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ABSTRACT 

Theproperties of nuclear matter at zero temperature were considered. The equations of state (EOS) 

of nuclear matter were studied in the linear-Walecka model at different parameterizations. At normal 

nucleon density, there is a strong correlation among the different parameter sets, however the linear 

Walecka model gives values of nucleon effective mass 𝑀0
∗  and nuclear incompressibility (𝛫) at 

variance to the experimental values.The calculated values of the saturation density ranges from 

(0.142-0.148) fm-3, compressional modulus (533.53-543.95)MeV for the LWM .The results of the 

numerical computations were compared with the empirical analysis of the giant isoscalar monopole 

resonance data. 

Keywords: Symmetric nuclear matter, Lagrangian density,Linear-Walecka model, relativistic mean 

field theory, equation of state 

 

INTRODUCTION 

A hypothetical nuclear system with equal 

number of protons and neutrons uniformly 

distributed with no coloumb interaction 

becomes a nuclear matter (Passamani et al., 

2007 and Krane, 1988). It is an idealized 

system of nucleons that exists in several 

phases and structures depending on 

temperature and density. A  great effort has 

been dedicated to the study of nuclear media at 

extreme conditions of pressure and 

temperature as in the case of relativistic heavy-

ion reaction and the study of neutron star 

properties (Passamani et al., 2007).The linear-

Walecka model is a renormalized quantum 

field theory(QFT) also known as ( 𝜎 − 𝜔 ) 

model for the description of nuclear matter and 

finite nuclei properties.  It is based on  locally 

Lorentz invariant fields of four fundamental 

particles such as the nucleons and two mesons 

(da-Silva, 2013).This model is otherwise 

called Quantun Hadrodynamics I (QHD1) 

which is a relativistic description of  nuclear 

matter properties  based on the work of 

Walecka (1974). The model describes the 

nucleus as a system of Dirac nucleons which 

interacts via the exchange of mesons and 

photon fields.That is to say that this model 

typically includes scalar (sigma) and vector 

(omega) meson fields. The scalar meson field 

contributes to the effective nucleon mass and 

the binding energy of nuclear matter, while the 

vector meson field contributes mainly to the 

repulsive core of the nuclear force. It is based 

on a phenomenological treatment of the 

hadronic degrees of freedom, which is a 
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renormalizable relativistic quantum field 

theory (QFT). This early version (QHD1) 

considers the scalar () meson field and a 

vector () meson field coupled to the baryonic 

(nucleon) fields. It is a mean field treatment of 

the relativistic quantum hadrodynamics which 

has been found to be  a very successful 

framework for the description of bulk and 

single particle properties of nuclear matter and 

finite nuclei (Gambhir and Ring, 1989; Abhijit 

and Ghosh, 2018; Dhiman, et al. 2007; 

Francesco, 2017; Ilona, 2007).The (-) 

model treats nucleons as interacting particles 

in a mean field generated by the exchange of 

these meson fields. This mean field 

approximation simplifies the description of 

nuclear interactions compared to more the 

complex quantum chromodynamics (QCD) 

approaches. The nucleons moving through this 

mean field experiences an effective mass 

which is different from their free-mass due to 

interaction with mesons. This effective mass 

can affect properties such as nucleon 

dispersion and nuclear binding energies 

(Francisco, 2017; Patrigani, 2016 ;Schmitt, 

2010;Chin and Walecka, 2008).The linear-

Walecka model provides an equation of state 

(EoS) for symmetric nuclear matter, relating 

the pressure, energy density and other 

thermodynamic quantities to the density of the 

nucleons. This is crucial for understanding the 

stability and structure of nuclear matter under 

different conditions (Von-Maco,2018). This 

model aims to reproduce the saturation 

properties of nuclear matter, such as the 

equilibrium density and binding energy per 

nucleon which are essential for understanding 

the stability of atomic nuclei and the 

conditions in neutron stars.The saturation 

density being the density at which the system 

is at staticequilibrium that is, the pressure is 

zero.Thus this paper paper seeks to present the 

basic nuclear matter (observables) at zero 

temperature and its applications to 

astrophysical sites. 

MATERIALS AND METHOD 

Theoretical Framework 

LagrangianDensity for the 𝜎 − 𝜔Model 

The model is governed by a Lagrangian density. And for the original linear Walecka model, also 

known as the (𝜎 − 𝜔) model, the Lagrangian density is given by: 

ℒ = ℒ𝑛𝑢𝑐𝑙 +  ℒ𝜎 + ℒ𝜔 + ℒ𝑖𝑛𝑡.        (1) 

Where: 

ℒ𝑛𝑢𝑐𝑙 = 𝜓̅(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓          (2) 

ℒ𝜎 =
1

2
[(𝜕𝜇𝜎)(𝜕𝜇𝜎) − 𝑚𝜎

2𝜎2]        (3) 

ℒ𝜔 = −
1

4
𝜔𝜇𝑣ꙍ𝜇𝑣 +

1

2
𝑚𝜔

2 𝜔𝜇𝜔𝜇        (4) 

ℒ𝑖𝑛𝑡 = 𝑔𝜎𝜎𝜓̅𝜓 − 𝑔𝜔𝜔𝜇𝜓̅𝛾𝜇𝜓        (5) 

Where: 

𝜓 is the nucleon field 

𝜎 is the scalar meson field 

𝜔 is the vector meson field 

𝑚 is the nucleon mass 
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𝑚𝜎 and 𝑚𝜔 are the respective meson masses 

𝑔𝜎 and 𝑔𝜔 are the respective scalar and vector coupling constants and 

𝜔𝜇𝜈 = 𝜕𝜇𝜔𝜈 − 𝜕𝜈𝜔𝜇 

So that the explicit Lagrangian density is given by: 

ℒ =  𝜓̅(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 +
1

2
[(𝜕𝜇𝜎)(𝜕𝜇𝜎) − 𝑚𝜎

2𝜎2] −  
1

4
𝜔𝜇𝑣𝜔𝜇𝑣 +

1

2
𝑚𝜔

2 𝜔𝜇𝜔𝜇 + 𝑔𝜎𝜎𝜓̅𝜓 −

𝑔𝜔𝜔𝜇𝜓̅𝛾𝜇𝜓          (6) 

Derivation of the Equations of motion of the various fields 

The equations of motion of the three fields are obtained using the Euler-Lagrange equation: 

𝜕ℒ

𝜕𝜙
− 𝜕𝜇 (

𝜕ℒ

𝜕(𝜕𝜇𝜙)
) = 0          (7)  

Eqs. (2) – (5) are substituted in turn into eq. (7) to obtain the following equations of motion for 

each field as: 

𝜎 − 𝑓𝑖𝑒𝑙𝑑                 (⎕ + 𝑚𝜎
2)𝜎(𝑥) = 𝑔𝜎𝜓̅(𝑥) 𝜓(𝑥)     (8) 

𝜔 − 𝑓𝑖𝑒𝑙𝑑             (⎕ + 𝑚𝜔
2 )𝜔𝜇(𝑥) = 𝑔𝜔𝜓̅(𝑥)𝛾𝜇𝜓(𝑥)     (9)  

ψ − 𝑓𝑖𝑒𝑙𝑑             [𝑖𝛾𝜇 (𝜕𝜇 + 𝑖𝑔𝜔𝜔𝜇(𝑥)) − (𝑚 − 𝑔𝜎𝜎(𝑥))] 𝜓(𝑥) = 0   (10) 

The Relativistic Mean-Field Approximation 

We now assume that the ground state of nuclear matter is composed of static, uniform matter.  This 

means that both the currents and the meson fields are independent of 𝑥𝜇. Solutions of the equations 

of motion can be found in the relativistic mean field approximation for which meson fields are 

separated into classical mean field values and quantum fluctuations which are not included in the 

ground state. We then replace the meson field operators with their ground state expectation values to 

obtain the following: 

(𝑥) ⟶ ⟨Φ|𝜎|Φ⟩ = 〈𝜎〉 = 𝜎0          (11a) 

𝜔𝜇(𝑥) ⟶ ⟨Φ|𝜔|Φ⟩ = 〈𝜔𝜇〉 = 𝛿𝜇0𝜔0       (11b) 

From eqns(11a) and (11b), eqs. (8) – (10) become: 

𝑚𝜎
2〈𝜎〉 = 𝑔𝜎〈𝜓̅ 𝜓〉          (12) 

𝑚𝜔
2 〈𝜔𝜇〉 = 𝑔𝜔〈𝜓̅𝛾𝜇 𝜓〉          (13) 

[𝑖𝛾𝜇(𝜕𝜇 + 𝑖𝑔𝜔〈𝜔𝜇〉) − (𝑚 − 𝑔𝜎〈𝜎〉)]𝜓(𝑥) = 0      (14) 

Note that equation (12) is analogous to the equation of motion of a free scalar field, the Klein-Gordon 

(K.G) equation with the baryon scalar density )()( xx   as the source term.  

The eqn. (13) is analogous to the Proca equation with the coupling of the vector field to the conserved 

baryon current as their source term.  

Eqn. (14) is the Dirac equation with the modified mass due to the scalar field.  
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Determination of the equation of state 

The equation of state (EoS) in the linear-Walecka model can be obtained from the expression of the 

energy-momentum tensor in terms of the pressure and energy densities.  

By definition, the energy-momentum tensor is given by (Francesco, 2017 and Diener, 2008) :  

Tμυ = ημυℒ −
∂L

∂(∂μϕi)
∂vϕi        (15) 

The energy density (ε) and pressure density (P) for the expectation values in the rest frame are on the 

diagonal of the matrix form. 

Tμυ =  Tμυ =    (

ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

)       (16) 

From the energy-momentum tensor, the energy and pressure densities are given respectively by: 

ε = −〈ℒ〉 + 〈𝜓̅𝛾0𝑝0𝜓〉         (17) 

𝑃 = 〈ℒ〉 +
1

3
〈𝜓̅𝛾ἱ𝑝ἱ𝜓〉         (18) 

Where 〈ℒ〉 is given by: 

〈ℒ〉 = −
1

2
𝑚𝜎

2 〈𝜎〉2 +
1

2
𝑚ꙍ

2 〈ꙍ𝜇〉〈ꙍ𝜇〉       (19) 

For the linear Walecka model, we present the final result of the energy density by substituting the 

expectation values into equation (17) and the Lagrangian equation (19) obtaining 

ε =
1

2
mσ

2 〈σ〉2 −
1

2
mω

2 〈ω0〉2 +
2

π2 ∫ ∂p p2√p2 + (𝑚 − 𝑔𝜎〈σ〉)2   (20) 

Similarly, for the pressure density  (P) of the EOS for nuclear matter, we substitute the expectation 

values into equation (18) )and (19) obtaining: 

P =
1

2
mσ

2〈σ〉2 −
1

2
mω

2 〈ω0〉2 +
2

3π2 ∫ ∂p
p4

√p2+(𝑚−𝑔𝜎〈σ〉)2
     (21) 

Recalling that the nucleon effective mass expression   𝑚∗ = 𝑚 − 𝑔𝜎〈σ〉   (22) . 

 Therefore, eqns (20) and (21) modify as follows:  

 
2 22 2 2 2 *2

0 2 0

1 1 2

2 2

Fp

m m dpp p m   


       (23) 

  and  

 
4

2 22 2

0 2 2 *20

1 1 2

2 2 3

Fp p
P m m dp

p m
  


   

     (24) 
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NUMERICAL RESULTS 

Table 1:The model parameter sets. Nucleon mass is taken as 939MeV 

 FSUGarnet IOPB-1 G3 NL3 

𝒎𝝈 𝑴⁄  0.529 0.533 0.559 0.541 

𝒎𝝎 𝑴⁄  0.812 0.812 0.820 0.812 

𝒎𝜹 𝑴⁄  0.833 0.833 0.833 0.833 

𝒈𝝈 𝟒𝝅⁄  0.0 0.0 1.043 0.0 

𝒈𝝎 𝟒𝝅⁄  0.837 0.827 0.782 0.813 

𝒈𝝆 𝟒𝝅⁄  1.091 1.062 0.923 1.024 

𝒌𝟑(𝒇𝒎−𝟏) 1.105 0.885 0.962 0.712 

𝒌𝟒 1.368 1.496 2.606 1.465 

𝝇𝟎 -1.397 -2.932 1.694 -5.688 

       𝜼𝟏      4.410 3.103 1.010 0.0 

𝜼𝟐 0.0 0.0 0.424 0.0 

𝜼𝝆 0.0 0.0 0.114 0.0 

𝚲𝝎 0.0 0.0 0.645 0.0 

 0.043 0.024 0.038 0.0 

 

Table 2: Calculated Nuclear Matter Observables for LWM at zerotemperature 

 FSUGarnet IOPB-1 G3 NL3 

𝝆𝟎(𝒇𝒎−𝟑) 0.142 0.146 0.145 0.148 

𝑴∗ 𝑴⁄  0.545 0.573 0.696 0.600 

𝜺𝟎(𝑴𝒆𝑽) -15.71 -15.32 -16.63 -16.24 

𝒑𝑭
𝟎(𝒇𝒎−𝟏) 1.31 1.33 1.30 1.30 

𝑲∞(𝑴𝒆𝑽) 540.4 533.55 543.95 536.36 

 

 

 

 Figure 1Relationship between energy density and  Fermi-wavelength  for a variety of 

parameter sets 
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 Figure 2: Relationship between pressure density and Fermi-wavelength for a variety of 

parameter sets 

 

Figure 3: Energy density as a function of baryon density for symmetric nuclear matter at zero 

temperature (LWM) 

 

Figure 4: Pressure density as a function of baryon density for symmetric nuclear matter at T= 

0(LWM) 
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Figure 5: Relationship between nuclear Symmetry energy coefficients Fermi-wavelength for 

Symmetric nuclear matter at Zero temperature 

 

 

Figure .6: Binding energy as a function of  baryon density for the FSUGarnet, IOPB-1, G3 

and NL3 parameter sets in the LWM at T = 0 

 

 

Fig. 7 : Nuclear matter compression modulus against baryon density for different parameter 

sets at T = 0 
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DISCUSSION 

Properties of nuclear matter were calculated 

using the following parameter sets FSUGarnet, 

IOPB-1, G3 and NL3. The energy and pressure 

densities as a function of the baryon densities 

(𝜌𝐵)  are the equation of state (EoS).The 

sensitivity of the EoS were validated by 

plotting the energy per particle, otherwise 

known as the binding energy per nucleon as a 

function of the densities as well as Fermi-

wavelength under different parameterization 

so as to observe the behaviour of the models. 

Fig.(1) is a plot of energy density against fermi 

momentum which  illustrates that energy of 

nuclear matter increases with the density  and 

their momentum distribution. It is clear that the 

plots under different parameterization showed 

similar overlap. At lower fermi momentum, 

nuclear matter behaves more as a collection of 

loosely interacting nucleons and at higher 

fermi -momentum, the nucleons are squeeed 

closer together, leading to stronger interactions 

( Fig. 2). Also Fig .2 (from eqn.24) shows the 

variation of pressure density with fermi-

wavelength.  

The FSUGarnet, IOPB-1, and G3 set  depict 

similar trends at higher fermi-wavelength 

while the NL3 set diverges. This is due to the 

stiffness of NL3 at high density observatiions  

due to absence of the self-cross coupling 

constant (see Table.1).These discrepancies at 

higher fermi-momentum  emphasis that more 

information is needed for a deeper 

understanding of dense matter at high 

densities. The above results are in good 

agreement with (Sumiyoshi, 2019 and 

Dienner, 2008) and  QHD1 parameterizations. 

The relationship between energy density and 

nucleon density shows a characteristic curve 

(Fig.3).At lower baryon densities, energy 

density increases slowlyand nucleons are 

closedly packed together. As nucleon density 

increases, energy density increases more 

steeply , indicating a reflection of increase in 

kinetic energy of nucleons and the rate of their 

interactions. Fig.6 shows  the relationship 

between the binding energy per baryon and 

baryon density among the different parameter 

sets.It is quite obvious that all the parameter 

sets FSUGarnet, IOPB-1, G3 and NL3 are in 

agreement with high density nuclear matter 

observation. The G3 parameter set has a 

sudden divergence from the other parameter 

sets. However, the FSUGarnet, IOPB-1 and 

NL3   are in good agreement with experimental 

data for symmetric nuclear matter (SNM) but  

gives stiff EOS whereas only NL3 excellently 

satisfies the experimental data ( Gil et al.,2023 

and Chunget al.,2008). Notice that at lower 

nucleon density, binding energy per baryon 

increases due to the effects of the strong 

nuclear force that tends to dominate over the 

coulomb repulsion of the nucleons. As density 

increases, binding energy initially continue to 

increase due to the strong nucleon-nucleon 

interactions that results to the nuclear force. 

However, beyond a certain density, nuclear 

matter binding energy starts to decrease 

because of an onset of repulsive core 

interactions among the nucleons ( Aper et 

al.,2018 ; Fiase and Gboarun, 2011). The 

calculated values  of saturation density ranges 

from (0.142-0.148) fm-3 , nucleon effective 

mass (0.545-0.696) MeV, binding energy per 

nucleon (-15.32 to -15.71) MeV, compression 

modulus (533.55-543.95) MeV, and fermi-

wavelength (1.30-1.33) fm-1 for the linear 

Walecka model (LWM) in table.2. 

The relativistic mean field approximation 

method have been employed successfully to 

obtain the ground state properties of nuclear 

matter in the sigma –omega model. Also the 

parameter sets FSUGarnet,  IOPB-1, G3 and 

NL3   have been used for the first time in the 

linear Walecka model and the results are in 

agreement with other experimental findings. 

The linear Walecka formalism was discussed 

in relation with the various applications both at 

low and high density nuclear matter. In 

essence, the linear Walecka model is important 

because it provides a foundational framework 

for understanding nuclear interactions, 

predicting nuclear properties, and exploring 

the behaviorof matter at extreme conditions. 

Its versatility and applications across different 
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nuclear scales will make it indispensable in our 

contemporary nuclear and astrophysical 

research. 
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