial Services Board (2013). SA QIS3 Technical Specifications (Parts 1–6). www.fsb.co.za/
Departments/insurance/Documents/SA%20QIS3%20Technical%20Specifications%20Parts%20
1%20to%206.zip, retrieved 17 July 2014

Financial Services Board (2015). Report on the results of the 3rd South African Quantitative Impact 
Study (SA QIS3) January 2015

Goliger, AM, Milford, RV, Adam, BF & Edwards, M (1997). Inkanyamba: Tornadoes in South Africa. 
CSIR, Pretoria

Grobler, R (unpublished). A framework for modelling losses arising from natural catastrophes in South 
Africa. Unpublished masters thesis. University of Pretoria

Gunderman, R & Brown, B (2007). Pandemic influenza. Radiology 243(3): 629
Gutiérrez, E, Taucer, F, De Groeve, T, Al-Khudhairy, DHA & Zaldivar, JM (2005). Analysis of 

worldwide earthquake mortality using multivariate demographic and seismic data. American 
Journal of Epidemiology 161(12): 1151–8

Hamalainen, P, Takala, J & Saarela, K (2006). Global estimates of occupational accidents. Safety 
Science, 44(2), 137–56

Hartnady, C (unpublished). Cape Town earthquakes: review of the historical record. www.disaster.
co.za/pics/Cape_Town_quakes.pdf, retrieved 28 September 2013

Johnson, B (unpublished). Nuclear reactor risk assessment. www.whatisnuclear.com/safety/risk.html, 
retrieved 1 April 2013

Johnson, N & Mueller, J (2002). Updating the Accounts: Global Mortality of the 1918–1920 “Spanish” 
Influenza Pandemic. Bulletin of the History of Medicine, 76(1), 105–15

Jones, J, Naude, S, Van Wyngaardt, G & Marks, A (unpublished). Koeberg nuclear emergency 
plan: Traffic evacuation model. http://repository.up.ac.za/bitstream/handle/ 2263/5908/021.pdf 
?sequence=1, retrieved 7 July 2013

Kijko, A, Smit, A &Van De Coolwijk, N (2015). A scenario approach to estimate the maximum 
foreseeable loss for buildings due to an earthquake in Cape Town. South African Actuarial Journal, 
15, 1–31

Kraut, G & Richter, A (unpublished). Treatment of life catastrophe risk under the SCR standard formula 
of solvency II and the necessity of partial internal models. Munich Risk and Insurance Centre, 
Working Paper 6

Lin, JC & Nichol, KL (2001). Excess mortality due to pneumonia or influenza during influenza seasons 
among persons with acquired immunodeficiency syndrome. Archives of Internal Medicine 161(3), 
441–46

McLaren, L & Lewis, P (unpublished). Evaluating the impact of an Avian Flu epidemic in South Africa: 
What is the potential cost of excess deaths to the Life Insurance Industry? Paper presented at the 
Actuarial Society of South Africa Convention, 2006.

Montz, B & Tobin, G (2010). ‘Floods’, in B Warf (ed.), Encyclopaedia of Geography, SAGE Publications, 
Inc., Thousand Oaks, CA, pp. 1134–8, retrieved 5 August 2013, doi: 10.4135/9781412939591.n439

OECD (unpublished). Occupational accidents in OECD countries. www.oecd.org/els/emp/3888265.
pdf, retrieved 20 June 2013

Robine, J, Cheung, S, Le Roy, S, Van Oyen, H, Griffiths, C & Michel, JHF (2008). Death toll exceeded 
70 000 in Europe during the summer of 2003. Comptes Rendus Biologies 331(2), 171–8



SAAJ 15 (2015)

CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM | 91

Rontiris, H & Crous, W (unpublished). Emergency evacuation modelling for the Koeberg nuclear 
power station. www.inro.ca/en/pres_pap/asian/asi00/EMME2Asian.pdf, retrieved 18 August 2013

Schmidlin, T (2010). ‘Tornadoes’, in B Warf (ed.), Encyclopaedia of Geography, SAGE Publications, 
Inc., Thousand Oaks, CA, pp. 2852–5, retrieved 8 August 2013, doi: 10.4135/9781412939591.n1149

Singh, M, Kijko, A & Durrheim, R (2009). Seismotectonic models for South Africa: Synthesis of 
geoscientific information, problems, and the way forward. Seismological Research Letters 80(1), 74

Stipp, E, Staples, G, Hamman, C & van der Merwe, J (unpublished). The Potential Demographic 
Impact of an Avian Flu Pandemic in South Africa. Paper presented at the Actuarial Society of South 
Africa Convention, 2006

Swiss RE (unpublished). Pandemic influenza: A 21st century model for mortality shocks. http://media.
swissre.com/documents/pandemic_influenza_a_21st_century_model_en.pdf, retrieved 20 January 
2013

The Hutchinson Encyclopaedia (2013). ‘Chernobyl’. Helicon, Abington, United Kingdom
Toole, J. (unpublished). Potential Impact of Pandemic Influenza on the U.S. Life Insurance Industry. 

Society of Actuaries, May 2007
Van der Merwe, JN (2006). Beyond Coalbrook: What did we actually learn? The Journal of the Southern 

African Institute of Mining and Metallurgy 106, 857–68
Viljoen, F (1991). Caelum: ’n Geskiedenis van besondere weergebeurtenisse in Suid-Afrika, 1500–

1990. Direktoraat Weerburo, Dept. van Omgewingsake, Pretoria
World Health Organization (unpublished a). Avian influenza: Assessing the pandemic threat. http://

whqlibdoc.who.int/hq/2005/WHO_CDS_2005.29.pdf, retrieved 8 August 2013
World Health Organization (unpublished b). Preliminary dose estimation from the nuclear 

accident after the 2011 Great East Japan earthquake and tsunami. http://apps.who.int/iris/
bitstream/10665/44877/1/9789241503662_eng.pdf, retrieved 12 August 2013

World Health Organization (unpublished c). Avian influenza. www.who.int/mediacentre/factsheets/
avian_influenza/en/index.html, retrieved 2 August 2013

Woo, G (2011). Calculating catastrophe. Imperial College Press, London
Woo, G (2002). Quantitative terrorism risk assessment. Journal of Risk Finance 4(1), 7–14
Young, M (2007). A firm resolve: A history of S.A.A. accidents and incidents: 1934 to 1987. Laminar 

Publishing Associates, Durban



SAAJ 15 (2015)

92 | CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM

APPENDIX A
List of Abbreviations and/or Acronyms

CAT	 Catastrophe
CEIOPS	 Committee of European Insurance and Occupational Pensions Supervisors
DME	 Department of Minerals and Energy
DPLG	 Department of Provincial and Local Government
ECDC	 European Centre for Disease Control and Prevention
ECDF	 Empirical cumulative distribution function
EIOPA	 European Institute and Occupational Pensions Authority
EU	 European Union
FSA	 Financial Services Authority
FSB	 Financial Services Board
ILO	 International Labour Organisation
LERF	 Large early release frequency
M	 Magnitude
NMDC	 National Disaster Management Centre
OECD	 Organisation for Economic Co-Operation and Development
PDF	 Probability density function
PSIF	 Public Safety Information Forum
PTD	 Permanent total disability
QIS5	 The Fifth Quantitative Impact Study (CEIOPS)
RMS	 Risk Management Services
RSS	 Reactor Safety Study
SAA	 South African Airways
SCR	 Solvency capital requirement
UCS	 Union of Concerned Scientists
USNRC	 United States Nuclear Regulatory Commission
VaR	 Value-at-Risk
WHO	 World Health Organization
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APPENDIX B
Data

TABLE B.1. Historical South African floods since 1959

Year Deaths Area Comment
1956 7 KZN coast
1959 51 KZN South Coast
1968 11 PE
1970 15 KZN South Coast
1970 7 East London
1971 83 Eastern Cape
1971 60 KZN North Coast
1972 13 Transvaal
1973 30 Zululand Deaths from snow exposure
1974 26 Nonoti/Umvoti
1976 50 KZN Northern Tropical cyclone Danae
1976 25 KZN Coast
1977 10 North Eastern Regions
1978 26 Port St Johns Deaths mostly minors
1978 11 Pretoria
1979 17 Eastern Cape
1981 104 Laingsburg Disaster
1981 17 Port Elizabeth
1984 50 North Eastern Regions Tropical cyclone Domoina
1985 26 KZN and Eastern Transvaal
1987 388 KZN—Durban
1988 30 Central Interior Spitskop dam burst
1988 15 KZN
1988 6 Senekal
1988 6 Durban
1989 15 Lebowa
1993 12 Umfolozi River
1995 157 KZN—Pietermaritzburg
1996 66 Vaal
1997 9 KZN, EC, WC, NC
1998 7 EC Province: East London
1999 23 KZN Informal settlements
1999 7 Eastern coast/KZN
2000 83 Mozambique
2000 13 Storms River
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2001 6 Mpumalanga
2002 8 KZN
2002 6 East London
2006 7 Eastern Cape Sigma
2006 6 Taung Sigma
2007 5 Eastern Cape
2009 11 Cape Town—Cape Flats
2009 5 KZN North Coast
2011 131 Most provinces (7/9) Sigma
2011 5 KZN Sigma
2012 11 Eastern Cape
2012 6 Mpumalanga
2013 12 Limpopo

Source: Viljoen (1991); Swiss RE’s Sigma reports (2004–2013)

TABLE B.2.1. Historical South African earthquakes since 1809 (M > 5)

Year Month Day Magnitude Region
1809 12 4 6.3 Cape Town Region
1811 6 2 5.7 Cape Town 
1811 6 19 5 Cape Town 
1850 5 21 5 Grahamstown 
1857 8 14 5 Western Cape 
1870 8 3 5 Harrismith 
1899 9 13 5 Cape Town 
1908 9 26 5 Bloemfontein 
1910 10 21 5 Philipstown 
1911 11 8 5 Windhoek 
1912 2 20 6.2 Koffiefontein 
1919 10 31 6.3 Swaziland 
1921 10 9 5 Tulbagh 
1922 6 23 5 Panbult Siding, Transvaal 
1922 8 5 5 Panbult Siding, Transvaal 
1925 10 10 5 Leutwein Siding, Namibia 
1932 8 9 5 Grahamstown 
1932 12 31 6.3 Off Cape St Lucia
1936 1 12 5 Mooihoek, Swaziland 
1936 1 16 5 Fauresmith, Free State
1940 11 10 5 Tzaneen, Transvaal
1942 11 1 5.5 Port Shepstone 
1950 9 14 6 Mozambique Channel 
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1950 9 30 5.5 Namaqualand 
1952 1 27 5 Sutherland 
1952 1 27 5.3 Sutherland 
1952 1 28 5 Sutherland 
1952 1 28 5.4 Sutherland 
1952 6 9 5.5 Keetmanshoop District (Namibia)
1952 9 4 5 SWA (Namibia) 
1952 11 8 5.2 SWA (Namibia)—Botswana Border
1953 5 1 5.8 Namaqualand 
1954 2 17 5.5 Mozambique 
1955 1 20 5.5 Offshore Mozambique 
1955 5 20 5.1 Fauresmith District (Free State)
1957 4 13 5.5 Zastron District (Free State)
1963 8 27 5 Worcester–Ceres 
1964 6 9 5 Luckhoff (Free State)
1966 6 18 5 Mokhotlong (Lesotho) 
1968 1 12 5.5 Uitenhage 
1968 1 14 5 Sul Do Save Prov (Mozambique)
1969 9 11 5.2 Heidelberg 
1969 9 29 6.3 Tulbagh 
1976 12 8 5.1 Welkom gold mines
1977 3 2 5.3 S.W. Cape Province
1977 4 7 5.2 Klerksdorp gold mines
1979 2 21 5.8 N. Cape Province
1984 1 28 5.01 Klerksdorp gold mines
1985 5 8 5.22 Koffiefontein Region (Free State)
1986 10 5 5.15 Transkei 
1987 9 30 5.04 Klerksdorp gold mines
1989 9 29 5 Mandileni Region (Transkei)
1991 10 31 5 Ceres Area Cape Province
1992 12 23 5.1 Namibia 
1994 8 20 5 Southern Namibia 
1994 10 30 5.1 Free State goldmines
1994 12 31 5.1 Brandvlei Region—N. Cape
1996 9 15 5.1 Loeriefontein Region 
1999 4 22 5.1 Free State goldmines
2001 4 6 5.2 Boesmanland Area—N. Cape
2001 7 31 5 Klerksdorp gold mines
2005 3 9 5.3 Klerksdorp gold mines
2005 10 12 5.1 Klerksdorp gold mines

Source: Singh, Kijko and Durrheim (op. cit.: 74)
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TABLE B.2.2. Worldwide earthquakes since 2003 causing death or large losses, 5 ≤ M < 6

Location Year Death Toll
Turkey 2003 170
Japan 2003 0
China 2003 4
Algeria 2004 0
Pakistan 2004 24
China 2004 0
China 2004 0
China 2004 4
China 2004 0
South Africa 2005 2
Japan 2005 61
Turkey 2005 54
China 2005 13
Iran, other 2005 10
China 2006 0
Iran 2006 70
China 2006 22
Tajikistan 2006 3
Indonesia 2006 7
Congo, other 2008 40
Colombia 2008 11
China 2008 38
Afghanistan 2009 22
China 2009 1
Turkey 2010 51
Afghanistan 2010 11
Serbia 2010 2
China 2011 26
Spain 2011 9
New Zealand 2011 1
China 2011 0
Turkey 2011 40
Iran 2012 0
China 2012 0
Azerbaijan 2012 0
Italy 2012 26
Afghanistan 2012 73
China 2012 4
China 2012 81
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TABLE B.2.3. Worldwide earthquakes since 2003 causing death or large losses, 6 ≤ M < 7

Location Year Death Toll
China 2003 268
Turkey 2003 176
Algeria 2003 2 266
Kazakhstan 2003 3
China 2003 16
Greece 2003 0
China 2003 3
China 2003 3
China 2003 11
USA 2003 2
Panama 2003 2
Iran 2003 41000
Indonesia 2004 31
Morocco 2004 640
Iran 2004 35
Japan 2004 39
Iran 2005 612
USA 2006 0
Indo, other 2007 72
Japan 2007 1
China 2007 3
Japan 2007 11
Russia 2007 2
Indo, other 2007 3
China 2008 8
Greece 2008 2
Japan 2008 13
Japan 2008 1
Kyrgyzstan 2008 74
China 2008 10
Pakistan 2008 166
Costa Rica 2009 18
Italy 2009 296
Japan 2009 1
Indonesia 2009 2
Taiwan 2010 0
China 2010 2 698
New Zealand 2011 181
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Myanmar 2011 74
Uzbekistan 2011 14
India, other 2011 88
Turkey 2011 644
Peru 2011 0
Peru 2012 0
Philippines 2012 51
China 2012 0
Iran 2012 306
Myanmar 2012 26

		    Source: Swiss RE’s Sigma reports (2004–2013)

TABLE B.2.4. Worldwide earthquakes since 2003 causing death or large losses, M > 7

Location Year Death Toll
Mexico 2003 29
Japan 2003 0
Japan 2003 2
Indonesia 2004 27
Indonesia 2004 29
Indonesia, other tsunami areas 2004 280 000
Japan 2005 1
Indonesia 2005 1313
Chile 2005 11
Japan 2005 84
Peru 2005 5
Pakistan, other 2005 73 300
Russia 2006 0
Peru, other 2007 519
Indo, other 2007 23
Chile 2007 2
China 2008 69 227
Indonesia 2008 6
Indonesia 2009 2
Indonesia 2009 0
Honduras 2009 7
Indonesia 2009 74
Indonesia 2009 1 195
Haiti 2010 222 570
Chile 2010 288



SAAJ 15 (2015)

CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM | App-99

Mexico 2010 2
Indonesia 2010 17
New Zealand 2010 0
Indonesia 2010 449
Japan 2011 15 845
Mexico 2012 2
Guatemala 2012 50

	         Source: Swiss RE’s Sigma reports (2004-2013)

TABLE B.3. Historical South African tornadoes causing an accumulation of deaths

Area Year Deaths

Roodepoort 1948 7

Albertynsville 1952 24

Springs 1952 11

Mpendle 1983 9

Berea 1984 9

Utrecht 1993 6

Ficksburg Duduza 2011 1

		    Source: Goliger et al. (op. cit.)

TABLE B.4. Influenza pandemics of the 20th century

Year Strain Common Name
Lower Estimate

(deaths in 
millions)

Upper Estimate
(deaths in 
millions)

1918 H1N1 Spanish Flu 30 50

1957 H2N2 Asian Flu n/a 2

1968 H3N2 Hong Kong Flu n/a 1

      Source: World Health Organization (2005: 24–30)
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TABLE B.5. Major worldwide industrial accidents 2003–2013

Year Date Location Deaths Cause
2012 26-Jan Brazil 39 Building collapse

28-Jan Peru 20 Fire at drug rehab centre
06-Feb Pakistan 29 Gas explosion at medical factory
15-Feb Honduras 361 Fire in prison started by inmate
24-Feb Turkey 10 Fire at hydro plant under construction
28-Feb China 25 Explosion at steel plant
04-Mar Congo 286 Explosion at arms depot
07-Apr Nigeria 22 Church collapses during Easter vigil service

05-May Thailand 12 Fire at large petrochemical plant
25-Aug Venezuela 48 Explosion at large oil refinery
04-Sep India 38 Fire at fireworks factory
05-Sep Turkey 25 Explosion at military ammunition depot
11 -Sep Pakistan 21 Fire at illegal shoe factory
12-Sep Pakistan 240 Fire at garment factory
18-Sep Mexico 32 Explosion and fire at gas plant
27-Sep South Korea 5 Gas leak at chemical plant
23-Oct Taiwan 12 Fire at hospital

01-Nov Saudi Arabia 23 Fuel truck explodes, industrial buildings 
destroyed

25-Nov Bangladesh 112 Fire at garment factory
2011 12-Jun South Africa 22 Fire in care centre

11-Jul Cyprus 13 Explosion at Vasilikos power station
25-Aug Mexico 52 Arson attack at casino, fire erupts
12-Sep Kenya 76 Leaky pipeline explosion ignite fire in shanty 

town
25-Oct Libyan Arab 

Jamahiriya Sirte
100 Explosion in fuel tank

09-Dec India 89 Fire in hospital
23-Dec Columbia 19 Gas pipeline explosion
29-Dec Myanmar 17 Fire at medical warehouse

2010 04-Jan China 21 Gas pipeline leak at steel plant
07-Feb USA 6 Gas explosion at power station
25-Feb Bangladesh 21 Fire at garment factory
26-Feb China 23 Fire and explosion at fireworks factory
23-Mar India 32 Fire at multi-story house
03-Jun Bangladesh 120 Fire and explosion at electrical transformer, fire 

spreads
15-Jul Iraq 30 Fire at hotel in commercial street

01-Aug South Africa 22 Fire at retirement home
07-Aug Iraq 45 Electricity generator explodes
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2010 16-Aug China 20 Fire at illegal fireworks factory
09-Sep USA 8 Gas pipeline explosion houses destroyed
17-Sep Sri Lanka 62 Explosion at explosion depot
27-Oct Myanmar 100 Fire caused by leaking oil pipeline

15-Nov China 58 Fire at 28 storey residential building
15-Nov India 70 Collapse of 5 storey building
08-Dec Chile 83 Fire at prison during a riot
14-Dec Bangladesh 29 Fire at garment factory
19-Dec Mexico 29 Fire in oil pipeline, houses destroyed

2009 01-Jan Thailand 66 Fire at nightclub
08-Jan Pakistan 40 Fire at shanty town
28-Jan Kenya 29 Fire at supermarket
31-Jan Kenya 133 Explosion of petrol tanker
31-Jan Russia 23 Fire at nursing home
12-Apr Poland 23 Fire at homeless hostel
17-Apr South Africa 9 Fire at printing factory (Paarl)
05-Jun Mexico 48 Fire at daycare centre

02-Aug Saudi Arabia 6 Fire at residential camp close to gas plant
16-Aug Kuwait 44 Fire in wedding tent
17-Aug Russia 71 Explosion at hydroelectric power station
12-Sep Kazakhstan 39 Fire at dispensary
29-Oct India 11 Explosions and fire at oil storage depots 
04-Dec Indonesia 20 Fire at karaoke bar
05-Dec Russia 146 Fire at nightclub

2008 07-Jan South Korea 40 Explosion and fire at warehouse
31-Jan Turkey 22 Explosion at business centre
03-Feb Germany 9 Fire at apartment house 
07-Feb USA 13 Explosion at sugar refinery
15-Mar Albania 19 Explosion at ammunitions dump
26-Mar China 24 Explosion at firework disposal site
26-Apr Morocco 55 Fire at mattress factory

15-May Nigeria 100 Oil pipeline ruptured, fire and explosion, 
stampede

26-Aug China 20 Gas explosion, fire at chemical plant, building 
collapse

26-Aug China 20 Explosion at chemical plant
20-Sep China 44 Fire at nightclub causes stampede
22-Oct India 25 Explosion at firework factory
20-Dec Pakistan 12 Fire and collapse of 6 storey shopping centre
24-Dec Ukraine 27 Explosion in 5 storey apartment block
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2007 23-Feb Latvia 25 Fire at home for disabled
06-Mar Bangladesh 23 Fire in slum area
19-Mar Russia 62 Fire at nursing home
25-Mar Mozambique 117 Explosion of bombs at ammunition depot

11-May China 5 Explosion at chemical factory
09-Jun North Korea 110 Explosion of fuel pipeline
05-Jul China 25 Explosion at karaoke bar. Building collapse

13-Oct Ukraine 23 Gas explosion in residential area
19-Oct Philippines 11 Explosion at shopping mall
21-Oct China 37 Fire at shoe factory

04-Nov Russia 32 Fire at retirement home
18-Nov Saudi Arabia 40 Explosion of gas pipeline
12-Dec China 21 Fire at department store
25-Dec Nigeria 45 Explosion of oil pipeline

2006 20-Jan China 10 Explosion of a CNPC gas pipeline
29-Jan China 36 Fireworks explosion in warehouse
23-Jan Bangladesh 52 Fire at textile factory
01-Jan China 29 Explosion at explosives plant
03-Jan India 6 Fire in slum area
10-Jan India 45 Fire in trade tents at a fair
10-Jan China 33 Explosion in garage of a hospital

01-May India 15 Explosion at paper factory
07-May Thailand 8 Fire at nightclub
12-May Nigeria 200 Explosion of oil pipeline
06-Jun China 43 Fire and explosion at villagers house
28-Jul China 22 Explosion at chemical plant

28-Aug Iraq 29 Explosion and fire of oil pipeline
09-Dec Russia 46 Fire at drug and alcohol treatment centre
24-Dec Venezuela 7 Explosion of fireworks at central market
25-Dec Philippines 25 Explosion of firecrackers at department store 
26-Dec Nigeria 269 Explosion of oil pipeline

2005 06-Jan Bangladesh 23 Fire at garment factory
11-Jan China 25 Explosion at fireworks factory
14-Feb Iran 59 Fire at mosque 
23-Feb Sudan 37 Explosion at army munitions dump
02-Mar China 20 Explosive blast in home of mine manager, near 

school
17-Mar China 31 Truck carrying fireworks explodes after collision 

with bus
23-Mar USA 15 Explosion at oil refinery
15-Apr France 23 Fire in Paris Opera Hotel
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2005 19-Apr India 18 Firecrackers explode in community hall
20-Apr Zambia 51 Explosion at explosives plant

03-May Pakistan 28 Explosion of gas cylinders
10-Jun China 31 Fire at hotel caused by electric short circuit
02-Jul India 20 Fire at fireworks factory
11-Jul Russia 24 Fire at two storey trade centre
27-Jul Indian ocean 11 Explosion on oil platform when hit by a supply 

boat
05-Sep Egypt 33 Fire in theatre
15-Sep India 35 Explosion at fireworks factory
16-Oct Argentina 33 Fire at prison

13-Nov China 8 Explosion at chemical plant
11-Dec Pakistan 40 Firecracker explode under fuel tank of a bus
15-Dec China 39 Fire in hospital
23-Dec China 44 Gas explosion in highway tunnel
25-Dec China 26 Fire in illegal bar

2004 19-Jan Algeria 27 Explosion at refinery
23-Jan India 56 Fire at wedding ceremony
27-Jan Myanmar 20 Fire at Buddhist temple
15-Feb China 40 Fire at Temple
15-Feb China 54 Fire at shopping mall
22-Feb Angola 21 Petrol tanker explodes
16-Mar Russia 58 Gas explosion in residential building
23-Apr USA 5 Explosion and fire at plastic plant

06-May Ukraine 5 Fire and explosion at ammunitions depot
17-May Honduras 104 Fire at prison

16-Jul India 90 Fire at primary school
30-Jul Belgium 23 Explosion of gas pipeline

01-Aug Paraguay 338 Fire after gas explosion at shopping mall

01-Sep South Africa 7 Gas explosion at ethylene plant in a refinery 
(Secunda)

16-Sep Nigeria 60 Explosion of fuel pipeline
04-Oct China 34 Explosion at fireworks factory

09-Nov Russia 26 Fire in a workers dormitory
20-Nov China 65 Fire in iron ore mine
21-Dec Nigeria 27 Oil pipeline explodes in a fishing community
26-Dec France 17 Gas explosion in an apartment building
30-Dec Argentina 189 Fire in nightclub during rock concert

2003 29-Jan USA 6 Explosion at pharmaceuticals plant
02-Feb China 33 Fire at restaurant
20-Feb USA 100 Fire at nightclub during rock concert
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2003 05-Mar South Africa 6 Fire at hotel (JHB)
05-Apr Honduras 86 Fire a prison
05-Apr China 21 Fire at food processing factory
07-Apr Russia 22 Fire at village school
10-Apr Russia 30 Fire at boarding school for the deaf

10-May India 12 Fire at garment factory
19-Jun Nigeria 125 Explosion of petrol pipeline
28-Jul China 35 Explosion at fireworks factory

03-Aug Pakistan 46 Building catches fire and explodes
03-Aug India 43 Factory collapses after explosion
26-Aug China 22 Explosion at illegal fireworks factory
31-Aug Taiwan 13 Fire at residential building
15-Sep Saudi Arabia 94 Fire at prison
12-Oct Belarus 30 Fire at mental hospital

03-Nov China 20 Building collapses during fire
16-Nov Egypt 8 Fire in commercial district
24-Nov Russia 37 Fire at students' dormitory block
23-Dec China 243 Gas well bursts
30-Dec China 35 Explosion at fireworks factory

Source: Swiss RE’s Sigma reports (2004–2013)

TABLE B.6. Major worldwide mining accidents 2003–2013

Year Date Location Deaths Cause
2012 29-Aug China 45 Gas explosion at coal mine 

25-Sep China 20 Carriages overturn 
2011 27-Jan Colombia 21 Methane explosion

20-Mar Pakistan 43 Gas explosion at coal mine 
07-Nov China 21 Miners trapped in mine, flood
29-Jul Ukraine 28 Explosion at coal mine
29-Oct China 29 Gas explosion at coal mine 
11-Oct China 20 Explosion at illegal coal mine 

2010 01-Jun China 30 Fire at coal mine
South Africa 9 Platinum mine, Northwest, fall of ground 

accident 
03-Jan China 32 Flood at coal mine after heavy rain
15-Mar China 25 Fire at coal mine
19-Mar Sierra Leone 200 Collapse of gold mine
28-Mar China 38 Flooding of coal mine
31-Mar China 43 Gas explosion at coal mine 
04-May USA 27 Explosion at coal mine
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2010 05-Aug Russia 66 Explosion at coal mine
13-May China 21 Gas explosion at illegal coal mine 
17-May Turkey 28 Gas explosion at coal mine 
16-Jun Colombia 73 Gas explosion, San Fernando mine
21-Jun China 47 Explosion at coal mine
29-Jun Ghana 88 Dunkwa mine collapse, heavy rain
17-Jul China 28 Fire at coal mine

06-Aug China 23 Fire at gold mine
16-Oct China 37 Gas explosion at coal mine 
19-Nov New Zealand 29 Gas explosion at coal mine 
07-Dec China 26 Explosion at coal mine

2009 22-Feb China 77 Gas explosion at coal mine
South Africa 9 Gauteng, rope snapped

29-Mar Tanzania 20 Flooding and collapse of gold mine, heavy 
rain

18-May Philippines 26 Landslides at gold mine, heavy rain
22-May South Africa 76 Fire at gold mine, Welkom, Free State 
05-Jun China 8 Rockslide at Jiwei Mountain
16-Jun Indonesia 32 Gas explosion at coal mine
10-Aug Slovakia 20 Gas explosion at coal mine
08-Sep China 44 Explosion at coal mine
08-Oct China 26 Mine cages fall
21-Nov China 108 Gas explosion at Xinxing coal mine 

2008 11-Jan Kazakhstan 30 Gas explosion
20-Jan China 20 Gas explosion at coal mine
17-Feb China 24 Gas explosion at iron mine
24-Feb South Africa 5 Fire at gold mine (KwaZulu-Natal)
29-Mar Tanzania 23 Flooding of gemstone mine due to heavy rain
12-Jun China 34 Explosion at coal mine
06-Jul China 21 Gas explosion at coal mine
14-Jul China 35 Explosion at coal mine
21-Jul China 30 Flooding of coal mine

01-Aug China 44 Landslide causes dam burst at iron mine
09-Aug Burkina Faso 31 Floods and landslide, collapse of gold mine

08-Sep China 271 Mudslide, collapse of dam at Tashan ore 
mine

20-Sep China 19 Fire at coal mine
21-Sep China 37 Gas explosion at coal mine 

2007 07-Jan DRC 13 Diamond mine collapse
17-Jan China 29 Flooding iron ore mine
04-Feb Colombia 32 Gas explosion at coal mine
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2007 10-Feb China 24 Fire at coal mine
03-Mar Colombia 32 Explosion at coal mine
10-Mar China 22 Flooding and gas leakage at coal mine
18-Mar China 21 Gas explosion at coal mine
19-Mar Russia 108 Gas explosion at Ulyanovskaya mine 
28-Mar China 26 Explosion at coal mine
05-May China 28 Gas explosion at Pudeng coal mine
24-May Russia 39 Explosion at coal mine
02-Oct South Africa 23 Fire in St Helena mine, Welkom 
13-Oct Colombia 22 Gold mine collapses due to landslide
08-Nov China 35 Methane gas leak at coal mine
18-Nov Ukraine 88 Methane gas explosion
26-Nov Ecuador 7 Explosion of dynamite store at ore mine
05-Dec China 105 Gas explosion at Xinyao coal mine

2006 01-Feb China 23 Gas explosion at Sihe coal mine
19-Feb Mexico 65 Gas explosion at coal mine
12-Mar China 18 Gas explosion at coal mine
18-Mar China 26 Flooding at coal mine
29-Apr China 33 Gas explosion at coal mine
28-Jun China 27 Gas explosion
15-Jul China 53 Explosion at coal mine
06-Sep India 50 Gas explosion at coal mine
07-Sep Russia 25 Fire at gold mine
20-Sep Kazakhstan 43 Explosion at coal mine
31-Oct China 29 Explosion at coal mine
05-Nov China 47 Gas explosion at coal mine
12-Nov China 34 Gas explosion at coal mine 
21-Nov Poland 23 Methane gas explosion
25-Nov China 22 Gas explosion at coal mine, Yuanhua
25-Nov China 32 Gas explosion at coal mine, Fuyuan
26-Nov China 24 Gas explosion at coal mine, Shanxi

2005 09-Feb Russia 22 Gas explosion at coal mine
14-Feb China 213 Gas explosion at coal mine, Liaoning
09-Mar China 28 Gas explosion at coal mine 
16-Mar China 69 Gas explosion at coal mine
24-Apr China 29 Flooding of coal mine
28-Apr China 22 Gas explosion at coal mine 
12-May China 21 Gas explosion at coal mine 
15-May China 8 Collapse of rock pile; explosion in coal mine
19-May China 45 Explosion in coal mine 
20-May China 20 Explosion in coal mine 



SAAJ 15 (2015)

CATASTROPHE MODELLING: SOUTH AFRICAN INSURERS’ CAPITAL REQUIREMENTS UNDER SAM | App-107

2005 08-Jun China 21 Poisonous gas leak in coal mine 
02-Jul China 36 Gas explosion at coal mine 
11-Jul China 83 Gas explosion at coal mine 
19-Jul China 26 Explosion at coal mine

02-Aug China 26 Gas leak in coal mine 
07-Aug China 123 Flooding of Daxing coal mine 
10-Aug Ghana 40 Collapse of gold mine 
03-Oct China 34 Gas explosion at coal mine 
06-Nov China 33 Collapse of gypsum mine 
27-Nov China 170 Explosion at coal mine 
09-Dec China 91 Gas explosion at coal mine 

2004 11-Feb China 24 Gas explosion at coal mine 
23-Feb China 33 Gas explosion at coal mine 
01-Mar China 28 Explosion at coal mine 
10-Apr Russia 47 Explosion at coal mine 
30-Apr China 36 Gas explosion at coal mine 
18-May China 27 Gas explosion at coal mine 
15-Jun China 16 Gas explosion at coal mine 
19-Jul Ukraine 31 Explosion at coal mine 

06-Aug China 10 Gas explosion at coal mine 
20-Oct China 148 Gas explosion at coal mine 
11-Nov China 33 Gas explosion at coal mine 
28-Nov China 166 Gas explosion at coal mine 
05-Dec Kazakhstan 23 Explosion at coal mine 
09-Dec China 33 Gas explosion at coal mine 

2003 11-Jan China 33 Gas explosion at coal mine 
24-Feb China 38 Gas explosion at coal mine 
22-Mar China 62 Gas explosion at coal mine 
30-Mar China 24 Gas explosion at coal mine 
13-May China 86 Gas explosion at coal mine 
20-May China 25 Explosion at coal mine 
14-Jul China 22 Explosion at coal mine 
13-Jul China 21 Flooding at coal mine 

11-Aug China 37 Gas explosion at coal mine 
14-Aug China 28 Gas explosion at coal mine 
18-Aug China 25 Gas explosion at coal mine 
14-Nov China 49 Explosion at coal mine 
22-Nov China 22 Explosion at coal mine 
07-Dec China 20 Gas explosion at coal mine 
26-Dec China 26 Fire at coal mine 

Source: Swiss RE’s Sigma reports (2004–2013)
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TABLE B.7. Major South African road accidents causing  ≥ 5 deaths

Year Month Deaths
1997 Oct 33

1998 Apr 31

1998 Dec 21

1999 Jan 31

1999 Sept 11

1999 Sept 14

1999 Sept 28

1999 Oct 19

2000 Dec 20

2003 May 51

2003 Oct 21

2006 Dec 12

2007 Feb 17

2008 Apr 17

2008 May 28

2010 May 23

2010 Aug 8

2011 Aug 16

2011 Dec 19

2012 May 5

2012 Jun 9

2012 Jul 7

2012 Jul 16

2012 Aug 12

2012 Aug 7

2012 Oct 21

2013 Mar 24

2013 Mar 5

2013 Mar 6

2013 Mar 7

2013 April 6

2013 April 5

2013 April 6

		         Source: (online) newspaper articles
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TABLE B.8. Major South African rail accidents causing  ≥ 5 deaths

Year Month Deaths

1994 Mar 47

2002 Feb 22

2005 Apr 11

2006 Nov 23

2012 July 26

		         Source: (online) newspaper articles
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APPENDIX C
Distributions and Goodness-of-Fit Tests

TABLE C.1. Top three fits—floods

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Lognormal (3P) 0.0871 2 0.37396 1 1.3136 6

Inv. Gaussian (3P) 0.09806 6 0.41917 2 1.5124 9

Fatigue Life (3P) 0.09066 3 0.42426 3 2.1749 11

TABLE C.2. Top three fits—earthquakes (5 ≤ M < 6)

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Wakeby 0.18129 3 1.1996 1 1.6808 2

Gen. Pareto 0.18129 4 1.1996 2 1.6808 3

Johnson SB 0.20098 5 1.2348 3 0.51164 1

TABLE C.3. Top three fits—earthquakes (6 ≤ M < 7)

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank
Frechet 0.125 1 8.5133 6 2.8545 4

Pareto 2 0.125 2 8.4959 5 2.5271 3

TABLE C.4. Top three fits—earthquakes M > 7

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Frechet 0.14924 1 5.455 1 0.03533 1

Pareto 2 0.15245 2 5.7028 2 0.30069 2

TABLE C.5. Top three fits—tornadoes

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared
Statistic Rank Statistic Rank Statistic Rank

Cauchy 0.17185 3 0.17837 1 N/A

Log-Logistic (3P) 0.16889 2 0.30909 2 N/A
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TABLE C.6. Top three fits—industrial accidents

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Burr 0.08882 1 0.74476 1 16.625 5

Log-Logistic 0.0899 2 0.87399 3 21.023 15

TABLE C.7. Top three fits—mining

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Burr (4P) 0.08978 1 1.6168 1 14.987 2

Burr 0.10091 2 1.657 2 15.285 3

TABLE C.8. Top three fits—road

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Gen. Pareto 0.09687 1 0.42357 1 3.9876 22

Weibull 0.10366 2 0.55109 8 3.4889 17

TABLE C.9. Top three fits—rail

Distribution
Kolmogorov–Smirnov Anderson–Darling Chi-squared

Statistic Rank Statistic Rank Statistic Rank

Cauchy 0.18528 1 0.23698 1 N/A

Chi-squared 0.2076 2 0.9982 44 N/A

Chi-squared (2P) 0.23082 3 0.38356 27 N/A
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APPENDIX D
 Additional Figures

FIGURE D.1. Risk modules under SAM (Source: SA QIS3 2013)
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FIGURE D.2. Typical loss distribution (Source: Authors)

Catastrophic losses fall into 
area IV of a loss distribution


