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ABSTRACT
Contemporary actuarial and accounting practices (APN 110 in the South African context) require 
the use of market-consistent models for the valuation of embedded investment derivatives. 
These models have to be calibrated with accurate and up-to-date market data. Arguably, the most 
important variable in the valuation of embedded equity derivatives is implied volatility. However, 
accurate long-term volatility estimation is difficult because of a general lack of tradable, liquid 
medium- and long-term derivative instruments, be they exchange-traded or over the counter. 
In South Africa, given the relatively short-term nature of the local derivatives market, this is of 
particular concern. This paper attempts to address this concern by:
—�providing a comprehensive, critical evaluation of the long-term volatility models most commonly 

used in practice, encompassing simple historical volatility estimation and econometric, 
deterministic and stochastic volatility models; and

—�introducing several fairly recent nonparametric alternative methods for estimating long-term 
volatility, namely break-even volatility and canonical option valuation.

The authors apply these various models and methodologies to South African market data, thus 
providing practical, long-term volatility estimates under each modelling framework whilst 
accounting for real-world difficulties and constraints. In so doing, they identify those models and 
methodologies they consider to be most suited to long-term volatility estimation and propose best 
estimation practices within each identified area. Thus, while application is restricted to the South 
African market, the general discussion, as well as the suggestion of best practice, in each of the 
evaluated modelling areas remains relevant for all long-term volatility estimation.
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1.	 INTRODUCTION

1.1	 Since the inception of modern asset pricing models, starting as far back as 
Bachelier (1900), there has been considerable interest in volatility research. The body 
of literature on financial volatility is vast and encompasses a wide range of fields, both 
financial and other. However, there is a noticeable dearth of research on the forecasting 
and analysis of long-term volatility. This is largely because ‘long-term’ in the general 
field of equity volatility research refers to terms of one or two years. This is in contrast 
to the actuarial convention of ‘long-term’ meaning greater than 10 or 15 years. One 
struggles to find mention of long-term volatility estimation—let alone theoretical or 
empirical analysis of the same—outside of the literature on market-consistent valuation. 
Given the large quantity of life policies written with embedded investment derivatives 
as well as the current proclivity of many long-term insurers to continue to write similar 
policies, this should be a material concern for market-consistent valuation. Yet, even 
within this field, only a handful of academic papers and professional reports address this 
issue, most of these somewhat obliquely.

1.2	 Current legislative and advisory practice notes (APN)1 recommend the use 
of market-consistent models to set financial reserves for all embedded investment 
derivatives. ‘Market-consistent’ in this case refers to any model that “reproduces the 
market prices of tradable assets as closely as possible”.2 Whilst market-consistent models 
can take several different forms, without exception they all require a volatility surface 
defined across strike and term as an input. This is an acute problem given that the term 
of the embedded investment derivatives is usually far longer than any traded derivative 
contract. APN 1103 makes allowance for this in the following manner:

1	 Actuarial Society of South Africa. APN 110: Allowance for Embedded Investment Derivatives, 
Version 4. Advisory Practice Note, 2012. Actuarial Society of South Africa. Market Consistent 
Calibration in South Africa. APN 110 sub-committee presentation, 2010

2	 APN 110 (2012): p.2
3	 supra: p.3
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Where there are no traded market instruments from which to calibrate the market-
consistent model, the actuary may apply alternative methods and judgement provided that 
he/she can argue that such derived values used to calibrate the model are probable in the 
market.

1.3	 The situation outlined above typifies the current South African derivative market 
for any term beyond two or three years. Thus the above allowance actually provides a 
large element of subjectivity in market-consistent long-term volatility estimation. Figure 1 
displays exactly how much subjectivity is allowed by giving a number of constructed 
implied volatility term structures that would all be considered market-consistent as per 
APN 110. The methods used to construct the respective volatility curves are indicative 
of those presently used in practice and are discussed in the ensuing sections. Clearly, the 
differences between the curves are substantial.

1.4	 A 2010 survey of several long-term insurers conducted by the APN 110 sub-
committee showed that of all market variables used in economic scenario generators, the 
highest relative importance was given equally to implied volatility on equity indices and 
the term structure of nominal interest rates. Implied interest-rate volatility and asset-class 
correlations were also shown to be of secondary importance. Although this paper focuses 
largely on estimation of implied volatility on equity indices, the ideas outlined below are, 
in certain cases, directly applicable to each of the variables highlighted above.

1.5	 The contents of this paper are arranged as follows. Section 2 outlines the South 
African market data used in the analyses. Given the empirical nature of the paper and the 
long-term focus of the estimation, the particular choice and subsequent handling of data 
are of particular importance. Sections 3 to 6 provide a comprehensive critical review of 
those long-term volatility models most commonly used in practice:

Figure 1. Long-term volatility estimates under a variety of market-consistent methods
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–– Section 3 reviews the estimation of historical and realised volatility, which can be used 
either directly to create a pseudo-implied volatility surface or as a means of creating a 
long-term volatility parameter for stochastic or deterministic volatility models.

–– Section 4 assesses the use of econometric volatility models, specifically focusing 
on the GARCH family of models. The choice of different model specifications and 
innovation, or error, distributions is considered.

–– Deterministic volatility models are outlined in Section 5, with a specific focus on the 
formulations suggested by the South African Futures Exchange (Safex) and Barrie & 
Hibbert.4

–– Section 6 discusses the use of stochastic models for long-term volatility estimation. 
This includes both practical application—using the Heston (1993) model—and 
theoretical discussion.

Sections 7 and 8 introduce two fairly recent, compelling nonparametric alternatives for 
creating market-consistent long-term volatility estimates:
–– Section 7 considers Dupire’s5 break-even volatility, which uses only historical data 

to calculate an implied volatility surface that makes delta-hedging a zero-sum game. 
Theoretical issues are discussed and practical application is given.

–– Section 8 presents the nonparametric method of Stutzer’s (1996) canonical valuation 
(CV) and constructs implied volatility surfaces via relative entropy and risk-neutralised 
historical distributions. This method has gained recent attention both locally and 
internationally because of its algorithmic tractability, financial flexibility—in terms 
of asset class and number of underlying assets—and solid statistical and economics 
foundation. Given the originality of the extended CV method presented here and the 
fact that many readers will be unfamiliar with the initial method, a significant portion 
of the nonparametric part of the paper is used to develop the ideas surrounding this 
nonparametric pricing method and several practical applications are given.

Section 9 concludes with a suggestion of best practices for long-term volatility estimation.

1.6	 Because of the scope of the models, techniques and ideas discussed below, the 
technical detail inherent in each is inevitably condensed. However, in all cases the authors 
have endeavoured to provide the reader with suitable reference material so as to ensure 
accurate replication of all reported results. Two major works, which independently cover 
many of the volatility subfields reviewed in sections 3 to 6 and are worthy of initial 
citation, are Alexander (2008a; b; c; d) and Andersen et al. (2006).

4	 See A Kotzé & A Joseph (unpublished). Constructing a South African Index Volatility Surface 
from Exchange Traded Data, JSE Technical Report, 2009, and D Roseburgh & C Holmes 
(unpublished). MC calibration to SA equity market. Barrie & Hibbert Calibration Note, 2006, 
respectively.

5	 B Dupire (unpublished a). Fair skew: break-even volatility surface. Bloomberg LP White Paper, 
2006
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1.7	 Alexander’s (op. cit.) four-volume set is vast, rigorous and particularly 
practicable, and is considered a fundamental work in the greater risk-management 
literature. Andersen et al. (2006) provide a comprehensive survey of the most important 
theoretical and empirical literature in the field of volatility research, focusing specifically 
on forecasting. For further technical information on any specific implementation given 
here, the reader is welcome to contact the authors.

2.	 SOUTH AFRICAN MARKET DATA
2.1	 EQUITY DATA

2.1.1	 The various analyses in the paper make use of a number of different 
equity time series. All analyses are based on either the FTSE/JSE All-Share Index or the 
FTSE/JSE All-Share Top40 Index, referred to below as the ALSI and Top40 respectively. 
For long-term empirical analyses, the authors make use of Firer & Macleod’s (1999) and 
Firer & Staunton’s (2002) ALSI total monthly equity return series from January 1925 to 
February 2013, a total of 1 058 observations. The data are changed to capital returns using 
the assumption that linear returns are a linear sum of capital returns and (linear) dividend 
yield. The dividend yield is not readily available before January 1976, so the authors use 
the average yield as a simple proxy for the period 1925 to 1976. Total monthly ALSI returns 
are available from INet back to January 1976, totalling 446 observations. Accurate capital 
returns can be calculated for this period by using the reported monthly dividend yield.

2.1.2	 Daily price and dividend data for the ALSI and Top40—capital 
and total-return indices—for the period 30 June 1995 to 28 March 2013—4 436 
observations—are collected from INet. Intra-day Top40 data including opening, high, 
low and closing prices are available from 13 May 2002 onwards.

2.1.3	 The dataset used in the analyses usually refers to the starting year, 
sampling frequency and underlying index unless the dataset choice is clear from the 
context or the specific analysis is found to be robust to the choice of dataset.

2.2	 INTEREST-RATE DATA
2.2.1	 A number of different data sources were amalgamated to construct 

30-year yield curves back to January 1925. Firer & Macleod (1999) give a single annual 
interest rate, which is used for the period January 1925 to January 1965. Subsequently, 
basic yield curves were constructed using the three-month Treasury Bill rate and the 
Firer & Macleod rate and Hagan & West’s (2008) raw interpolation method. The three-, 
six-, nine- and twelve-month negotiable certificate of deposit (NCD) rates are introduced 
in the raw interpolation method from January 1987, whilst the rand overnight deposit 
(RODI) rate is included from January 1999 onwards. Though simplistic, all instantaneous 
forward rates produced by this method are positive by construction, thus ensuring an 
arbitrage-free yield curve.

2.2.2	 Comprehensive daily 30-year yield curves were provided by Old 
Mutual Specialised Finance for the period 28 August 2006 to 28 March 2013.

2.2.3	 The term-specific yield-curve data used in the analyses below corre-
spond to the period and frequency of the equity data outlined above.
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3.	 HISTORICAL AND REALISED VOLATILITY
3.1	 HISTORICAL VOLATILITY AND MARKET-CONSISTENT VALUATION

3.1.1	 The estimation and measurement of empirical asset volatility is of 
central importance in most areas of finance. In recent years, there have been a number 
of significant improvements on the classic statistical methods used to measure an asset’s 
return variation over time. Consequently the subfield of historical volatility measurement 
has blossomed. For an overview of this area of research, see Brandt & Kinlay,6 Poon 
(2005) and Andersen et al. (2006).

3.1.2	 APN 110 suggests the use of historical volatility analysis for estimating 
the most appropriate long-term volatility parameter to be used in a particular stochastic 
volatility model in the case where traded derivatives are not available. As noted above, in 
the South African market this essentially refers to any volatility estimate for a term greater 
than two to five years, allowing for direct bank-quoted prices. As an example, APN 110 
suggests estimating term-specific realised volatility over some suitable period, comparing 
this estimate to the available implied volatility term structure and finally extrapolating 
this relationship to determine a suitable long-term stochastic volatility model parameter. 
According to the 2010 APN 110 survey, this type of estimation framework is used by all 
market participants. Therefore, the accurate measurement of historical volatility and its 
relation to the available implied volatility term structure is of particular importance and 
worthy of discussion.

3.1.3	 Most textbooks define historical volatility as the standard deviation 
of past asset returns (Hull, 2009; Alexander, 2008a). However, this definition is naïve, 
leaving much unsaid. A better definition of historical volatility would be: the ex-post 
variation of an asset’s returns taken at a particular frequency over a particular period. This 
succinctly connects the three fundamental variables latent in any volatility calculation:
–– the specific functional form of the measured variation;
–– the term of the asset returns; and
–– the total period used for the estimation.

Each of these points is dealt with below. Moreover, the effect of underlying asset choice 
is also considered. This becomes an issue both when one is considering an index and 
when one is using the ex-post historical volatility estimate as an estimate of the ex-
ante future realised volatility. Finally, the relationship between historical and implied 
volatility is considered.

3.2	 MEASURING HISTORICAL VOLATILITY
3.2.1	 Statistical Volatility Measures

3.2.1.1	 The classic measure of historical volatility at time T, σC,T, is given by 
the common statistical standard deviation of n daily asset returns, ( )close close

,1 1ln / −=t t tr S S , 

6	 MW Brandt & J Kinlay (unpublished). Estimating historical volatility. Investment Analytics 
Working Paper, 2005
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with returns calculated from daily asset close prices at time t, close
tS . Mathematically, one 

writes:
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Financial convention is to quote volatility as an annualised standard deviation, where it 
is usually assumed that there are 252 business days a year. Note that σC,T is always an 
ex-post measure. An occasional alternative to equation (1) is to assume that asset prices 
follow geometric Brownian motion and thus substitute the sample mean with the risk-
neutral drift (Dupire7). This generally tends to increase the estimated volatility.

3.2.1.2	 More commonly though, practitioners tend to remove the mean term 
altogether when calculating daily volatility. This is referred to as ‘realised volatility’,  
σR,T, and is calculated as:
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Realised volatility is the underlying asset for all traded variance and volatility derivatives 
and is an ex-post estimate of the asset return volatility over a particular period. Thus, 
while one can speak generally of historical volatility, one must be cognisant of the 
subtle differences between historical classical volatility as per equation (1) and historical 
realised volatility as per equation (2).

3.2.1.3	 With the advent of high-frequency analysis, there has been a further 
classification of realised volatility. Specifically, if one assumes that the intra-day 
logarithmic-asset prices follow a general, continuous-time diffusion process, then, as 
Andersen et al. (2003) and Barndorff-Nielsen & Sheppard (2002) showed, the intra-day 
returns are normally distributed with mean and variance equal to the integral of the mean 
and variance process respectively over a continuous trading day. Andersen et al. (2003) 
showed that a consistent estimator for this ‘integrated variance’, 2

,σ I T , was given by the 
sum of squared intra-day logarithmic (“log”) returns over the specified period. Integrated 
variance has since become the accepted standard for most accurately measuring empirical 
asset-return volatility. Because of this, integrated volatility is also sometimes referred 
to as ‘realised volatility’. Whilst 2

,σ I T  is universally recognised as the best empirical 
estimate of asset-return volatility, intra-day asset tick data are readily available only for 
fairly short-term periods, thus limiting its current usefulness to the problem at hand. 
Therefore, for the remainder of this paper, realised volatility is exclusively defined by 
equation (2).

3.2.1.4	 Over the last 30 years, a number of alternative, range-based volatility 
estimators have been put forward. These estimators use a combination of daily opening and 
closing prices together with intra-day high and low prices, and have been shown to have 
a much higher theoretical and empirical efficiency and thus lower bias than the common 

7	 B Dupire (unpublished b). Pricing Financial Derivatives. Bloomberg LP AFDC Presentation, 
2006
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standard-deviation estimator (Yang & Zhang, 2000; Brandt & Kinlay8). Although not in 
common use, those estimators developed by Parkinson (1980), Garman & Klass (1980), 
Rogers & Satchell (1991), and Yang & Zhang (op. cit.) have recently started to gain 
traction in practice, the Yang–Zhang estimator being the preferred practitioner’s choice 
(Andersen et al., 2006). See Appendix A for mathematical definitions of these estimates. 
The appeal of range-based estimators is that they can account for intra-day volatility, 
time-varying drift of the underlying asset-price process, opening price gaps and market 
microstructure noise; all issues that historical and realised volatility unavoidably ignore. 
Figure 2 displays rolling five-year ALSI total-return volatility calculated by means of the 
different volatility estimators.

3.2.1.5	 Notice the substantial spread between the estimators throughout the 
period. A common empirical finding of many studies is that classic standard deviation 
yields numbers higher than proposed alternative volatility estimators (Yang & Zhang, 
op. cit; Poon, op. cit.). Whilst this is not clearly apparent for the ALSI, classic historical 
volatility is one of the highest estimators. Obviously, use of these estimators is affected 
by the availability of daily opening, high, low and closing market prices. This is 
readily available only for the ALSI (and Top40) from June 2002 onwards, limiting the 
maximum term of analysis to approximately 11 years. This presents a problem for long-
term volatility estimation. However, as the historical intra-day dataset increases, it is 
suggested that long-term historical volatility should, in the future, be estimated with a 
range-based estimator or with integrated variance.

8	 Brandt & Kinlay, supra

Figure 2. Daily five-year rolling ALSI total-return volatility estimates over the period 
June 2007 to April 2013
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3.2.2	R eturn Term and Estimation Period
3.2.2.1	 Apart from the actual function used to measure asset-return variation, 

one must also realise that historical volatility is keenly affected by the choice of sampling 
frequency and sampling period. ‘Sampling frequency’ here refers to the term, τ, over 
which returns are measured, leading to:
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One of the stylised facts—defined fully in section 4.1—identified by Cont (2001) was 
that of aggregational Gaussianity: the return distribution tends towards normality as the 
return term increases. While this fact has been analysed in several markets with varying 
results (Bingham & Kiesel, 2004; Flint, Chikurunhe & Seymour, 2012)9 what is true 
is that historical volatility—and actually the complete return distribution—is heavily 
dependent on τ.

3.2.2.2	 Sampling period also plays a large role in determining historical 
volatility. Firstly, estimation error is always a concern for any empirical analysis. It has 
been shown that, under certain asset-process conditions, sampling size plays a vital role 
in bounding theoretical estimation error (McAleer & Medeiros, 2008). Secondly, there 
is extensive literature showing that both the drift and volatility of postulated asset price 
processes is time-varying (c.f., e.g., Poon & Granger, 2003 and Brownlees, Engle & 
Kelly, 2011) and also that the market displays evidence of structural breaks (Hacker & 
Hatemi-J, 2006).

3.2.2.3	 Figure 3 displays Top40 total-return volatility as measured by σC,T 
over a τ-range of one day to one month (assuming 22 trading days per month), calculated 

9	 The authors have also had sight of DA Polakow, DR Taylor & O Mahomed (in preparation). 
Aggregational gaussianity in the South African equity markets: implications for the pricing of 
risk

Figure 3. Top40 total return volatility estimates sampled over various frequencies and 
periods using non-overlapping return data (solid) and overlapping data (dotted)
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using the 1995 Top40 historical sample period and compared with that calculated from 
disjoint five-year periods. Historical volatility is calculated by means of both non-
overlapping returns (solid lines) and τ–1 overlapping returns (dotted lines). Because of 
the general paucity of market data, one is forced to use overlapping returns as τ increases, 
in order to obtain a sufficiently large sample size. In both cases, differences across return 
term and period are readily apparent.

3.3	� MEASURING HISTORICAL VOLATILITY ON THE CORRECT 
UNDERLYING DATA

3.3.1	T he Importance of the Issue
3.3.1.1	 While the identification of the correct underlying may, at first glance, 

appear somewhat obvious, it is actually of crucial importance. Perhaps contrary to one’s 
general intuition, there is no definitively correct choice. To illustrate this, let us consider 
the following example.

3.3.1.2	 An insurer has written a 30-year policy, which has an embedded 
minimum investment maturity guarantee. Investment performance is that of some 
balanced asset portfolio. For the purposes of our discussion, we focus exclusively 
on the equity portion. In a similar manner to that suggested by APN 110 (cf. ¶4.2), 
the insurer compares historical volatility with the available implied volatility term 
structure—inevitably short-term—and calculates a suitable historical implied-volatility 
scaling parameter. The insurer then estimates long-term historical volatility, multiplies 
this estimate by the imputed scaling factor and uses this as the fixed long-term volatility 
parameter in either a time-varying deterministic volatility model or a stochastic volatility 
model.

3.3.1.3	 This example is actually quite close to market reality. Take note of 
just how many different volatility estimations, models, terms and types are inherent 
within this example process. Firstly, in practice, equities are usually modelled as a 
single asset class and guarantees are normally written on total return indices (APN 110 
survey), implying that one should consider the total returns on either the ALSI or Top40. 
Furthermore, observe that the insurer has specifically written the guarantee on equity 
performance and not on forward or futures performance.

3.3.1.4	 Secondly, the insurer compares historical asset volatility with implied 
volatility. South African exchange-traded options are written on Top40 futures with 
pre-specified maturities. Thus, the implied volatility term structure is really the implied 
volatility on futures options struck at the prevailing Top40 futures level at various 
maturities. For consistency, one should then really construct Top40 forward levels and 
measure the historical volatility of the constructed forward returns. An additional benefit 
is that historical volatility measured on index forwards latently accounts for the stochastic 
nature of interest rates and dividend yields, a feature also inherent in implied volatility.

3.3.1.5	 Thirdly, the long-term implied volatility estimate is generally used as a 
fixed parameter in a specified volatility model. Whether the use of the implied volatility 
estimate as the fixed, long-term volatility parameter is suitable will depend on what type 
of model is specified. For instance, implied volatility is directly modelled by deterministic 
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models, whereas stochastic volatility prescribes dynamics for the underlying asset-price 
volatility. This distinction is subtle and is usually ignored (incorrectly) in practice.

3.3.1.6	 On the basis of the discussion above, the authors advocate using 
historical volatility measured on the log returns of constructed Top40 forwards for the 
equity portion of the balanced portfolio. Whilst there is a slight mismatch throughout 
the life of the guarantee between performance of the underlying equity and equity 
forward, this is not an issue for the embedded European guarantees usually found in 
life policies. Furthermore, forwards by construction are investors’ best estimates of the 
future level of the underlying asset price allowing for the inclusion of the stochastic risk-
neutral drift and are thus prime candidates for estimating a forward-looking volatility 
estimate. Finally, the inherent inclusion of interest-rate and dividend-yield volatility in 
the drift term ensures further consistency with market-implied volatilities, which are also 
forward-looking. Therefore, the original question now becomes which forward to take as 
the underlying and over what period to measure log returns.

3.3.2	C onstant-Maturity versus Floating-Maturity Forwards
3.3.2.1	 The current forward level, Ft,s, represents the time t expected (in a risk-

neutral sense) future value of the underlying at the specified time T = t + s, and S is the 
remaining time to maturity (the reason for not using τ to represent forward term is given 
below). Assuming that the yield curve, yt,s, and the dividend yield, δt,s, is stochastic, we 
can write:

		  ( ), ,
,

δ−= t s t sy s
t s tF S e 	 (4)

3.3.2.2	 Forward prices are thus dependent on asset level, term-specific yield 
and dividend yield, and the remaining time to maturity. From equation (4) one is able 
to construct either a constant-term forward (CTF) price series, or a floating-term (FTF) 
series. We will define the CTF price series as { },t sF  and the FTF price series as { }, −t T tF . 
Note that s and T are fixed but t increases through time, giving one the constant and 
floating terms as required. When calculating returns on forwards, there are essentially 
two terms to consider. The (backward-looking) term over which one measures the return 
is given by τ, while the (forward-looking) term of the forward is given by s and T – t 
respectively. These two terms need not be equivalent, although the return term τ cannot 
be larger than the given forward term. Using the notation of equation (3), let us define 
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, ,τt sr  and FTF

, ,τ −t T tr  as the τ-period log returns from the CTF and FTF series’ respectively. 
Mathematically, we can write:
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3.3.2.3	 Should one now calculate the historical volatility of, say, the daily 
rolling τ-period CTF returns and compare this directly with the τ-period implied volatility, 
or should one rather consider the average realised volatility of daily FTF returns over the 
τ-period life of the forward and compare this with τ-period implied volatility? Figure 4 
depicts this dichotomy. Each line represents the possible cumulative returns over the life 
of a forward.

3.3.2.4	 The annualised s-period volatility of the terminal forward return 
distribution at time T is given by CTF

,σT s , while the average annualised realised s-period 
volatility of the daily forward return distribution at time T is given by FTF

,σT s . These 
volatilities are obviously dependent on the specified sample path. If the log forward 
price were perfectly defined by geometric Brownian motion (or, in fact any elliptically 
symmetric distribution), then terminal volatility would be equivalent to the average 
realised volatility scaled by the square root of the contract term. However, as is shown in 
section 4.1, this is not the case. Annualised realised volatility averaged across all sample 
paths is not the same as annualised terminal distribution volatility. So which of these 
two estimates is the most suitable historical volatility estimate? We consider first several 
theoretical points and then provide some empirical results.

3.3.2.5	 Breeden & Litzenberger’s (1978) seminal work proved that an implied 
volatility curve is simply another way of representing the underlying risk-neutral terminal 
distribution at a specific term. This result seems to favour CTF terminal distribution 
volatility over average daily realised FTF volatility. In addition, market consistency 
generally implies calibration only to vanilla option prices, which are solely based on 
the discounted expectation of the terminal payoff, again suggesting terminal volatility. 
However, there are no long-term options available within the market. Thus, one would 
have to rely on some sort of quasi-dynamic replication argument to hedge out any 
embedded guarantee exposure, which would necessarily be reliant on realised volatility 
over the period. This, contrastingly, suggests averaged realised volatility. However, as 

Figure 4. Terminal distribution CTF volatility vs. average realised FTF volatility

CTF
,σT s

FTF
,σT s
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Sheldon & Smith (2004) note, market consistency seems to require implied rather than 
historical volatility, which would again suggest using terminal distribution volatility. 
On the whole then, it would appear that there may be stronger theoretical evidence 
supporting the use of terminal forward-return distribution volatility rather than averaged 
realised forward-return volatility.

3.3.2.6	 A single sample path in Figure 4 represents the evolution of a constant-
term forward over its historical contract life. The different sample paths are created by 
moving the start date of the constant-term forward through time. For ease of reference, 
we display each path beginning at the same start date. A simple schematic representation 
of this process is given in Figure 5, where, for simplicity, only six periods of history and 
terms up to three periods long are assumed, and abridged notation has been used. As a 
toy example, consider the terminal and average realised volatility of the three-period 
forward returns given below.

3.3.2.7	 Using the spot and dividend-yield vectors over time, and the yield 
curve matrix across time and term, one can construct a CTF price matrix from which one 
can calculate CTF log returns. Using the notation introduced above, the first subscript 
denotes time (i.e. row number), the second subscript denotes the term of the return—all 
daily returns—and the third subscript denotes the term of the forward (i.e. the column 
number). We first consider the calculation of the average realised volatility of the three-
period forward as at time period 5, FTF

5,3 σ . In our example, we have three FTF return 
sample paths of a three-period forward, each displayed by a diagonal arrow. From each 
of these FTF sample paths, one calculates annualised realised volatilities, displayed on 
the left of the forward return matrix. Finally, the average of these volatilities represents 
is denoted FTF

5,3 σ  and denotes the average realised three-period FTF volatility as at time 5.
3.3.2.8	 Terminal forward return volatility is calculated from period-specific 

aggregated forward returns. Consider again the three-period case. The three-period 

Figure 5. Schematic representation of terminal forward return volatility and average 
realised forward return volatilities

spot + div. yield + yield curve ==> forward return matrix
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aggregated (log) return at time 3 is calculated by summing up the single period (log) 
returns at times 1, 2 and 3. The starting point is then moved one period forward and the 
process is repeated until the end of the dataset is reached. In our example, we have three 
three-period CTF returns, displayed on the right of the forward return matrix. From this 
CTF return series, we can calculate the three-period terminal volatility at time 5, CTF

5,3σ . 
Very importantly, the length of the aggregating return period defines which forward return 
column to use. That is, we use the three-period historical forwards to calculate the three-
period aggregated returns. This ensures that one is truly using the best estimate of the 
theoretical risk-neutral terminal distribution and thus measuring volatility as consistently 
as possible with implied volatility.

3.3.2.9	 From the 1925 and 1976 ALSI monthly-return datasets, the 30-year 
historical volatility term structures were obtained, as displayed in Figure 6. The dataset 
used—1925 and 1976 monthly data—is represented by the line colours black and grey 
while the type of volatility—terminal CTF, average realised FTF and spot—is given by 
the type of line, i.e. solid, dashed and dotted. Also shown is the 17,75-year FTF volatility 
term structure calculated from the 1995 Top40 daily-return dataset.

3.3.2.10	 Clearly, volatility is strongly dependent on both the method and dataset 
used. That being said, there is definitely a clear upwards-trend up to the 20-year mark 
irrespective of dataset or method. Furthermore, the 1925 CTF, 1976 FTF and 1995 FTF 
volatility series give fairly comparable results up to the 18-year mark. Contrastingly, the 
1976 CTF volatility series is concave. It has a steeper slope than any other volatility, 
climbing up to a 20,25-year maximum value of 43,93 per cent, after which there is a 
significant downturn. However, this rather different general behaviour may simply be 
due to small sample size for longer terms.

3.3.2.11	 If, as motivated above, one considers terminal-distribution CTF 
volatility to be the best historical estimate, then 15-year volatility is estimated either 
as 29,11% using the 1925 dataset, or as high as 39,04% for the 1976 dataset. Looking 

Figure 6. Terminal CTF volatility and average realised FTF volatility  
compared with spot volatility
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further out to the 25-year point, one finds corresponding volatilities 34,28% and 37,25%. 
As discussed in section 5, these values are considerably higher than what is considered 
usual. However, this does not mean that they are unreasonable. As is shown in section 
4.4.2, daily log returns of forwards comprise three distinct parts, namely, underlying 
asset return, change in dividend yield and change in yield curve. If one simply assumes 
that each component is independent, then CTF variance is merely the sum of the three 
component variances. So far in section 3 we have found that underlying asset volatility 
alone can be as high as 25%, and sometimes considerably higher. If one then adds yield-
curve and dividend-yield volatilities, a 25-year CTF volatility of 35% seems empirically 
reasonable.

3.3.2.12	 In summary, historical volatility should always be measured on the 
most appropriate underlying data series. The authors argue that this would either be the 
CTF forward-price series, representing the terminal forward distribution, or the FTF 
forward-price series, representing the realisation of each forward over time. These series 
can be constructed fairly simply from empirical data and the resultant terminal distribution 
CTF volatility and the average realised FTF volatility term structures calculated. Whilst 
the results are varied, there are common characteristics between both calculation method 
and dataset used, providing compelling evidence to suggest that a 25-year volatility of 
35% is not unreasonable.

3.4	� THE SOUTH AFRICAN IMPLIED–HISTORICAL VOLATILITY 
RELATIONSHIP
3.4.1	 The relationship between historical and implied volatility has been 

extensively researched; a review of early work is given in Shu & Zhang (2001), while 
Eraker10 outlines the more recent literature. Coined ‘the volatility premium’, average im-
plied volatility on index options has consistently been shown to be higher than histori-
cal index volatility. Market participants try to take advantage of this mismatch through 
the use of various option strategies (Driessen & Maenhout11). Whilst there are several 
competing theories that attempt to justify the volatility premium, the focus here is on an 
empirical analysis of the implied–historical volatility relationship in South Africa.

3.4.2	 Daily rolling terminal CTF volatility is calculated and compared with 
daily rolling term-specific implied volatility. Figure 7 shows the implied–historical vola-
tility (IVHV) ratio since September 2005 for terms ranging from three to twelve months. 
Clearly, the IVHV ratio varies over time and shows strong signs of heteroscedasticity, or 
non-constant volatility. This finding is robust to the type of historical volatility estima-
tion as well as the chosen type of return.

3.4.3	 The effect of the subprime crisis is readily apparent, although some
what lagged because of the ex-post nature of the historical volatility estimator. This lag 
is most pronounced for the 12-month IVHV ratio. This leads to significant negative 

10	B Eraker (unpublished). The Volatility Premium. Working Paper, Duke University, 2008
11	 J Driessen & P Maenhout (unpublished). The World Price of Jump and Volatility Risk. Working 

paper, Insead, 2006
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Figure 9. Extrapolated average IVHV ratios

Figure 8. Average IVHV ratios for calendar years, as well as for the full sample, 
inclusive and exclusive of the subprime crisis

Figure 7. Daily IVHV ratios from 6 September 2005 to 22 March 2013 for  
terms of 3 to 12 months
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skewness within the IVHV ratio distributions, barring the three-month series, which 
displays symmetry. In addition, the ratio distributions are all platykurtic, the shorter-
term ratios displaying the lowest excess kurtosis. Figure 8 plots the average IVHV ratios 
(in grey) for each year from 2006 to 2012, the full sample average ratios and the average 
ratios calculated when the subprime crisis period is removed.

3.4.4	 The 2009 average ratios are indicative of the subprime crisis and 
are clearly irregular. If these outlier IVHV ratios are removed, the sample average is 
increased by approximately 0,05 across all terms. A constant (1,244) or time-varying 
function can then be fitted to extrapolate this relationship out to the required term as 
shown in Figure 9.

4.	 ECONOMETRIC VOLATILITY MODELLING: THE GARCH FAMILY
4.1	 STYLISED FACTS OF EMPIRICAL ASSET RETURNS

4.1.1	 Empirical financial data are known to be characterised by several 
‘stylised facts’, defined as statistical properties pervasive across a wide range of instru
ments, markets and time periods (Cont, op. cit.). Several of these market facts are of 
direct concern to any volatility modelling exercise:
(1)	� Heavy-tailed distributions: the tails of the conditional and unconditional returns 

distribution are most commonly modelled by a Pareto distribution with finite tail 
index between two and five.

(2)	� Skewed distributions: one observes larger individual losses than gains for stock 
and index returns, implying negatively skewed short-term return distributions.

(3)	� Volatility clustering: short-term volatility displays positive autocorrelation. This 
is technically referred to as conditional heteroscedasticity;

(4)	� Volatility feedback effect: asset volatility is generally negatively correlated with 
asset performance.

4.1.2	 In order to adequately model the above stylised facts, one needs to use 
some time-varying function. The autoregressive conditional heteroscedasticity (ARCH) 
model introduced by Engle (1982), and subsequently generalised by Bollerslev (1986) to 
the GARCH model, has become the standard model for modelling such features.

4.2	 GARCH VOLATILITY FORECASTING: BASIC THEORY
4.2.1	 The standard GARCH(p,q) model for the return rt during period t with 

conditional variance, ht , takes the following form:

		  r rt t t t= [ ]+− 1 ε ;	 (7)
where:
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[ ]1−t   is the expectation conditional on all information available at time t – 1; and
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�zt is a series of independent, identically distributed (iid) random variables with 
zero mean and unit variance.

The standard GARCH model assumes that zt is standard-normally distributed. If q = 0  
in equation (7), then the model reduces to an ARCH(p) model. In most academic 
literature—and certainly in practice—a simple GARCH(1,1) specification is used to 
model the volatility of financial time series. This model has been shown to be highly 
robust and it is only with some difficulty that one can find an alternative model that 
shows consistent outperformance (Hansen & Lunde, 2005). We can thus rewrite ht as:

		  h ht t t= + +− −α α ε β0 1 1
2

1 1.	 (8)

4.2.2	 As a special case, equation (8) reduces to an exponentially weighted 
moving average (EWMA) when α0= 0 and α1= 1 – β1= λ . However, what makes the 
ARCH class of models so useful—in comparison to EWMA for example—is that one 
can optimally forecast volatility—as well as the full conditional density—using only 
equations (7) and (8). This is due to the embedded stochastic process { }tz  within the 
conditional volatility function.

4.2.3	 In particular, if one assumes that the conditional return expectation is 
zero and that α1+ β1< 1 , then the unconditional variance of the asset is
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and the optimal, k-step ahead, single-period variance forecast can be written as

		  ( ) ( )12 2
1 1 .σ α β σ−

+ = + + −k
t k th h 	 (10)

Therefore, as k increases, the forecasts will exponentially tend towards the long-run 
unconditional volatility at a rate that is governed by the process’s persistence, α1+ β1 .

4.2.4	 Assuming that the correct GARCH model has been specified, one can 
appropriately forecast the variance term structure across k-period returns as the sum of 
the conditional variance forecast over the period:
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For further information on GARCH theory, see Andersen et al. (2006) and Alexander 
(2008b).

4.3	 THE EXTENDED GARCH FAMILY
4.3.1	 While the basic GARCH model discussed in the previous section is 

by far the most ubiquitous in financial time series modelling, there are numerous other 
models that fall within the general ARCH family. Essentially one can classify a GARCH 
model by three characteristics:
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(1)	 model type: the functional form of the conditional variance equation;
(2)	 innovation distribution: the assumed distribution for zt ; and
(3)	� model parameters: the number of lags within each component as well as the use 

of external covariates.

This section focuses on the first two characteristics of the model-distribution-parameter 
triplet and only addresses the base (1,1) parameter case. We limit the possible model set 
to the five candidates highlighted by Brownlees, Engle & Kelly (op. cit.) as both being 
tractable and having noteworthy volatility forecasting ability. The five candidates are 
described below in section 4.4.2. The possible innovation distributions are limited to the 
Gaussian and Student’s t distributions. Model fitting is performed for each specification 
using the Gaussian and Student t likelihood functions respectively. The best-fitting 
model is defined by the model-distribution-parameter triplet that displays the minimum 
Bayesian Information Criterion (BIC) score, a commonly used model-selection statistic 
that essentially penalises a model’s log-likelihood value for the number of estimated 
model parameters (Schwarz, 1978).

4.3.2	E xtended GARCH Volatility Models
4.3.2.1	 The standard GARCH(1,1) model outlined in section 4.2.1 has been 

criticised because of its symmetric treatment of positive and negative return shocks. In 
practice, it has been shown that negative return shocks increase conditional volatility 
more than positive return shocks of equal magnitude. This asymmetry is usually referred 
to as the ‘leverage’ or ‘volatility feedback’ effect (Andersen et al., 2006). While there 
are many extended GARCH models that account for this stylised fact, three models in 
particular have become prevalent.

4.3.2.2	 The GJR or threshold GARCH (GJR-GARCH) specification of Glosten, 
Jagannathan & Runkle (1993) accounts for asymmetry by including an additional ARCH 
term conditioned by the sign of the previous innovation. Thus, GJR-GARCH(1,1) is written

		  h ht r c t tt
= + +( ) +

− <{ } − −α α γ ε β0 1 1
2

1 11
1 ,	 (12)

where 1 is the indicator function and c is a threshold return level, normally set to 0. The 
parameter γ controls the differential effect attributable to negative and positive return 
shocks.

4.3.2.3	 Alternatively, the exponential GARCH (EGARCH) specification of 
Nelson (1991) models the logarithm of the conditional variance, and is given by

	 ln / / / ln .h h pi h ht t t t t t( ) = + −( ) + ( ) + ( )− − − − −α α ε γ ε β0 1 1 1 1 1 1 12 	 (13)

The leverage effect is again controlled by γ, with γ < 0 meaning that volatility increases 
more with negative-return shocks than with comparable positive shocks.

4.3.2.4	 The fourth possible model is the nonlinear or power GARCH 
(NGARCH or PGARCH) specification of Higgins & Bera (1992). This model also 
attempts to capture the volatility asymmetry but it uses a slightly different form:
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		  h ht t t
δ δ δα α ε β/ / / .2

0 1 1
2

1 1
2= + +− − 	 (14)

The flexible δ allows one to capture more accurately the conditional volatility dynamics.
4.3.2.5	 The final specification is the asymmetric power GARCH (APGARCH) 

specification of Ding, Granger & Engle (1993):

		  h ht t t t
δ δ δα α ε γε β/ / / .2

0 1 1 1
2

1 1
2= + − +− − − 	 (15)

Similar to NGARCH above, APGARCH explicitly allows for the asymmetric volatility 
effect while also including flexible volatility dynamics. As Hentschel (1995) notes, the 
APGARCH specification latently nests a number of differing GARCH models.

4.4	 GARCH VOLATILITY AND MARKET-CONSISTENT VALUATION
4.4.1	 One can create a forward volatility term structure by taking the square 

root of equation (11). This provides one with a potential method for estimating long-
term volatility in a market-consistent manner. In practice, Milliman, a large international 
actuarial consulting firm does exactly this when constructing their Milliman Guarantee 
Index. Based on a GARCH(1,1) model and coupled with market quotes where avail-
able, Milliman obtain a transparent, market-consistent 30-year volatility term structure 
from which expected hedging costs of variable annuity guarantees are published in the 
Milliman Hedge Cost Index, available on Bloomberg (MLHCINEW Index). We include 
this example to show that GARCH models are actively being used to obtain long-term 
market-consistent volatility estimates.

4.4.2	 Practical GARCH Implementation Issues
4.4.2.1	 As with historical volatility estimation, one should first consider which 

underlying return series to model and subsequently how to correctly use the forecast 
volatility term structure. The initial consideration includes sample size and sampling 
frequency as sub-issues. The second consideration refers to the manner in which GARCH 
can be used in a simulation, pricing or hedging framework.

4.4.2.2	 Brownlees, Engle & Kelly (op. cit.) provide substantial empirical 
evidence that GARCH models perform best when using the longest available data series 
with frequent parameter updating. In terms of sample frequency, Alexander (2008b) and 
Poon (op. cit) state that GARCH models should ideally model daily (or intra-day) return 
data. Many of the effects that GARCH tries to capture are not readily apparent in monthly 
data because of the aggregation process and the fitted parameters are more likely to give 
spurious forecast results. Despite these misgivings, the authors fitted GARCH models 
to both daily and monthly return data, using the monthly results mostly for comparative 
analysis. Section 4.5 provides further detail on the empirical results.

4.4.2.3	 Section 3.3 above highlights the importance of choosing the correct 
underlying-asset return series on which to measure historical volatility. One has to make 
a similar decision when fitting GARCH models. As discussed above, one would ideally 
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want to estimate the volatility of either the τ-period log returns of the CTF series, rt , ,τ τ
CTF{ }, 

or the average volatility of the single-period log returns of the FTF series, { }FTF
,1,τtr . Note 

that return term and forward term are equivalent. Using equations (4) and (5) we have:

		

which, after some algebraic manipulation, gives:
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Therefore, the τ-period log return of the fixed-maturity τ forward can be written as a linear 
sum of (1) the daily changes in constant-term yields—the natural time-series choice for 
fixed-income modelling (Meucci, 2005), (2) the daily changes in constant-term dividend 
yield; and (3) the daily single-period log returns of the underlying asset over the specified 
period τ. Equation (16) thus neatly partitions the requisite forward modelling exercise 
into three distinct sections:
–– yield-curve forecasting;
–– dividend-yield forecasting; and
–– asset-price forecasting.

4.4.2.4	 A similar exercise for FTF
,1,t sr  produces the same partitions as above—

albeit in a clumsier expression. Whereas for a single constant-maturity forward one need 
only model the relevant fixed-term yield across the τ-period, one needs to model the 
entire yield curve up to term τ for a changing-maturity forward. Thus, the construction of 
a complete volatility term structure from either return series would necessitate modelling 
the entire yield curve.

4.4.2.5	 The natural candidate series for GARCH modelling is thus the daily 
underlying asset log return series. However, this should always be coupled with the 
respective yield-curve and dividend-yield models to calculate correctly the relevant 
forward return series. This can be done either by simulation or, if closed-form solutions 
exist, by analytic forecasting.

4.4.2.6	 One of the potential benefits of using a GARCH-based framework is 
that there exists a large body of work applying GARCH modelling direct to risk-neutral 
option pricing. For instance, Heston & Nandi (2000) and Duan, Ritchken & Sun’s (2006) 
GARCH models are often used in practice as alternative option pricing models to, say, 
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stochastic-volatility models. This allows one to price, hedge and manage risk effectively 
under the same framework, increasing overall modelling tractability and minimising 
model incompatibility issues.

4.4.3	GARCH  Long-Term Forecasting Caveats
Alexander (2008b) and Brownlees, Engle & Kelly (op. cit.) note that GARCH was 

not intended as a long-term forecasting model; at least in the actuarial sense. Rather, one 
finds that ‘long-term’ in the majority of GARCH literature refers to anything between one 
month and a year. Thus, one must always be aware that simply choosing the best fitting 
model may neither provide the best out-of-sample forecasts, nor the correct forecast 
dynamics. In fact, it is usually the long-term volatility parameter in GARCH models that 
is hardest to estimate when fitting. Alexander (2008c) notes that a common technique in 
practice is to fix the long-term volatility parameter before fitting the remaining model 
parameters to the data, a practice analogous to that advocated by APN 110.

4.5	 DAILY TOP40 AND MONTHLY ALSI GARCH VOLATILITY FORECASTS
4.5.1	 GARCH models were fitted to two datasets: the 1995 daily Top40 log 

returns and the 1976 monthly ALSI log returns. Model parameter estimation was done 
using the ARMAX-GARCH-K Toolbox in Matlab. The conditional return expectation 
in equation (7) is assumed to be constant. Using equations (10) and (11)—adjusted 
accordingly per model specification—a 30-year volatility term structure was forecast. 
Tables 1 and 2 provide summary fitting statistics for each dataset under the five candidate 
models and the two innovation distributions.

4.5.2	 On the basis of the minimum BIC scores, the GJR-GARCH(1,1) model 
provides the best fit for the daily Top40 dataset, whilst the basic GARCH(1,1) model is 
chosen for the monthly Top40 dataset. Unsurprisingly, use of the Student’s t distribution 
improves model calibration to both datasets in all cases bar one. Interestingly, choice of 
innovation distribution has a much larger effect on daily Top40 model performance than 
choice of model specification. The GARCH(1,1) model calculated using the Student’s 
t distribution provides a much better fit than any daily or monthly model under the 
Gaussian distribution. See Kulikova & Taylor (2010) for a more rigorous investigation 
of the effects of distribution choice on GARCH models of South African indices.

4.5.3	 Figure 10 displays the fitted daily Top40 volatility under the GARCH 
and GJR-GARCH models. Historical discrepancies between the different models are 
very slight. Whilst the benefits of time-varying GARCH modelling in comparison with 
constant volatility are reasonably clear, the real advantage of GARCH versus other time-
varying estimation methods lies in its ability to forecast volatility. Figure 11 shows the 
forecast daily Top40 volatility term structures from the GJR-GARCH and GARCH 
models respectively under each innovation distribution. In comparison with Figure 10, 
the differences between the models are clearly visible in the volatility forecasts. The 
GJR-GARCH models have significantly lower unconditional volatilities than their 
GARCH counterparts because of the additional leverage parameter γ.
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Table 1. Summary of GARCH models fitted to daily 1995 Top40 returns
Innovation distribution
Gaussian

Model DoF BIC

GARCH 0,20∙10–5 0,1088 0,8830 – – – –27515,01
GJR-GARCH* 0,21∙10–5 0,0479 0,8917 0,0958 – – –27574,40
EGARCH –0,2870 0,2391 0,9678 –0,085 – – –27541,04
NGARCH 0,25∙10–4 0,027 0,8171 – 0,4758 – –27317,07
APGARCH 0,10∙10–5 0,0012 0,8570 0,5941 1,1388 – –27358,01
Student’s t
GARCH 0,18∙10–5 0,1028 0,8893 – – 8,5884 –27647,24
GJR-GARCH* 0,19∙10–5 0,0491 0,8956 0,0863 – 9,3848 –27679,07
EGARCH –0,2601 0,2277 0,9709 –0,0768 – 9,3427 –27645,19
NGARCH 0,21∙10–8 0,0169 0,8653 – 0,5170 6,5658 –27501,67
APGARCH 0,10∙10–5 0,0032 0,8939 0,7013 0,8546 8,1516 –27549,22

*The models with the lowest BIC score.

Table 2. Summary of GARCH models fitted to monthly 1976 Top40 returns
Innovation distribution
Gaussian

Model DoF BIC

GARCH* 0,0003 0,1328 0,7919 – – – –1229,91
GJR-GARCH 0,0005 0,1057 0,7009 0,1056 – – –1225,07
EGARCH –0,7802 0,2600 0,8623 –0,0582 – – –1227,23
NGARCH 0,34∙10–6 0,0537 0,8505 – 0,4287 – –1228,96
APGARCH 0,0009 0,1257 0,8675 0,4875 0,0219 – –1118,03
Student’s t
GARCH* 0,0003 0,1144 0,8195 – – 10,653 –1232,57
GJR-GARCH 0,0004 0,0842 0,7740 0,0847 – 10,720 –1229,07
EGARCH –0,6744 0,2569 0,8815 –0,0633 – 10,304 –1232,50
NGARCH 0,13∙10–6 0,0769 0,8491 – 0,2919 9,6840 –1225,93
APGARCH 0,0025 0,1094 0,8662 0,4436 0,0813 10,089 –1227,73

*The models with the lowest BIC score.

4.5.4	 Table 3 gives the unconditional volatility for the GJR-GARCH(1,1) and 
GARCH(1,1) models for the daily 1995 Top40 dataset under both distributions, as well 
as the unconditional GARCH(1,1) volatility for the monthly 1976 dataset. As discussed 
above in section 4.4.2, GARCH volatility—equivalent to the estimated realised asset 
volatility—merely represents one part of the three-stage volatility estimation procedure. 
Thus by using the IVHV scaling factor range of 1,204–1,244 found in section 3.4, we 
can estimate long-term implied volatility. Using the daily GJR-GARCH results, we find 
a long-term volatility estimate range of 23,9 to 24,7%. The monthly GARCH estimate 
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range of 25,7 to 26,6% is somewhat higher. That being said, one should always treat long-
term GARCH estimates—that is, beyond a year—with particular caution and consider 
just how robust the forecasts are to model and distribution choice. In this case, use of 
the basic daily GARCH model leads to a much higher long-term volatility estimate of 
approximately 29%.

Table 3. Unconditional GJR-GARCH(1,1) volatility versus GARCH(1,1) equivalent

Dataset Model Innovation 
Distributions

Unconditional 
Volatility IVHV Scaled Volatility 

1995 – daily GJR-GARCH Gaussian 20,61% 24,81–25,64%
Student’s t 19,88% 23,93–24,73%

GARCH Gaussian 24,63% 29,65–30,64%
Student’s t 23,79% 28,64–29,59%

1976 – monthly GARCH Gaussian 21,82% 26,27–27,14%
Student’s t 21,36% 25,71–26,57%

Figure 10. Daily Top40 GARCH(1,1) and GJR-GARCH(1,1) volatility

Figure 11. Daily Top40 volatility term structure: GARCH(1,1) and GJR-GARCH(1,1)
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5.	 DETERMINISTIC VOLATILITY MODELLING

5.1	 According to the APN 110 sub-committee, all South African market participants 
in their 2010 survey used a time-varying deterministic volatility (TVDV) model for 
long-term implied volatility on equity indices at the time rather than a more sophisticated 
approach because of the lack of market data. Furthermore, all participants used an his-
torical volatility estimate as the limiting long-term volatility parameter in the prescribed 
TVDV model. In this section, a brief overview of TVDV models and their calibration 
is given. Two contemporary TVDV models used within the South African context are 
highlighted below, the deterministic volatility-term-structure model used by Barrie & 
Hibbert and the deterministic volatility-surface model currently used by Safex. Another 
candidate TVDV model commonly used but not discussed here is Gatheral’s (2006) sto-
chastic volatility inspired model.

5.2	� THE NATURE OF TIME-VARYING DETERMINISTIC VOLATILITY 
MODELS
5.2.1	 It is a common misconception held by market practitioners that TVDV 

models give constant volatility across different moneyness levels, where moneyness is 
defined as option strike price over underlying asset price. In fact, TVDV models essentially 
fit separate curves to each traded maturity and then use a time-dependent function to link 
these curves in order to create a surface. Thus, a TVDV model is naturally split into two 
curve-fitting exercises: initial fitting across strike prices and subsequent fitting across 
time. These two exercises are linked during the total calibration exercise so as to ensure 
no butterfly-spread or calendar-spread arbitrage across the constructed surface.

5.2.2	 In truth, the volatility surface from a TVDV model is not truly 
deterministic. Rather, TVDV is a deterministic function fitted to an underlying stochastic 
asset-price process. Thus, the TVDV surface remains stochastic because of its depend-
ence on the underlying asset-price process. In this sense, local volatility is actually a 
nonparametric TVDV model. However, the reader should not infer that implied volatility 
coincides with local volatility; they are disparate. Rather, Dupire’s (1994) equation pro-
vides a monotonic mapping between local and implied volatility. In contrast to determin-
istic models, stochastic volatility models assume that both the underlying asset-price and 
volatility processes are stochastic. See section 6 for more on stochastic volatility models.

5.3	 THE BARRIE & HIBBERT MODEL
5.3.1	 Barrie & Hibbert (BH) is a long-standing international financial 

consulting firm that provides comprehensive analytical support, particularly within 
the insurance sector. Their economic scenario generation (ESG) modelling platform is 
widely used in South Africa and the United Kingdom. Part of this platform is to provide 
accurate forecasts of long-term market-consistent valuation parameters. Specifically, the 
technical note by Roseburgh & Holmes (2006) outlines their approach to estimating 
long-term South African equity volatility by means of a simple TVDV model:
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The speed at which volatility converges to its long-run estimate σ∞ is controlled by the α 
parameter, while the parameter σ0 defines the instantaneous implied volatility.

5.3.2	 During the BH quarterly calibration process, σ∞ is fixed at 26% and 
the remaining two parameters are fitted to median, short-term (up to three years) implied 
volatility market quotes. The long-term volatility estimate of 26% was calculated by 
measuring the historical volatility of monthly equity returns over the 15-year period from 
1989 to 2005 (21,3%) scaled up by an IVHV factor of 1,2 and rounded up to 26%.

5.3.3	 Although the authors were unable to match exactly the BH historical 
volatility estimate, based on their estimations, ‘monthly equity returns’ most likely refers 
to monthly ALSI total returns. However, as discussed in section 3, the authors argue 
that, because of the choice of underlying return series and the sampling frequency of the 
returns, this is not the theoretically best justified method of measuring historical volatility. 
Use of what they suggest are the more correct historical volatility term structures given in 
Figure 6 leads to substantially higher long-term historical volatility estimates of around 
35%. The substantial difference clearly has large potential balance-sheet implications.

5.3.4	 In addition, section 3.4 suggests using a scaling factor of between 
1,204 and 1,244 rather than 1.2. While this may seem a fairly trivial difference in 
comparison with the difference in historical volatility estimates, use of the upper bound 
of the scaling factor would increase the long-term volatility estimate by one percentage 
point, and would further affect scenario analysis and stress-testing ranges. Given that 
long-term volatility estimation is so important in the valuation of embedded investment 
guarantees, best estimation practice should be followed as a matter of course, even if this 
only means a change of one percentage point in the volatility.

5.3.5	I mplementation of the BH Model
5.3.5.1	 The authors implemented the BH model using market-volatility quotes 

obtained from three market makers given at quarterly intervals up to a year, and subsequently 
for two-, three- and five-year terms. As per the original BH calibration note, the model 
is initially calibrated to the volatility quotes (‘basic’ calibration). It is then calibrated 
including a 15-year dummy volatility point of 26% (‘15-year’ calibration) and, finally, 
using 26% as the σ∞ parameter (‘standard’ calibration). This last calibration method is the 
standard BH method specified in the 2006 technical note. Figure 12 displays the BH model 
under the three different calibration methods. The black line represents the term structure 
calibrated under the standard BH calibration process. Given current market quotes, there is 
little difference between the standard and 15-year-dummy calibration methods.

5.4	 THE SAFEX MODEL
5.4.1	 An alternative TVDV model for the Top40 is that used by Safex, 

updated fortnightly. Based on the work of Kotzé & Joseph,12 Safex implemented a 

12	Kotzé & Joseph, supra
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deterministic volatility model in which each (short-term) Top40 option maturity is mod-
elled separately by a quadratic function. These maturity-specific curves are then linked 
across term in order to create a complete volatility surface. This is done by fitting an 
inverse power function to the estimated at-the-money (atm) volatility term structure. The 
final arbitrage-free surface is then a combination of the modelled volatility term structure 
and the floating volatility skews modelled from each quadratic function. Mathematically, 
this process can be described as follows:

		

float model atm
, ,

model 2
, 0, 1, 2,
atm

0, 1, 2,

τ τ τ

τ τ τ τ

τ τ τ τ

σ σ σ
σ β β β
σ β β β

= −
= + +
= + +

K K

K K K 	 (18)

		  atm
λτ

θσ τ= 	 (19)

		  surf float atm
, ,τ τ τσ σ σ= + K K 	 (20)

In these equations, τ is the time to maturity in months, K is option moneyness and the 
parameter set ( )0, 1, 2,, ,τ τ τβ β β  control the shift, slope and curvature characteristics of 
each volatility curve respectively.

5.4.2	 The term structure function given in equation (19) was initially postu-
lated by Gatheral (op. cit.) as a deterministic counterpart to the discrete Heston (op. cit.) 
stochastic differential equation. In this vein, θ controls the short-term curvature whilst 
λ controls the slope of the term structure. Equation (19) can be used direct with current 
market quotes to estimate a volatility term structure in a similar manner to the BH imple-
mentation given in section 5.3.4. Unreported results of such a study lead to comparable 
findings. One interesting point to note is that the Safex term structure function produces a 
curve that tends to the long-term boundary at a slower rate. The Safex term structure still 
shows material curvature far beyond that given by the BH term structure, which gener-
ally flattens out between 15 and 20 years.

Figure 12. BH volatility term structures calibrated to March 2013 market volatilities
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5.4.3	 Kotzé & Joseph13 show that equation (19) fits the term structure well. 
Furthermore, they give evidence that this functional form is a viable model for each 
βi parameter over time. In this manner, Kotzé et al. (2013) showed that one can fully 
characterise an implied volatility surface using only six parameters:

		
0 01 2

20 1 2 0
, ,   0.τ λ λλ λ

θ θ θ θσ
τ τ τ τ

= + + >surf
K K K where 	 (21)

5.4.4	 Figure 13 displays the long-term implied volatility surface calculated 
from equation (21) and the published Safex parameters as at 19 March 2013. The condition 
of no arbitrage is guaranteed within the construction process. See Kotzé & Joseph14 and 
Kotzé et al. (2013) for full implementation details. The 50-year at-the-money implied 
volatility is 27,54%, the 50-year volatility curve ranging between 28,27% and 26,82%. 
The comparative 30-year values are 25,76%, and 26,79% to 24,76% respectively. Both 
term-structure point estimates and volatility curve ranges appear reasonable.

5.4.5	 It can be argued that the Safex implied volatility surface given in 
equation (21) is the most market-consistent of all estimated surfaces, given that mark-
to-market values of both vanilla and exotic options are calculated from this surface. 
However, one must realise that the Safex volatility model was constructed for explicitly 
modelling the short-term implied volatility surface. During the calibration, no preference 
is given to any specific long-term volatility estimate. Thus the estimated long-term 
volatility term structure can move substantially in a fairly short length of time. Figure 
14 illustrates exactly this feature by plotting changes in the Safex 30-year term structure 
since December 2009. Within a period of three months, 30-year estimated volatility 
(shown in bold face) can change by as much as 7%, depending on changes in the short-

13	Kotzé & Joseph, supra
14	supra

Figure 13. Safex Top40 implied volatility surface at 19 March 2013



SAAJ 14 (2014)

ESTIMATING LONG-TERM VOLATILITY PARAMETERS FOR MARKET-CONSISTENT MODELS | 47

term options market. Over the full three-year period, long-term volatility itself shows 
high volatility, ranging between 20,66% and 35,41%.

5.4.6	 The use of the direct Safex volatility surface parameters is therefore 
not viable. A better method for incorporating the changing Safex volatility surface would 
be to blend the current short-term Safex term structure with the average long-term 
Safex volatility term structure. A suitable exchange point is the five-year mark as this is 
generally the term limit on volatility quotes obtainable in the market. This builds on the 
general idea of Monte Carlo simulation, which approximates the expectation of a random 
variable by calculating the discrete average of numerous simulated outcomes or paths. In 
this instance, the random variable is the unobservable long-term volatility term structure 
and the historical Safex volatility surfaces are the simulated paths.

5.4.7	 Figure 15 illustrates the mean volatility term structure using the Safex 
volatilities given in Figure 13. The median, minimum and maximum values are also 
displayed. Both the sample mean and median 50-year volatility estimates appear reason-
able at 28,51% and 27,10% respectively. We also note that the mean and median term 

Figure 14. Safex volatility term structures from December 2009 to March 2013

Figure 15. Average Safex volatility term structure since December 2009
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structures are robust to outliers and can easily be further refined by considering more 
sophisticated weighting schemes.

5.4.8	A  Viable Market-Consistent Long-Term Volatility Surface
5.4.8.1	 Using equations (18) to (20) and the ideas outlined above, one can 

directly construct an implied volatility surface that is consistent with the current mark-
to-market volatility surface at the short end, and which also provides reasonable and 
stable volatility estimates at the long end. The implementation issues and modelling 
complexity inherent in the IVHV method is neatly sidestepped. Moreover, a complete 
volatility surface is given rather than simply a volatility term structure. This surface has 
the added benefits of being arbitrage-free by construction, continuous and fully param-
eterised. These last two points are particularly useful if one wants to calibrate, say, a local 
volatility model to the implied volatility surface and to value exotic derivative structures.

5.4.8.2	 A simple method to construct a viable market-consistent long-term 
volatility surface direct from Safex data—or any suitable TVDV model for that matter—
is as follows:
(1)	� Compute the (weighted) average Safex volatility term structure, atm

, τσT , using the 
published historical volatility parameter datasets, sampled quarterly:

		  atm atm
, , ,

1
τ τ τσ σ

=

=∑ 

T

T t t
t

w .	 (22)

(2)	� Using the most recent Safex parameter dataset, calibrate the volatility term 
structure, atm , as per the usual Safex methodology but now including an X-year 
volatility fixed or dummy point, where 5 ≤ X ≤ 10. The choice of X and type of 
point used allows one to optimise the short-term fit of the volatility term structure 
as well as the smoothness of the blended current-to-average term structures;

(3)	� Calculate the most recent floating volatility curves, float
, ,τσT K , as per the first line of 

equation (18), but with model
, ,τσT K  calculated by means of the alternate form given in 

equation (21).
(4)	� Construct a market-consistent long-term volatility surface from the floating vola-

tility curves in step 3 and the blended term structure in step 2, using equation (20).

5.4.8.3	 Quarterly sampling in step 2 helps avoid unnecessary effects on long-
term estimates from short-term microstructure noise and also reduces autocorrelation in 
the sampled volatility-surface time series.

6.	 CONTINUOUS-TIME STOCHASTIC VOLATILITY MODELLING
6.1	 MOTIVATING STOCHASTIC VOLATILITY

6.1.1	 An alternative to the TVDV models given in section 5 is stochastic 
volatility (SV) models. A useful reference for SV modelling—and volatility modelling 
in general—is Gatheral (op. cit.). Sections 6.1 and 6.2 follow closely from that work. 
Within the SV family, both the underlying asset returns and volatility itself are considered 
to be random variables. Because of this assumption, SV models are able to explain why 
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volatility is a function of option strike and term to maturity in a self-consistent manner. 
From a practical perspective, SV models allow one to value exotic, path-dependent options 
more accurately because the dynamics of the volatility surface—the volatility smile—are 
embedded within the stochastic volatility process. Gatheral (op. cit.) notes that volatility 
is almost always modelled as a mean-reverting process. A simple rationalisation is that 
in the long-term, volatility cannot be negative, nor is it likely that volatility will be above 
100%. Hence, mean reversion of volatility is established by necessity. Following from 
these observations, a general SV model is given by:
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where St is the underlying asset price, μS is the instantaneous drift of the asset returns, 
vt is the share-price variance, η is the volatility of volatility, ρ is the correlation between 
asset returns and changes in variance, and dZi,t are Weiner processes. The functions ( )α   
and ( )β   control the variance dynamics and are left in general form for now.

6.1.2	 Since the mid-1990s there has been a proliferation of SV models, each 
with different functional forms of ( )α   and ( )β  . The dynamics of the implied volatility 
surface are thus dependent on one’s choice of SV model, with alternative models 
favoured in each asset class. The shape of the implied volatility surfaces generated 
from an SV model is not particularly dependent on the choice of model. That said, SV 
models provide a reasonable fit to the market-implied volatility surface—very short-term 
expirations are generally poorly fitted because continuous diffusion is unable to produce 
sufficient slope—and empirically display reasonably stable fitted parameters over time 
(Gatheral, op. cit.).

6.1.3	 The phrase ‘continuous-time’ is attached to this section because, 
in truth, discrete-time SV models are discussed at length in section 4 under the more 
common moniker of ARCH and GARCH. Although GARCH models do describe the 
features of the joint asset and volatility processes in a simple and insightful manner, they 
do not—in general—directly address the challenges of pricing and hedging derivatives. 
In contrast, continuous-time SV models are able to do exactly that.

6.1.4	 One of the most commonly used SV models is the specification given 
by Heston (op. cit.). For the reasons outlined in ¶6.1.2 and for the sake of brevity, this 
paper provides an empirical analysis based on the Heston model alone and that analysis 
is followed with a more general discussion about the potential advantages of extended 
SV models. As always, the analysis and discussion are based on a market-consistent, 
long-term viewpoint.

6.2	 THE HESTON STOCHASTIC VOLATILITY MODEL
6.2.1	 Since inception, the Heston (op. cit.) model has been the prevailing SV 

model of choice for the equity space, particularly within the South African market. Given 
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this prevalence, it is important to analyse whether the model provides reasonable estimates 
for long-term volatility. Although not especially realistic in terms of the dynamics of 
the variance process—a feature shared by a number of stochastic volatility models—its 
wide appeal is that it admits a quasi-closed-form solution for vanilla option pricing. This 
makes the Heston model computationally far more efficient than the majority of other SV 
model candidates. Further, according to Gatheral (op. cit.), in a world governed by the 
need for fast and efficient pricing of exotic derivatives under Monte Carlo methods, this 
feature is a prime reason for its continuing prevalence. This section gives a brief outline 
of the Heston model and of the role that each parameter plays before moving on to an 
analysis of long-term implied volatility surfaces calibrated to the South African market 
since December 2009.

6.2.2	F undamental Theory of the Heston Model
6.2.2.1	 Using the notation of equation (23), the Heston model is given as
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where κ, θ and η are strictly positive. Each parameter in the volatility stochastic differential 
equation above has an intuitive interpretation and effect on the overall surface:
–– κ determines the speed of mean reversion, is largely responsible for the volatility term 

structure and also dampens any skew at longer terms.
–– θ is the mean-reversion level and determines the long-term volatility that the surface 

will tend towards.
–– η is the volatility of volatility, which adds convexity to the surface. This parameter is 

normally quite sizeable in order to accurately fit the market surface.
–– ρ is the correlation between change in volatility and asset return and determines the 

short-term volatility skew. Normally, one needs ρ < – 0,7 to accurately fit the short-
term equity market volatility curve.

6.2.2.2	 In order for the variance process to be greater than zero, one must 
satisfy the Feller condition κ θ > ½ η 2. However, as noted by Jäckel,15 this condition is 
often not satisfied for market-calibrated parameters. Thus, the Heston model imposes 
dynamics whereby volatility can (1) reach zero and stay there for a long period, and 
(2) stay very high or very low for long periods of time. Because of these problems, 
a great deal of research has gone into the creation of efficient and robust simulation 
algorithms for the Heston model—see, for example, Andersen.16

15	P Jäckel (unpublished). Stochastic Volatility Models: Past, Present & Future. Working Paper, 
2008. Available at http://bfi.cl/papers/

16	L Andersen (unpublished). Efficient Simulation of the Heston Stochastic Volatility Model. 
Working Paper, 2007. Available from SSRN
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6.2.2.3	 One needs to be able to trade both the underlying asset and options 
of equal or longer term to the instrument in question in order to continuously hedge 
the specified exposure. In practice, this is not usually possible, especially for long-term 
instruments and thus one is actually then operating in an incomplete market. This usually 
leads to an optimal pure equity hedge ratio that is less than that given in the Black–
Scholes (1973) framework. Whilst not directly relevant to the problem at hand, these 
factors may become relevant. That depends on how the model, and its latent long-term 
volatility estimate, is ultimately used.

6.2.3	E mpirical Analysis of Heston-Implied Volatility Surfaces
6.2.3.1	 The Heston model is calibrated to the observed South African 

volatility surface at each close-out maturity date back to December 2009. Parameters 
are calibrated by minimising the squared option pricing error using the GRG nonlinear 
algorithm within Excel’s ‘solver’ add-in. The advantage of using this algorithm over, say, 
the commonly used Nelder–Mead simplex method, is that the GRG nonlinear method 
can directly accommodate constraints. A long-run variance-constrained calibration, 
where 20,26θ ≡ , is compared with an unconstrained base case.

6.2.3.2	 According to Jäckel,17 calibrated Heston parameters tend to be stable 
over time. However, as shown in Figure 16 below, this is not really true for either the 
constrained (solid lines) or unconstrained parameters (dotted lines).

6.2.3.3	 Of the four model parameters, only ρ shows high consistency both over 
time and between constrained and unconstrained cases. This is to be expected because 
the short-term market skew remains fairly constant over time and high ρ  values are 
an SV model’s only mechanism for matching this empirical fact. Contrastingly, mean-
reversion speed, κ, and volatility of volatility, η, show the largest deviations over time 
for both constrained cases. In particular, notice how high κ is pushed by imposing the 
constraint on the long-run variance. This is because when θ is fixed, the only parameter 
that allows the term structure to vary is the speed of mean reversion. In certain cases, 
this becomes unrealistically high in order to accommodate the short-term market surface. 
Finally, notice the extreme differences between the constrained and unconstrained long-
term volatility, θ , over the three-year period. In general, one must always be cognisant 
of the severe effects that a constraint on long-run model variance has on the remaining 
model parameters.

6.2.3.4	 Figure 17 gives the Heston-implied volatility term structure under 
the two calibrations. The instability in the parameters is clearly apparent in the short-
term volatility differences. When one constrains the long-run variance though, notice 
how similar the models are at longer terms. Irrespective of the underlying short-term 
market surface, the 30-year constrained implied volatility lies between 23% and 25% 
and the term structure beyond the 10-year mark is remarkably similar. In contrast, both 
the ending points and curvature of the unconstrained term structures show significant 
variability. The 30-year volatility ranges between 22,1% and 37,8%.

17	Jäckel, supra
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Figure 17. Heston model 30-year volatility term structures since December 2009

              Term (years)                            Term (years)
      (a) Constrained term structure              (b) Unconstrained term structure

Figure 16. Constrained (solid) and unconstrained (dotted) Heston model parameters 
over time
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 6.2.3.5	 The unconstrained Heston term structures are actually quite similar 
to those calculated from the Safex TVDV model. This is not surprising, given that the 
Safex model uses a Heston-inspired function to fit the volatility term structure. This 
similarity suggests that the additional step of fitting a Heston model to a market surface 
has little marginal benefit over using the Safex model direct. We stress though, that this 
finding is strictly applicable only for the Safex and Heston models. Furthermore, in 
comparison with the Heston model, the Safex TVDV model arguably provides equal 
or better tractability and computational efficiency under simulation, finite-difference or 
tree-pricing methods.

6.3	 EXTENDING STOCHASTIC VOLATILITY MODELS
6.3.1	 Jump Diffusion, SVJD and SLV Models

6.3.1.1	 Dupire18 points out that there are two possible mechanisms for ob
taining negative equity volatility skews:
(1)	� Model the negative relationship between the underlying asset price and volatility, 

either in the form of a deterministic dependence (TVDV or local volatility 
models) or as a negative correlation (SV models); the greater the dependence or 
correlation, the greater the negative skew.

(2)	� Model the discontinuity of asset prices by including jumps in the underlying asset 
process; a higher jump frequency and more probable downward jumps increase 
negative skew.

6.3.1.2	 One of the problems with SV models is that they are unable to produce 
a negative skew great enough to fit the short-term market volatilities. This is an issue if 
one is trying to obtain a market-consistent, long-term volatility estimate, as the definition 
of market-consistency requires the specified stochastic model to accurately replicate 
short-term traded option prices. In order to ensure market consistency, one must then 
include jumps in the asset process as well as the standard continuous diffusion. Merton 
(1976) laid the foundation for these ‘jump-diffusion’ (JD) models by including jumps as 
an independent Poisson process with log-normally distributed jump size to the common 
Black–Scholes asset process. This neatly accounted for discontinuous stock prices and 
uncertain jump size whilst still maintaining a high level of tractability. The effect on 
the volatility surface is that one can now create a large negative skew at the short-term. 
However, this effect rapidly disappears with term as the aggregated diffusion volatility 
quickly overwhelms any effect from asset jumps.

6.3.1.3	 The next obvious step was to link stochastic volatility with jump 
diffusion models. Such a model would be able to accurately capture the short-term 
skew and also account for the longer-term dynamics of the surface. Thus, stochastic 
volatility jump diffusion (SVJD) models were born, the Bates (1996) specification—a 
combination of the Heston and JD models—being the most ubiquitous in practice. 
However, as Gatheral (op. cit.) notes, SV and SVJD models essentially differ only at 

18	Dupire (unpublished b), supra
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very short terms—making the distinction in any long-term exercise fairly trivial—and 
the independence of asset jumps to volatility gives the counter-intuitive result that 
volatility remains constant following a jump. Therefore, the additional short-term market 
consistency obtained from the additional asset jumps has little effect on the estimated 
long-term volatility parameter.

6.3.1.4	 That said, it would appear from empirical results (Andersen & 
Andreason, 2000; Duffie, Pan & Singleton, 2000; Gatheral, op. cit.) that the SVJD model 
fits the data better than most pure SV models and, importantly, this additional accuracy is 
not overly expensive in terms of tractability.

6.3.1.5	 A recent paper by Manistre (2010) considers a special case of Merton’s 
JD model derived under a cost-of-capital-inspired  -measure rather than the usual risk-
neutral  -measure. Manistre uses this model to “derive a long-term implied volatility 
assumption from first principles”. Whilst novel in its derivation, the final model put 
forward is essentially an extended JD or SVJD model that explicitly allows for parameter 
shocks in the governing asset or asset-volatility processes. It does not strictly help one 
set a long-term volatility estimate. Rather, it enables one “to defend a long-term implied 
volatility assumption” by deconstructing the specified estimate into several cost-of-
capital-inspired parameters. One is then able to assess the estimate’s reasonability by 
somehow analysing these underlying parameters.

6.3.1.6	 A final extension to the basic SV model is the stochastic local volatility 
(SLV) model class, widely used in foreign-exchange markets.19 The possibility of jump 
processes is included in the SLV model class.20 By incorporating features of local, 
stochastic and jump models one has the flexibility needed not only to calibrate to a 
market volatility surface, but also to accurately capture the correct surface dynamics. 
However, it remains difficult to set the long-run volatility parameter.

6.3.1.7	 In summary, basic and extended SV models allow one to capture 
more and more of the empirical features of the volatility surface. However, what must 
always be remembered is that by picking a certain model, one is latently constraining the 
possible dynamics of the volatility surface. This is different from merely fitting a set of 
vanilla options maturing at a specific time. True modelling of the surface dynamics would 
require calibration to all existing derivative contracts, including path-dependent exotic 
derivatives. Secondly, for such long terms, the actual model specification becomes of 
secondary concern when one imposes a fixed long-term variance parameter. Thirdly, SV 
and extended SV models are not ideal candidates for estimating this long-run parameter. 
To paraphrase Rebonato (2004), one can define this problem as putting “the wrong 
parameters in the wrong SV formula to obtain the right price of plain vanilla options.”

19	See, for example, C Alexander & L Nogueira (unpublished). Stochastic local volatility. Working 
paper, 2008. Available at SSRN 1107685

20	See, for example, Lipton (2002)
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7.	 NONPARAMETRIC BREAK-EVEN VOLATILITY
7.1	 INTRODUCING NONPARAMETRIC PRICING METHODS

7.1.1	 Sections 2 to 6 highlight several different parametric classes of long-
term volatility candidate models that can be calibrated to the market through a combination 
of sophisticated underlying process dynamics or distributional assumptions. As shown, 
this can lead to a practitioner (1) imposing material constraints on the underlying return 
distribution and (1) inferring the incorrect underlying dynamics because of the calibration 
process. Possibly a more fundamental approach is rather to ask: What should the implied 
volatility surface be, given only a history of underlying market data? Or in statistical 
parlance: Is there a nonparametric method capable of obtaining market-consistent 
implied volatility surfaces? In this section (section 7), Dupire’s21 break-even volatility is 
considered, while section 8 introduces Stutzer’s (op. cit.) canonical valuation.

7.1.2	 It is well-known that implied volatility on equity indices consists of:
(1)	� a theoretical curve, based on the market’s expectation of future asset behaviour; 

and
(2)	� a supply-demand curve, based on the current microstructure noise and broader 

systemic make-up of the market.

7.1.3	 Element (2) indicates the fluctuating risk premium and is strongly 
influenced by trading behaviour. On the other hand, (1) truly reflects the fair value of 
a traded option. Nonparametric pricing methods are directly focused on (1)—although 
(2) can easily be accommodated—and are thus indicative of the fair volatility surface. 
In this manner, nonparametric methods allow one to calculate market-consistent, 
fair surfaces for any underlying security—single counter or basket—that has a price 
history, irrespective of whether option information is available. This final feature makes 
nonparametric methods an ideal candidate for estimating market-consistent long-term 
volatility parameters.

7.1.4	 The sole use of historical market data has several advantages. From 
a mathematical standpoint, the smoothness assumptions usually required by kernel-
smoothed empirical distributions are not required. From a financial standpoint, the 
historical return distribution is a rich source of information, latently incorporating the 
stylised facts described in section 4.1. In addition, one easily incorporates stochastic 
interest rates and dividends, as well as multiple underlying assets.

7.2	 INTRODUCING BREAK-EVEN VOLATILITY
7.2.1	 Break-even volatility (BEV) is simply defined as the volatility level 

that gives a zero profit and loss for a delta-hedged option. It stems from the fact that 
option pricing is built around the concept of dynamic replication. Using small enough 
time steps, a portfolio of the underlying asset and cash can be made to replicate an 
option with arbitrary closeness conditionally on using the correct delta. Empirically, 
arbitrary closeness is not possible and so one obtains a profit and loss function, which is 

21	Dupire (unpublished a), supra
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dependent—amongst other variables—on the chosen volatility, ( )& σ impP L . Critically, 
this function always has a unique strictly positive root, or BEV.

7.2.2	 Following standard Black–Scholes theory but in a discrete setting, the 
profit and loss of a delta-hedged option expiring at time T can be written:

		  ( ) ( ) ( ), 2 2 2
,1

1

1& , ,
2

σ σ−− −

=

= Γ − ∆∑ t T t
T

r T t
imp t t t imp t

t

P L t T e S r ,	 (25)

where Γt is the gamma of the option at time t and Δt is the annualised time-step. Equation 
(25) shows that BEV is essentially the gamma-weighted average of the quadratic return. 
Moreover, because gamma is a function of term and option strike, one can actually 
extract an entire volatility curve from a single historical path.

7.2.3	 The BEV algorithm based on equation (25) is fairly simple to 
implement in practice. However, it can be challenging to find a smooth surface. Firstly, 
because of the circular dependence on implied volatility, BEV must be found by iterating 
through a fixed-point algorithm. Secondly, one must consider how to aggregate over 
time. According to Dupire,22 one obtains a smoother surface if one solves for the implied 
volatility that cancels the average P & L over the different time periods, rather than taking 
the average of the volatilities that cancel the P & L within each time period. Thirdly, 
a moneyness framework guarantees that each time period can be used equivalently 
irrespective of absolute price-level changes over time. Finally, Dupire23 notes that 
interest rates tend to have little effect on the resulting BEV surfaces. In this paper, for the 
sake of completeness, interest rates have been included in all calculations.

7.2.4	 Given that BEV is calculated by re-weighting daily return volatility, as 
proxied by squared returns, and that, across all strikes at a specific term, gamma is equal 
to one, the corresponding historical volatility is actually equivalent to the average of the 
BEVs across all strike levels. Thus, the imputed volatility curve at each maturity is essen-
tially dependent on the path that the returns take across each strike-specific gamma surface.

7.2.5	 As with all methods, there are several caveats of which to be aware. 
Firstly, this method is data-intensive and requires a large amount of data for convergence. 
Secondly, the surface obtained is not where the market should be trading. The BEV 
surface solves for zero P & L, which means that it assumes no volatility risk premium for 
any option writer. That is evidently false in practice. However, by purposefully excluding 
supply and demand of microstructure noise, one can get closer to a theoretically fair 
volatility surface. Should one wish, the complete risk-premium surface can then be 
measured as the spread between fair and market volatilities.

7.3	 SOUTH AFRICAN BREAK-EVEN VOLATILITY SURFACES
7.3.1	 Using the return series { },1

FTF
tr  calculated from the 1995 daily dataset 

sampled at monthly intervals, a fair BEV surface was constructed across an 80–120 
moneyness range and out to a term of 10 years. Because of computational time constraints 

22	Dupire (unpublished a), supra
23	supra
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the smaller surface is given here. Given that the BEV method is directly linked with 
dynamic replication, it is necessary to have at least daily data available. This obviously 
limits the maximum volatility term unless one considers bootstrapping methods to 
create a longer daily price history. Figure 18 displays the complete BEV surface, while 
Figure 19 gives the corresponding volatility term structure.

7.3.2	 The short-term BEV curves show large negative slopes for the 80–
105 moneyness range before noticeably flattening out and gently sloping up. Known as 
the volatility ‘smirk’, this pattern is a common empirical finding in short-term equity 
markets worldwide. The surface tends to flatten rather quickly across term, largely flat 
from the 4-year mark onwards. Even though there has been no calibration, the produced 
surface seems quite reasonable across all terms.

7.3.3	 Considering its calculation method, BEV is most comparable with the 
average realised volatility of the FTF return series. While there are some similarities 
between the 1995 FTF and BEV volatilities, it is rather their differences that catch one’s 
attention. BEV shows a much more gradual increase. In contrast, the 1995 FTF volatility 
term structure is upwards-trending, ending at a volatility around 32%. The BEV term 

Figure 19. Fair BEV term structure versus the 1995 daily FTF volatility term structure

Figure 18. Fair BEV surface from the 1995 daily FTF Top40 dataset
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structure is also more uneven; a characteristic indicative of discrete hedging and also the 
small number of data points, particular beyond 15 years. Furthermore, Dupire24 notes 
that the BEV approach was not specifically designed to create a volatility term structure 
because the average volatility at each maturity is simply equal to the historical volatility 
of the underlying return series.

7.3.4	 This gives one direct insight into the link between the empirical return 
distribution and the option price. Consider a series of fixed-strike volatility lines over 
the term of the BEV surface. The difference between each of these lines and the average 
or historical volatility term structure is exactly caused by the variations in empirical 
return distribution across term, coupled with a deterministic mapping function (the 
gamma surface) that translates these distributional variations into corresponding option 
equivalent variations, specific to term and strike. Furthermore, this is all done consistently 
with arguments about dynamic replication arguments. In a market where long-term 
options are unavailable and synthesis by some form of replication is commonplace, this 
makes the BEV surface an ideal candidate for pricing or hedging

8.	 NONPARAMETRIC CANONICAL OPTION VALUATION
8.1	 INTRODUCING CANONICAL VALUATION

8.1.1	 An alternative, nonparametric approach is the canonical valuation 
(CV) method proposed by Stutzer (op. cit.) and further developed by Duan,25 Alcock & 
Auerswald (2010), and Haley & Walker (2010). This pricing technique uses only historical 
market data and thus avoids the necessity of specifying underlying return dynamics. 
Stutzer normalised the historical return distribution via the principle of minimum relative 
entropy in order to find a risk-neutral option price. Entropy is a well-established concept 
in information theory and statistical mechanics, and is used extensively in a wide range 
of scientific fields. See section 8.2 for more detail. This method is very robust and can 
be easily altered to include multiple underlyings, empirical option-price data and early 
exercise for American options. Alcock & Gray (2005) extended Stutzer’s (op. cit.) 
original work by developing the theory for a nonparametric, dynamic delta-hedging 
portfolio, which provided investors and traders with a tractable nonparametric valuation 
framework for European vanilla and basket options.

8.1.2	 A large body of work has evaluated the pricing accuracy of CV relative 
to Black–Scholes under several different volatility regimes. Duan,26 Gray & Newman 
(2005) and Alcock & Auerswald (op. cit.) show that the CV method performs arguably 
as well as the BS formula with an historical volatility input under a pure Black–Scholes 
framework. More importantly however, they show that under stochastic volatility, the 
nonparametric valuation method performs significantly better across the board and 
especially so for out-of-the-money options, which are notoriously difficult to value.

24	Dupire (unpublished a), supra
25	JC Duan (unpublished). Nonparametric option pricing by transformation. Working Paper, 

Rotman School of Management, University of Toronto, 2002
26	supra
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8.1.3	 Whilst several other nonparametric pricing approaches have been 
proposed, Alcock & Carmichael (2008) note that the majority of these approaches rely 
heavily on existing option prices.27 In reality, these ‘nonparametric’ methods should be 
viewed more as numerical interpolation algorithms rather than true nonparametric option 
valuation theories.

8.1.4	 CV pricing has been applied in several different areas. Zou & Derman28 
introduced the notion of strike-adjusted spread (SAS), defined as the spread between 
the observed BS-implied volatility and the BS-implied volatility imputed from the 
nonparametric CV option prices. SAS is, in essence, a one-dimensional metric ranking 
the relative richness of equity options across strike for a fixed option term, measured 
over time. Cakici & Foster (2001) followed on from this and used CV to price currency 
options, with encouraging fit statistics.

8.1.5	 Cakici & Foster (op. cit.) provided—to the authors’ best knowledge—
the only case where the term structure of volatility has been evaluated. They used 
CV prices and the imputed volatility term structure to show that the observed term 
structure is well explained by their estimated forward distribution, without resorting to 
explanations based on market imperfections. They further concluded that the assumption 
of a specific functional form for returns (dynamic or otherwise) would imply severe 
pricing prejudices.

8.1.6	 Another study exploring the link between the CV-implied volatility 
surface and the market-implied volatility surface is that of De Araujo & Maré (2006). 
Using the revised CV method proposed by Duan,29 De Araujo & Maré (op. cit.) conducted 
a South African study on Top40 index options, which showed that the implied volatility 
surface obtained from the calculated CV option prices was similar to that implied by 
the market. Following from this insight, they motivated for the use of the CV method to 
generate volatility surfaces for illiquid single-stock options.

8.2	 OVERVIEW OF CANONICAL VALUATION METHODOLOGY
8.2.1	 The theory of option pricing is based on the proposition that, if no 

arbitrage opportunities exist within a market, there exists a risk-neutral return distribution 
 , such that the value ,it TV , of a contingent claim at time ti on an underlying asset priced 
St is given by the discounted expectation of the payoff. Mathematically, we write

		  ( ) ( ) ( ),
,   ,  | , − −  =  

t Tr T t
t T T T tV S e f S T S t , 	 (26)

where [ ]|    is the conditional expectation under the risk-neutral measure   and 
( ),Tf S T  is the payoff function. Thus, if one knows  , one can calculate the value of 

27	See Fengler (2005).
28	J Zou & E Derman (unpublished) Strike-adjusted-spread: a new metric for estimating the value 

of equity options. Goldman, Sachs Quantitative Strategies Research Notes, 1999. Available at 
http://ederman.com/new/docs

29	Duan, supra
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any European option contract. In the Black–Scholes framework, the log-normal density 
function with given volatility is assumed to be the implied risk-neutral continuous 
distribution  . Other pricing theories assume different underlying distributions. Stutzer 
(op. cit.) challenged this assumption by considering the case where one does not want to 
assume a particular continuous-time process. Based on the fundamental option valuation 
theory above, Stutzer examined the estimation of   direct from historical data via the 
following three-part nonparametric method:
(1)	� For a statistically relevant period, historical asset returns and risk-free rates are 

used to estimate the future real-world probability distribution, ̂  of the underlying 
asset price at time T. In this case, ‘statistically relevant’ refers to the descriptive 
statistics of the chosen period, and more specifically, the skewness and kurtosis 
of the return distribution.

(2)	� The estimated future real-world distribution is transformed into an estimated 
future risk-neutral density ̂  of the equivalent martingale measure   through 
the principle of minimising relative entropy.

(3)	� The derivative contract is valued by substituting ̂  in equation (26). Fair CV 
volatility at time t for strike level K and option term τ, denoted , ,τσ CV

t K , is then 
defined as the BS-implied volatility imputed from using the CV option price.

8.2.2	 The true difference between Stutzer’s method and other return-
probability-reweighting schemes was in the use of the relative-entropy divergence 
measure. For a proper mathematical treatment of CV pricing, please see Appendix B.

8.2.3	 Motivating CV: Information, Uncertainty and Entropy
8.2.3.1	 Information in financial markets plays an important role in shaping an 

investor’s market view. If one is to believe the efficient markets hypothesis (EMH)—in 
whichever form—this role is nearly sacrosanct. In essence, asset prices are assumed to 
be subjective, functional transformations of all incoming admissible information, where 
‘admissible’ is specified by the form of the EMH. The definition of information is derived 
within the rich scientific field of information theory. Here a simple, pedagogical example 
is described.

8.2.3.2	 Consider an asset price X that either increases with probability p or 
decreases with probability 1 – p. If we knew a priori that p = 0,99, then we would say that 
X is almost certain to increase and is thus almost perfectly predictable. Because of this, 
we learn fairly little when X does, in fact, increase. If however, X actually decreased, 
then we should gain additional information about the asset price process. Contrarily, if 
we knew a priori that p = 0,50, then we would have maximal uncertainty about the future 
value of X, and in this case both an up- and a down-movement should provide us with 
the same amount of information. Following from these simple intuitions, we can define 
the information, ( )I  , obtained from the occurrence of a random event with assumed 
probability p:
		  ( ) ( )ln= −I p p .	 (27)
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8.2.3.3	 Stutzer (op. cit.) motivated the use of the uniform distribution for the 
estimated future real-world asset distribution ̂ . Using the general assumption that asset 
returns are generated by an unknown, ergodic Markov chain, that author noted that the 
uniform distribution is an optimal nonparametric estimator of the unknown, invariant 
real-world distribution  , given that its rate of convergence is the fastest among all 
such consistent estimators. In addition, Zou & Derman30 provide a financial motivation 
for using a uniform prior probability distribution based on the fact that markets in 
equilibrium must, perforce, have equivalent supply and demand. This in turn implies 
that an equal number of investors think that a stock is both rich and cheap, thus implying 
that the expected return distribution must display maximum uncertainty.

8.2.3.4	 Using equation (27), we define the Shannon–Gibbs–Boltzmann 
entropy, ( )H  , of the variable X, whose ith observation has probability pi, as the 
expected value of information obtained across all possible observations:

		  ( ) ( )
1
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=
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i i
i
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8.2.3.5	 For our example above, it is simple to show that ( )H X  is maximised 
when p is equal to 0,50. Because all probabilities are less than 1, entropy is always positive. 
Higher expected values of information imply a greater spread of probabilities and thus 
greater uncertainty within the distribution. Entropy therefore measures the uncertainty 
of a probability distribution, maximum entropy implying maximum uncertainty within 
a distribution. In essence, the idea that entropy measures the uncertainty surrounding a 
series of observations or events corresponds to the idea that probability measures the 
uncertainty surrounding a single event. Through entropy, one is able to quantify the 
information gained from changing a distribution. Assume there is a prior probability 
distribution   for the random variable X. By incorporating new information, a posterior 
distribution   is formed. By considering the notion of relative entropy, one is able to 
quantify the reduction in uncertainty. Relative entropy, also known as the Kullback–
Leibler divergence and denoted by the function ( )f  , is the entropy difference between 
these two distributions:
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8.2.3.6	 From equation (29) we know that ( ), f    is convex. By using 
Jensen’s equality, Zou & Derman31 show that ( ), f    is strictly non-negative and zero 
only for   ≡  . Using this fact, they motivate that relative entropy can be considered a 
‘distance’ metric between prior and posterior distributions. Stutzer (op. cit.) intimates 
that by minimising the relative entropy between prior and posterior distributions—in 
this case the real-world and risk-neutral density estimates—one preserves maximum 
uncertainty—and thus market equilibrium—under the density transformation.

30	Zou & Derman, supra
31	supra
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8.3	 SOUTH AFRICAN CANONICAL-VALUATION VOLATILITY SURFACES
8.3.1	 We construct two fair CV volatility surfaces using the τ-period return 

series { },τ
CTF

tr  calculated respectively from the 1925 monthly ALSI dataset and the 1995 
daily Top40 dataset. The 1925 CV surface extends out to 30 years, while the 1995 daily 
CV surface extends out to 15 years. The respective term lengths are dictated by the amount 
of available data. Given that one is estimating the terminal risk-neutral distribution 
directly, CV volatility is most comparable with CTF terminal volatility. Figures 20 and 
21 give the respective CV fair volatility surfaces. All given CV results are based only 
on the essential risk-neutral constraint rather than including further constraints to ensure 
calibration to short-term option prices, a straight-forward inclusion if desired.

8.3.2	 Similarly to the BEV surfaces, both CV surfaces above have several 
appealing characteristics. Firstly, the short-term volatility smirk is readily apparent. Sec-
ondly, the surface also flattens out across moneyness as term increases, although to a 

Figure 20. Fair CV volatility surface calculated from the 1925 CTF return datasets

Figure 21. Fair CV volatility surface calculated from the 1995 CTF return datasets
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much lesser extent than for the BEV surfaces. Finally, the absolute volatility levels are 
within what one would consider a reasonable range. Intuitively then, the CV surfaces are 
appealing candidates as fair estimates of long-term implied volatility surfaces.

8.3.3	 Figure 22 displays the 1925 and 1995 CV term structures in compari-
son with the 1925 historical CTF volatility series. Although there is an absolute differ-
ence between the two CV volatility series, both display a remarkably similar pattern 
across term. The undulations are found at similar terms and are of comparable relative 
magnitudes.

8.3.4	 Figures 20 and 22 suggest a 30-year fair volatility estimate close to 
40%, a value generally in line with the comparative CTF historical long-term volatility 
estimate. The short-term volatility of both series is also fairly comparable although we 
notice that CV volatility tends to be greater than its CTF counterpart between start and 
end terms—close to the 1976 CTF volatility series.

9.	 CONCLUSION

9.1	 This paper addresses the problem of accurately estimating long-term equity 
volatility in a market-consistent manner. This becomes a particularly difficult challenge 
in a market such as South Africa, where there is a lack of any medium- or long-term 
traded instruments. APN 110 caters for this by allowing the actuary the freedom to use 
alternative estimation methods and judgement conditional on some form of market 
consistency. However, this allowance is general and permits a broad range of models and 
methods to estimate long-term volatility, some of which are more justified than others.

9.2	 According to a recent APN 110 survey, all market participants use a long-term 
historical volatility estimate as a base proxy for long-term implied volatility. This makes 
accurate historical volatility estimation extremely important. It is shown that historical 
volatility is strongly dependent on the function used to measure return variation, the data 
period used and the sampling frequency chosen. Each choice has a material impact on 
the final long-term volatility estimate. It is further shown that, for various theoretical 
and empirical reasons, historical volatility should be estimated as either the terminal 

Figure 22. Fair CV volatility term structures in comparison to CTF historical volatility
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distribution volatility of the historical constant-term forwards or the average realised 
volatility of the historical floating-term forwards. This is at odds with the current standard 
practice of purely considering equity volatility in isolation. When doing so, one finds 
that long-term historical volatility is materially higher than that obtained from the basic 
equity estimation method. In particular, compelling evidence is found to suggest that a 
25-year historical futures volatility of 35% is not unreasonable.

9.3	 Several econometric, deterministic and stochastic volatility models, where the 
long-term parameter is usually based on the historical volatility estimate, are reviewed 
and implemented. On the econometric side, the GARCH family of models is reviewed, 
focusing on several theoretical and practical implementation issues. For the South African 
market, the GJR-GARCH(1,1) model of daily Top40 returns with errors following a 
t-distribution appears to provide the best in-sample fit. Whilst GARCH models are able 
to forecast volatility, we stress that these models are not particularly suited for long-
term forecasting and are very dependent on model specification and the chosen residual 
distribution.

9.4	 On the deterministic side, two specifications are analysed and implemented; 
namely, the Barrie & Hibbert model and the Safex model. The Barrie & Hibbert model 
outputs only a volatility term structure, whereas the Safex model gives an entire volatility 
surface. From this analysis, the deficiencies latent in the generally implemented TVDV 
models are highlighted and a simple algorithm based on the historical Safex volatility 
surfaces is prescribed in order to create a smooth, fully parameterised long-term volatility 
surface.

9.5	 On the stochastic side, the focus is on the Heston model, one of the most common 
stochastic models used in practice. It is demonstrated that constraint of the long-term 
volatility parameter has severe effects on the model parameters and essentially outputs 
equivalent term structures beyond the 10-year mark, irrespective of the short-term 
market surface. Several extensions of the basic stochastic model are discussed but it is 
shown that, extended or otherwise, these models should not be used ex ante to estimate 
long-term volatility. Rather, these models provide one with a means of fitting the current 
vanilla option prices given an existing assumption regarding long-term volatility.

9.6	 A couple of recent nonparametric alternatives are introduced and discussed. 
Rather than impose constraints of the underlying return distribution and the volatility 
surface dynamics, nonparametric methods answer the question: What should the implied 
volatility surface be, given a history of underlying market history? These models are 
market-consistent because they are based on the underlying historical return data but are 
not influenced by short-term supply and demand factors. This means that nonparametric 
methods are able to estimate the fair volatility surface. Furthermore, because no options 
are needed, these methods can be applied to any underlying asset that has historical data. 
In this paper, we consider break-even volatility, which is the volatility that zeroes the 
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profit and loss of a delta-hedged position, and canonical-valuation volatility, which uses 
relative entropy techniques and risk-neutralised historical return distributions to construct 
an implied volatility surface. Helpfully, break-even volatility is comparable in method 
with the average realised floating-term forward historical volatility, while canonical-
valuation volatility is similar to the terminal distribution constant-term forward historical 
volatility. In both cases, the constructed volatility surfaces provide compelling ex ante 
market-consistent long-term estimates.

9.7	 This contribution provides a first attempt at systematically evaluating those 
models most commonly used and introduces several alternative models that may offer 
better solutions. The paper applies these various models and methodologies to South 
African market data, thus providing practical, long-term volatility estimates under each 
modelling framework whilst accounting for real-world difficulties and constraints. In 
so doing, the authors identify those models and methodologies they believe to be most 
suited to long-term volatility estimation and propose best estimation practices within 
each identified area. There is both substantial scope and a significant need for further 
research in this field. Each type of model reviewed in this paper can—and should—be 
further researched in the context of market-consistent, long-term estimation.
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APPENDIX A
HISTORICAL VOLATILITY ESTIMATORS

A.1	 MATHEMATICAL DEFINITIONS

A.1.1	 Using the notation as per Garman & Klass (op. cit.), we have:
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A.1.2	 From equation (A.1) and assuming n days within the periods, we have the 
Parkinson (op. cit.) variance estimator:
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The Garman-Klass (op. cit.) and modified Garman–Klass variance estimators are given 
by

	 ( ) ( )22 2
,

1 1

252 0.511 2ln 2 1σ
= =

 
= − − − 

 
∑ ∑

T T

GK T t t t
t t

h l c
T

	 (A.3)

	 ( ) ( )*

22 2 2
,

1 1 1

252 0.511 2ln 2 1σ
= = =

 
= + − − − 

 
∑ ∑ ∑

T T T

t t t tGK T
t t t

o h l c
T

.	 (A.4)

The Rogers & Satchell (op. cit.) variance estimator is calculated as
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Finally, the Yang–Zhang (op. cit.) variance estimator is

	 ( )2 2 2 2
, , , ,

0.341 ,    11
1

σ σ σ σ= + + − = +
+

−

YZ T o T c T RS Tk k where k T
T

.	 (A.6)



SAAJ 14 (2014)

70 | ESTIMATING LONG-TERM VOLATILITY PARAMETERS FOR MARKET-CONSISTENT MODELS

APPENDIX B
TECHNICAL OUTLINE OF CANONICAL VALUATION

B.1	 ESTIMATING THE FUTURE EMPIRICAL DENSITY
B.1.1	 Arbitrage-free option pricing is governed by equation (26), which states that the 
fair value of a derivative is equal to the discounted expectation of its payoff under an 
appropriate risk-neutral measure. On this fundamental valuation theory, Stutzer used a 
normalisation method commonly used in discrete time models. At each future expiry 
time T, the price process is discounted by the product of one-period, continuous risk-
free interest rates rt,1 up to T. Denoting the current price of the asset by St and current 
dividend payment by Dt, the equivalent martingale probabilities q at time T must satisfy:
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where   denotes the real-world probability measure and dq/dp denotes the Radon–
Nykodym derivative of the martingale measure with respect to   at time T. Thus, one 
must be able to estimate the equivalent martingale measure satisfying the no-arbitrage 
constraint given in equation (B.1) in order to calculate the fair value of a European 
derivative claim from equation (26).

B.1.2	 Given an historical sample of τ-period asset returns { }, , 1,τ = …tr t T , define the 
de-trended asset return as
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where µ  and σ  are the sample mean and sample standard deviation respectively. The 
terminal τ-period asset prices are then given by
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where S0 is the current asset price, yt ,τ and δt ,τ are the τ-period historical risk-free and 
dividend rates respectively, yT ,τ and δT ,τ are the respective forward-looking, τ-period 
risk-free and dividend rates, and it is not necessary to have µ µ=t  and σ σ=t . By 
working with historical excess returns and adding back the current term-specific rates, 
one latently addresses the stochastic nature of interest and dividend rates.

B.1.3	 The process Xt ,τ has empirical distribution function ( )G  , which can be estimated 
as a step function:
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where { }I   is the indicator function.

B.1.4	 This implies a finite support for the future terminal share-price distribution 
characterised by the minimum and maximum returns. Each possible future price St,T has 
an estimated real-world probability ˆ 1/=p n .

B.2	 ESTIMATING THE RISK-NEUTRAL DENSITY VIA RELATIVE ENTROPY

B.2.1	 The method used to transform ̂  into the estimated risk-neutral return distribution 
̂  is described here. Using the fact that ˆ 1/=p n  and equations (B.2) and (B.3) (dropping 
subscripts for notational ease), the no-arbitrage constraint given in equation (B.1) can be 
simplified as
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where qt is the risk-neutral probability of return Xt ,T.

B.2.2	 Stutzer showed that the solution to minimising the relative entropy given in 
equation (29) subject to the risk-neutral constraint presented in equation (B.5) is given 
by the following Gibbs canonical distribution:
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where *γ  is the Lagrange multiplier found by solving the following unconstrained 
minimisation problem,
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B.2.3	 Using the risk-neutral probabilities calculated in equation (B.7), the discounted 
expected payoff of the derivative contract can be computed. Thus, the price of a European 
call option C at time t with strike price K, expiring at time τ is given by
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The implied CV volatility, , ,τσ CV
t K , can then be solved for from the computed option price 

C.

B.3	 COMMON EXTENSIONS OF CANONICAL VALUATION

B.3.1	 We discuss two common extensions of CV here; namely, multiple underlying 
assets and incorporating known option prices.

B.3.2	 It is easy to extend the CV method to incorporate multiple underlying assets. 
Consider a derivative contract written on M underlying assets. By including M – 1 
additional constraints in the form of equation (B.5) to the constrained relative entropy 
minimisation problem, the solution obtained is now given by the multivariate canonical 
distribution
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where , ,τit jX  denotes the thi  return of asset j for the term τ. In this case, the M-component 
vector satisfies
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B.3.3	 Another common example of an additional constraint is to ensure that the at-the-
money option price implied by the distribution ̂  is equal to the at-the-money option 
price quoted in the market. For example, assume that there is a call option C* with strike 
level 0≡K S , expiring at time tn. In order to ensure the correct pricing of this option we 
need to include an additional constraint and thus solve for two multipliers, *

1γ  and *
2γ  that 

satisfy
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B.3.4	 Substituting the multiplier values into a bivariate canonical distribution, the 
estimated risk-neutral probabilities are given by
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