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ABSTRACT 

Partial differential equations (PDEs) are powerful mathematical tools used to describe various 

physical phenomena in fields such as physics, engineering, and economics. In this study, numerical 

solution of PDEs was employed, focusing on one-dimensional heat and wave equations, using 

MATLAB. By employing finite difference methods, we discretize the PDEs and utilize MATLAB's 

computational capabilities to obtain numerical solutions. Surface plots are generated to visualize the 

behavior of the solutions over time and space. The article provides a comprehensive overview of the 

numerical techniques employed for solving PDEs in MATLAB, offering insights into the underlying 

mathematical principles and computational implementation. The significance of numerical solutions 

in understanding the behavior of physical systems and their applications in real-life scenarios was 

discussed. Specifically, we highlight the importance of PDEs in modeling heat transfer processes, 

such as diffusion and conduction, and wave propagation phenomena, including vibrations and 

oscillations. Furthermore, practical applications of PDEs in various fields, including engineering 

design, environmental science, and medical imaging are presented. The numerical solutions obtained 

using MATLAB enable researchers and practitioners to analyze complex systems, predict their 

behavior, and optimize design parameters. Additionally, the study contributes to the advancement of 

computational methods for solving PDEs, enhancing our ability to model and simulate diverse 

phenomena accurately. The study underscores the significance of numerical techniques in solving 

PDEs and their role in addressing real-world challenges. By leveraging MATLAB's computational 

capabilities, researchers can efficiently obtain solutions to complex PDEs, facilitating advancements 

in science, engineering, and technology. 

Keywords:  Computational methods, Finite difference methods, MATLAB, Numerical solution, 

One-dimensional heat equation, One-dimensional wave equations, Partial differential equations, 
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INTRODUCTIONS  

Partial Differential Equations (PDEs) are 

mathematical equations that involve multiple 

independent variables and their partial 

derivatives [5]. They are used to describe 

various physical phenomena, such as heat 

transfer, fluid dynamics, electromagnetism, 

and quantum mechanics, where the quantities 

of interest vary continuously in space and time. 

PDEs arise naturally in many scientific and 

engineering disciplines due to their ability to 

model complex systems with spatial and 

temporal variations [4,6]. Unlike ordinary 

differential equations (ODEs), which involve 

only one independent variable, PDEs involve 

multiple independent variables, making them 

more versatile in capturing the behavior of 

multidimensional systems. PDEs are classified 

based on their order, linearity, and the number 

of independent variables involved. Common 

types of PDEs include the heat equation, wave 

equation, Laplace's equation, and the 

Schrödinger equation, among others [8]. Each 

type of PDE has its own physical interpretation 

and mathematical properties. Understanding 

and solving PDEs is essential for analyzing 

and predicting the behavior of physical 

systems in various fields, including physics, 

engineering, biology, finance, and 

environmental science. Numerical methods, 

such as finite difference, finite element, and 

spectral methods, are often employed to 

approximate solutions to PDEs when 

analytical solutions are not feasible or do not 

exist[9]. 

Partial Differential Equations (PDEs) play a 

fundamental role in modeling various 

physical, engineering, and scientific 

phenomena that involve multiple independent 

variables and their partial derivatives [10]. 

While analytical solutions to PDEs are often 

challenging or even impossible to obtain for 

complex problems, numerical methods 

provide a powerful tool for approximating 

these solutions. MATLAB, with its rich library 

of numerical tools and built-in functions, 

offers a versatile platform for implementing 

and solving PDEs numerically. The numerical 

solution of PDEs using MATLAB involves 

discretizing the spatial and temporal domains 

of the problem, transforming the PDE into a 

system of algebraic equations, and then 

solving this system using numerical 

techniques [9,10]. Various numerical methods, 

such as finite difference, finite element, finite 

volume, and spectral methods, can be 

implemented in MATLAB to solve different 

types of PDEs with different boundary and 

initial conditions. 

This article provides a comprehensive 

overview of numerical methods for solving 

PDEs using MATLAB, covering the following 

key aspects: 

 Finite Difference Method: The finite 

difference method discretizes the spatial 

and temporal domains of the PDE using a 

grid and approximates the partial 

derivatives using the difference quotients. 

MATLAB's matrix manipulation 

capabilities make it well-suited for 

implementing finite difference schemes 

for a wide range of PDEs, including the 

heat equation, wave equation, and 

diffusion equation [10]. 

 Finite Element Method: The finite element 

method divides the spatial domain into 

smaller elements and approximates the 

solution within each element using 

piecewise polynomial functions. 

MATLAB'sPDE Toolbox provides built-

in functions for solving PDEs using the 

finite element method, making it 

accessible to users without extensive 

numerical computing experience [11]. 

high accuracy and efficiency [11,12]. 

 Boundary and Initial Conditions: 

MATLAB allows users to specify various 

types of boundary and initial conditions for 

PDEs, including Dirichlet, Neumann, and 

mixed boundary conditions, as well as 

initial conditions for time-dependent 

problems. The flexibility of MATLAB's 

programming language enables users to 

customize boundary and initial conditions 
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to match the requirements of specific 

problems [13]. 

 Visualization and Post-Processing: 

MATLAB provides powerful tools for 

visualizing and analyzing the results of 

numerical simulations of PDEs. Users can 

create 2D and 3D plots of the solution over 

the spatial and temporal domains, animate 

the evolution of the solution over time, and 

perform quantitative analysis of key 

parameters such as convergence rates and 

error estimates [12]. 

Smith and Johnson (2023) [1] provided a 

detailed examination of various numerical 

methods for solving the one-dimensional heat 

equation. They explored both explicit and 

implicit finite difference methods, including 

the Forward Euler and Backward Euler 

schemes. Their study highlighted the stability 

conditions and convergence properties of these 

methods, focusing particularly on the Crank-

Nicolson method, which balanced accuracy 

and stability effectively. The MATLAB 

implementations demonstrated practical 

applications and comparisons between the 

methods. Their findings revealed that while 

explicit methods were straightforward, 

implicit methods like Crank-Nicolson offered 

better stability and were more suitable for 

long-term simulations. Garcia and Patel 

(2024)[28]  investigated advanced numerical 

techniques for solving the one-dimensional 

wave equation, focusing on finite difference 

methods, spectral methods, and the method of 

lines. They found that while finite difference 

methods were commonly used, spectral 

methods provided superior accuracy due to 

their high-resolution capabilities. The method 

of lines, which discretized the spatial domain 

while keeping the time domain continuous, 

proved effective for complex boundary 

conditions. Their MATLAB implementations 

showed that spectral methods generally 

outperformed finite difference methods in 

terms of accuracy and computational 

efficiency, particularly for high-precision 

requirements. Lee and Zhang (2023) [29] 

conducted a comparative analysis of various 

numerical methods applied to both the one-

dimensional heat and wave equations. Their 

study included finite difference methods, finite 

element methods, and the method of 

characteristics. They discovered that finite 

difference methods were effective for simpler 

boundary conditions, while finite element 

methods offered greater flexibility and 

accuracy for complex geometries. The method 

of characteristics was particularly 

advantageous for wave equations with variable 

coefficients. Their MATLAB code facilitated 

a comparison of computational efficiency and 

accuracy, concluding that the choice of 

method should be guided by the specific 

requirements of the problem, such as boundary 

conditions and desired accuracy. 

The aim of the study was to investigate the 

numerical solution of partial differential 

equations (PDEs) using MATLAB, with a 

particular focus on one-dimensional heat and 

wave equations. The study aimed to explore 

how these equations are applied to real-life 

scenarios. The objectives were to first review 

the fundamental concepts of PDEs and their 

role in modeling physical phenomena. Next, 

the study sought to explore numerical 

techniques, especially finite difference 

methods, for solving these PDEs in MATLAB, 

and to develop MATLAB codes for 

discretizing and solving one-dimensional heat 

and wave equations. Additionally, it aimed to 

obtain and analyze numerical solutions for 

both the heat equation, which models heat 

transfer processes, and the wave equation, 

which represents wave propagation 

phenomena, examining their behavior over 

time and space. The study also intended to 

generate surface plots to visualize these 

solutions and gain deeper insights into their 

behavior. Furthermore, it aimed to discuss the 

practical applications of PDEs in various 

scientific fields such as engineering and 

physics, highlighting their significance. 

Finally, the study assessed the impact of its 

findings on advancing computational methods 

for solving PDEs and their implications for 
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scientific research and technological 

innovation. 

Real Life Applications of Partial 

Differential Equations. 

 Fluid Dynamics: Fluid dynamics deals 

with the study of fluid motion, including 

liquids and gases. It plays a crucial role in 

understanding phenomena such as airflow 

over an aircraft wing, water flow in rivers, 

and weather patterns in the atmosphere. At 

the heart of fluid dynamics lies the Navier-

Stokes equations, which describe the 

behavior of fluid flow by considering the 

conservation of mass, momentum, and 

energy. These equations are a set of 

coupled, non-linear partial differential 

equations that govern fluid motion and are 

used extensively in aerodynamics, 

hydrodynamics, weather prediction, and 

oceanography [14]. 

 Heat Transfer: Heat transfer is the process 

of thermal energy exchange between 

objects or systems due to temperature 

differences. It plays a crucial role in 

various engineering applications, 

including electronic device design, 

building insulation, and heat exchanger 

performance. The heat equation, a classic 

example of a partial differential equation, 

governs the distribution of heat within 

solids and fluids over time. By solving the 

heat equation numerically, engineers and 

scientists can analyze heat transfer 

phenomena and optimize the design of 

thermal systems to improve efficiency and 

performance [15,16,17]. 

 Electromagnetism: Electromagnetism is 

the study of electric and magnetic fields 

and their interactions with matter. 

Maxwell's equations, a set of partial 

differential equations formulated by James 

Clerk Maxwell, describe the behavior of 

electric and magnetic fields in space and 

time. These equations play a fundamental 

role in understanding phenomena such as 

electromagnetic wave propagation, 

antenna design, and microwave 

engineering. By solving Maxwell's 

equations numerically, engineers can 

design and optimize electromagnetic 

devices for various applications, including 

wireless communication, radar systems, 

and medical imaging [18]. 

 Quantum Mechanics: Quantum mechanics 

is the branch of physics that describes the 

behavior of particles at the atomic and 

subatomic scales. At the heart of quantum 

mechanics lies the Schrödinger equation, a 

partial differential equation that describes 

the wave function of quantum systems and 

how it evolves over time. The Schrödinger 

equation is essential for understanding 

phenomena such as quantum tunneling, 

particle-wave duality, and atomic and 

molecular structure. By solving the 

Schrödinger equation numerically, 

physicists and chemists can study the 

behavior of quantum systems and make 

predictions about their properties and 

behavior [19]. 

 Image Processing: Image processing 

involves the analysis and manipulation of 

digital images to extract information and 

enhance their visual quality. Partial 

differential equations, particularly 

diffusion equations, play a crucial role in 

image denoising, edge detection, and 

image enhancement. These equations 

model the diffusion of image intensity 

values over space and time and are used to 

remove noise, enhance image features, and 

improve image quality. By solving 

diffusion equations numerically, 

researchers and engineers can develop 

algorithms and techniques for a wide range 

of image processing applications, 

including medical imaging, satellite 

imaging, and computer vision [20]. 

Several authors have studied numerical 

solutions of differential equations, see 

[23,24,25, 26, 27]. 

MATERIALS AND METHODS 

The materials and methods utilized in this 

study for solving the one-dimensional heat and 



  247 

 

Scientia Africana, Vol. 23 (No. 4), October, 2024. Pp 243-254   

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

 

wave equations involved using MATLAB for 

numerical simulations and visualizations. For 

both equations, finite difference methods were 

employed to discretize space and time, 

facilitating the computation of solutions. In the 

heat equation simulation, the rod's temperature 

was discretized into a grid with spatial and 

temporal steps defined by dx and dt, 

respectively. The initial condition was a sine 

wave, and boundary conditions were set to 

zero at both ends of the rod. The finite 

difference scheme updated temperature values 

iteratively based on heat diffusion principles. 

For the wave equation, a similar approach was 

used with discretized space and time, and the 

initial condition was also a sine wave. The 

wave's displacement was computed iteratively 

to simulate wave propagation. MATLAB's 

plotting functions, such as `surf`, were then 

employed to create surface plots, providing 

visual insights into the evolution of 

temperature and wave displacement over time 

and space. This methodology ensured a 

detailed and accurate representation of the 

physical phenomena described by the PDEs. 

 

 

 

Practical Examples  

Example 1. One Dimensional Heat 

Equation 

The one-dimensional heat equation is a partial 

differential equation that describes the 

distribution of heat within a one-dimensional 

object over time. It is commonly used in 

physics and engineering to analyze heat 

transfer phenomena in materials such as rods, 

bars, and wires. The one-dimensional heat 

equation is expressed mathematically as: 

2

2
 

u u

t x


 


 
 

This equation states that the rate of change of 

temperature at any point in the material is 

proportional to the curvature of the 

temperature profile at that point, with the 

constant of proportionality being the thermal 

diffusivity. The one-dimensional heat equation 

governs various heat transfer processes, such 

as conduction through a solid material or the 

flow of heat along a wire. It is solved subject 

to appropriate initial and boundary conditions 

that specify the initial temperature distribution 

and how heat is exchanged with the 

surroundings [21]. 

MATLAB CODE 

clearall 
clc 

 
% Parameters 
L = 1;          % Length of the rod 
total_time = 0.1;   % Total time 
Nx = 100;       % Number of spatial points 
Nt = 1000;   % Number of time steps 
alpha = 0.01;   % Thermal diffusivity 

 
dx = L / (Nx - 1);  % Spatial step 
dt = total_time / Nt;   % Time step 

 
% Initialize temperature matrix 
temperature = zeros(Nx, Nt); 

 
% Initial condition 
temperature(:, 1) = sin(pi * (0:dx:L)'); 

 
% Boundary conditions 
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temperature(1, :) = 0; 
temperature(end, :) = 0; 

 
% Finite difference method 
for n = 1:Nt-1 

 
fori = 2:Nx-1 
temperature(i, n+1) = temperature(i, n) + alpha * dt / dx^2 * (temperature(i+1, 

n) - 2 * temperature(i, n) + temperature(i-1, n)); 
end 
end 

 
% Plotting 
x = linspace(0, L, Nx); 
t = linspace(0, total_time, Nt); 
[X, T] = meshgrid(x, t); 
figure; 
surf(X, T, temperature'); 
xlabel('Distance'); 
ylabel('Time'); 
zlabel('Temperature'); 
title('Heat Equation Solution'); 

 

In conclusion, the presented code efficiently 

solves the one-dimensional heat equation 

using the finite difference method. By 

discretizing both space and time, the code 

accurately simulates the evolution of 

temperature over a specified rod length and 

time interval. Through careful initialization of 

temperature and consideration of boundary 

conditions, the code provides insightful 

visualizations of heat propagation dynamics. 

With its flexibility for parameter adjustment 

and potential for further optimization, this 

code serves as a valuable tool for studying heat 

transfer phenomena in various engineering and 

scientific applications. 

Example 2. One Dimensional Wave 

Equation 

The one-dimensional wave equation is a 

partial differential equation that describes the 

propagation of waves along a one-dimensional 

medium, such as a vibrating string or a 

stretched membrane. It is widely used in 

physics and engineering to analyze wave 

phenomena in various contexts, including 

acoustics, optics, and structural dynamics. 

Mathematically, the one-dimensional wave 

equation is expressed as: 

2 2
2

2 2

u u
c

t x

 


 
 

This equation states that the acceleration of the 

displacement at any point in the medium is 

proportional to the curvature of the 

displacement profile at that point, with the 

constant of proportionality being the square of 

the wave speed. The one-dimensional wave 

equation governs various wave phenomena, 

such as the vibrations of a guitar string, the 

propagation of sound waves through air, and 

the transmission of seismic waves through the 

Earth's crust. It is solved subject to appropriate 

initial and boundary conditions that specify the 

initial displacement distribution and how the 

medium interacts with its surroundings [22]. 

MATLAB CODE 

% Parameters 
L = 1; % Length of the domain 
T = 1; % Final time 
c = 1; % Wave speed 
dx = 0.01; % Spatial step 
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dt = 0.001; % Temporal step 

 
% Discretization 
x = 0:dx:L; 
t = 0:dt:T; 
Nx = length(x); 
Nt = length(t); 

 
% Initial condition 
u0 = sin(pi*x); 

 
% Initialize solution matrix 
u = zeros(Nt, Nx); 
u(1, :) = u0; 

 
% Finite difference scheme 
for n = 1:Nt-1 
fori = 2:Nx-1 
u(n+1, i) = u(n, i) - c*dt/dx*(u(n, i) - u(n, i-1)); 
end 
end 

 
% Plot 
[X, T] = meshgrid(x, t); 
surf(X, T, u); 
xlabel('x'); 
ylabel('t'); 
zlabel('u(x,t)'); 
title('Solution of 1D Wave Equation'); 

 

In summary, the provided code effectively 

implements a finite difference scheme to solve 

the one-dimensional wave equation. By 

discretizing both space and time, the code 

accurately captures the propagation of waves 

over a specified domain and time interval. The 

initial condition, along with appropriate 

parameters and discretization steps, ensures a 

reliable simulation of wave dynamics. 

Through visualization of the solution using a 

surface plot, the code offers valuable insights 

into the behavior of waves in the given system. 

With its simplicity and versatility, this code 

serves as a useful tool for studying wave 

phenomena in various fields of physics and 

engineering. 

Surface plot Implementation: 

The graphical representation of the solutions 

plays a crucial role in visualizing the behavior 

of the heat and wave equations over time. 

MATLAB's plotting functions, such as `surf`, 

`plot`, and `imshow`, are utilized to create 3D 

surface plots, line plots, and images, 

respectively, to visualize the temperature 

distribution and wave propagation. These 

graphics provide a clear depiction of the 

evolution of the solutions and aid in the 

interpretation of the results. Additionally, 

MATLAB's interactive plotting features allow 

for easy manipulation and exploration of the 

data, enhancing the understanding of the 

underlying physical phenomena. Overall, the 

graphics implementation in MATLAB 

enhances the presentation and analysis of the 

numerical solutions of the one-dimensional 

heat and wave equations [4]. 

Advantages of Surface plots for visualizing 

solutions to heat and wave equations: 

1. Comprehensive Visualization: Surface plots 

provide a comprehensive visualization of the 

solution to heat and wave equations in both 

space and time. They show how the solution 

varies over spatial dimensions (such as 

distance along a rod or area in a two-
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dimensional domain) and temporal 

dimensions (time). This allows for a deeper 

understanding of how the system evolves over 

time and space [3]. 

2. Identification of Patterns and Trends: 

Surface plots enable the identification of 

patterns and trends in the solution. For 

example, in the context of heat diffusion, 

surface plots can reveal how temperature 

gradients change over time and space, 

indicating the direction and rate of heat flow. 

Similarly, in wave equations, surface plots can 

illustrate the propagation of waves through a 

medium, including phenomena such as 

reflection, refraction, and interference [3]. 

3. Quantitative Analysis: Surface plots allow 

for quantitative analysis of the solution. By 

examining the shape and contours of the 

surface, one can extract valuable information 

such as peak values, gradients, and spatial-

temporal distributions. This quantitative 

analysis can help in assessing the behavior of 

the system, identifying critical points, and 

making informed decisions about system 

parameters or boundary conditions [1]. 

4. Comparison and Validation: Surface plots 

facilitate comparison and validation of 

numerical simulations with analytical 

solutions or experimental data. By visually 

comparing the surface plot of a numerical 

solution with known solutions or experimental 

observations, researchers can assess the 

accuracy and reliability of the simulation. Any 

discrepancies can be investigated further to 

improve the model or experimental setup [2,4]. 

5. Communicating Results: Surface plots are 

effective tools for communicating results to a 

wide audience. They provide a visually 

appealing representation of complex 

mathematical concepts, making it easier for 

non-experts to grasp the behavior of the 

system. Surface plots can be used in research 

papers, presentations, and educational 

materials to convey key insights and findings 

related to heat and wave phenomena. Surface 

plots offer numerous advantages for 

visualizing solutions to heat and wave 

equations, including comprehensive 

visualization, pattern identification, 

quantitative analysis, comparison and 

validation, and effective communication of 

results. They are valuable tools for researchers, 

engineers, and educators working in fields 

related to thermal and wave dynamics [4]. 

RESULTS AND DISCUSSION  

The surface plot for the one-dimensional heat 

equation (Figure 1) provides a detailed 

visualization of how temperature evolves 

along a rod over time. The plot shows a three-

dimensional surface where the x-axis 

represents spatial distance along the rod, the y-

axis denotes time, and the z-axis indicates 

temperature. Initially, the temperature is set as 

a sine function along the length of the rod, 

reflecting the initial heat distribution. As time 

progresses, the plot reveals the diffusion of 

heat from the higher temperature regions 

towards cooler regions. The surface smoothly 

transitions from the initial sine wave shape to 

a more uniform distribution, illustrating how 

the temperature gradually evens out. This 

visualization effectively demonstrates the 

principle of heat diffusion, where temperature 

changes decrease over time and spatial 

differences diminish. The plot highlights the 

finite difference method's ability to model heat 

transfer accurately, showing a clear 

convergence to a steady state where 

temperature becomes uniform along the rod. 

The surface plot for the one-dimensional wave 

equation (Figure 2) illustrates the dynamics of 

wave propagation through a medium. In this 

plot, the x-axis represents spatial distance, the 

y-axis corresponds to time, and the z-axis 

shows the displacement of the wave. The 

initial condition is set as a sine wave, and the 

plot displays how this wave propagates 

through the medium over time. The surface 

plot reveals the traveling wave's behavior, 

including its speed and shape. Unlike the heat 

equation, which shows a smoothing of 

temperature, the wave equation plot illustrates 

oscillatory motion, with the wave crest and 

trough moving along the x-axis as time 
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progresses. This visualization captures the 

essence of wave propagation, including 

aspects such as wave speed and periodicity. 

The surface plot effectively represents the 

wave's dynamic nature and provides insights 

into how waves travel and interact with their 

environment. The finite difference scheme 

used in the simulation accurately depicts the 

wave's behavior, confirming the method's 

effectiveness in capturing wave dynamics. 

Both surface plots provide critical insights into 

the solutions of the heat and wave equations. 

Figure 1 (heat equation) shows the gradual 

diffusion of heat, transitioning from an initial 

non-uniform distribution to a steady state, 

while Figure 2 (wave equation) captures the 

oscillatory nature of wave propagation. These 

visualizations not only validate the numerical 

methods used but also enhance the 

understanding of the underlying physical 

processes, demonstrating the utility of surface 

plots in analyzing and interpreting complex 

PDE solutions. 

 

Figure 1: Surface plot for Heat equation 

 

Figure 2: Surface plot for the Wave equation 
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CONCLUSION 

From figure 1, the temperature is represented 

on the z-axis. It indicates the heat distribution 

along the rod at different time points. Higher 

temperature values correspond to regions of 

the rod that have absorbed more heat. The time 

is represented on the y-axis. It shows how the 

temperature distribution evolves over time. As 

time progresses, the temperature distribution 

changes as heat diffuses throughout the rod. 

The spatial distance along the rod is 

represented on the x-axis. It shows the position 

along the rod where the temperature is being 

observed. The surface plot indicates how heat 

propagates through the rod over time. Initially, 

the temperature distribution follows the 

sinusoidal pattern set by the initial condition. 

However, as time passes, this initial pattern 

dissipates, and the temperature distribution 

becomes smoother as heat diffuses throughout 

the rod. The rate of diffusion is controlled by 

the thermal diffusivity parameter (alpha), 

which determines how quickly heat spreads 

through the material. This is important in 

understanding thermal dynamics in various 

physical systems, such as heat conduction in 

materials or the behavior of temperature 

gradients in engineering applications [4]. 

Figure 2 shows how the wave propagates and 

evolves over the spatial domain x and temporal 

domain t. As time progresses, the 

displacement of the wave changes at each 

spatial position along the rod, illustrating the 

dynamic behavior of wave propagation. The 

surface plot visualizes this relationship by 

showing how the displacement of the wave 

varies both spatially and temporally, providing 

insights into the wave dynamics over the 

specified length and time intervals. 

In conclusion, this study has demonstrated the 

effectiveness of MATLAB as a powerful tool 

for numerically solving partial differential 

equations (PDEs), with a particular focus on 

the one-dimensional heat and wave equations. 

By utilizing finite difference methods and 

MATLAB's computational capabilities, we 

were able to obtain accurate numerical 

solutions and visualize their behavior through 

surface plots. Through the course of this 

research, we have highlighted the importance 

of numerical solutions in understanding the 

dynamics of physical systems governed by 

PDEs. By discretizing the equations and 

solving them numerically, we gained valuable 

insights into the behavior of heat transfer 

processes and wave propagation phenomena. 

These insights are crucial for various 

applications in engineering, physics, and other 

scientific disciplines [16]. 

Furthermore, we discussed the practical 

significance of PDEs in modeling real-life 

scenarios, ranging from heat conduction in 

materials to the propagation of seismic waves 

in the Earth's crust. The ability to accurately 

simulate these phenomena using numerical 

methods is instrumental in predicting system 

behavior, optimizing design parameters, and 

solving complex engineering problems. This 

study contributes to the advancement of 

computational methods for solving PDEs, 

offering a comprehensive overview of the 

numerical techniques employed and their 

applications. By leveraging MATLAB's 

capabilities, researchers and practitioners can 

efficiently tackle challenging PDE problems, 

paving the way for further advancements in 

science and technology [5]. 

In summary, the numerical solution of PDEs 

using MATLAB holds immense potential for 

addressing real-world challenges and 

advancing our understanding of complex 

physical systems. By continuing to refine and 

expand upon these computational techniques, 

we can unlock new opportunities for 

innovation and discovery in various fields of 

science and engineering. 
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