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ABSTRACT 

Ebola Virus Disease (EVD) has been a significant public health concern due to its high mortality 

rate and potential for widespread outbreaks. This study focuses on the transmission dynamics of 

EVD, utilizing a fractional-order mathematical model. The model incorporates hospitalization and 

treatment as critical control measures against the disease. The Laplace-Adomian Decomposition 

method is employed to approximate series solutions, providing insights into the dynamics of EVD 

under varying conditions. Numerical simulations conducted using MATLAB highlight that effective 

treatment and high vaccination coverage are pivotal in controlling the spread of Ebola. 

Recommendations stemming from the study emphasized the importance of comprehensive 

vaccination campaigns, strengthened healthcare infrastructure, and community engagement in 

disease control efforts. Ultimately, this study serves as a valuable tool in understanding and 

managing Ebola outbreaks, contributing to global health strategies aimed at preventing and 

mitigating infectious diseases.  

Keywords: Epidemiology, Vaccination, Hospitalization, Computer Simulation, Laplace-Adomian 

Decomposition method, Mathematical   modelling 

 

INTRODUCTION 

Ebola virus disease (EVD), first recognized in 

1976 during simultaneous outbreaks in Nzara, 

Sudan, and Yambuku, Democratic Republic of 

Congo (DRC), has since garnered global 

attention due to its high mortality rates and 

potential for large-scale outbreaks [1]. The 

causative agent, Ebola virus, belongs to the 

family Filoviridae and genus Ebolavirus, with 

five identified species: Zaire ebolavirus, 

Sudan ebolavirus, Tai Forest (formerly Ivory 
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Coast) ebolavirus, Bundibugyoebolavirus, and 

Reston ebolavirus [1,3]. Ebola virus is 

transmitted through direct contact with bodily 

fluids of infected individuals or animals, such 

as blood, saliva, urine, or semen, and can also 

spread via contaminated surfaces and 

materials [1]. The virus primarily infects 

humans through mucosal surfaces, breaks in 

the skin, or parenterally. Initial symptoms of 

EVD include sudden onset of fever, fatigue, 

muscle pain, headache, and sore throat, 

progressing to vomiting, diarrhea, impaired 

kidney and liver function, and in severe cases, 

internal and external bleeding [1,4]. As of 

recent developments, a recombinant vesicular 

stomatitis virus–based vaccine, rVSV-

ZEBOV, has shown efficacy in preventing 

EVD during outbreaks. This vaccine, although 

still under evaluation, represents a significant 

advancement in controlling Ebola virus 

transmission [1.3]. Treatment primarily 

involves supportive care, including fluid and 

electrolyte management, and addressing 

specific symptoms such as bleeding and 

infections. Experimental treatments, such as 

monoclonal antibodies and antiviral drugs, are 

also being explored [3]. Preventing EVD 

outbreaks relies heavily on early detection, 

isolation of cases, contact tracing, and 

implementation of infection prevention and 

control measures in healthcare settings [1]. 

Public health measures include community 

engagement, safe burial practices, and 

education on personal protective equipment 

(PPE) use and hygiene practices [3,4]. 

Surveillance and rapid response teams are 

crucial in containing outbreaks and preventing 

further transmission within and across borders. 

Laplace Adomian Decomposition Method:  

The Laplace Adomian Decomposition Method 

(LADM) is a powerful analytical technique 

used to solve nonlinear differential equations. 

It combines the classical Laplace transform 

method with Adomian decomposition, 

offering a systematic approach to approximate 

solutions for a wide range of differential 

equations encountered in science and 

engineering [2,7]. The LADM begins by 

applying the Laplace transform to the 

nonlinear differential equation, transforming it 

into a simpler algebraic equation involving 

transformed functions. The nonlinearity is 

then decomposed using the Adomian 

polynomials, which are series solutions 

representing the nonlinearity of the equation. 

This decomposition simplifies the problem 

into a series of linear or simpler nonlinear 

equations, which can be solved iteratively to 

obtain successive approximations of the 

solution [2,8]. One of the significant 

advantages of LADM is its ability to handle 

nonlinear differential equations without 

linearization or discretization, which are 

common requirements in numerical methods. 

This method provides analytical solutions in 

closed-form or series form, allowing for a 

deeper insight into the behavior of the system 

and facilitating the study of the influence of 

parameters on the solutions [2]. Moreover, 

LADM is computationally efficient and can be 

implemented straightforwardly using 

symbolic computation software like 

Mathematica or Maple, making it accessible 

for researchers and practitioners in various 

fields. It is particularly useful in problems 

where numerical methods may encounter 

convergence issues or when exact solutions are 

desired for theoretical analysis or validation 

purposes [7,8]. The Laplace Adomian 

Decomposition Method has been successfully 

applied to various disciplines, including 

physics, engineering, biology, and finance, 

where nonlinear differential equations are 

prevalent. Its versatility and robustness 

continue to attract researchers seeking 

efficient analytical tools for modeling and 

analysis. Ongoing research focuses on refining 

the method's applicability to more complex 

nonlinear systems and extending its 

capabilities to handle higher-order differential 

equations and coupled systems [2,8]. Several 

authors have studied approximate solution of 

differential equations using Laplace-Adomian 

Decomposition Method (LADM). [2] focused 

on the combined Laplace Transform-Adomian 

Decomposition Method (LADM), 

demonstrating its efficacy in solving nonlinear 
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ordinary and partial differential equations. By 

applying the Laplace transform to eliminate 

the time variable and subsequently 

decomposing the nonlinear terms using 

Adomian polynomials, Wazwaz simplifies 

complex equations into iterative linear forms. 

This methodological approach provides 

accurate analytical solutions without the 

computational demands of traditional 

numerical techniques, making it a valuable 

tool in mathematical modeling across various 

scientific disciplines.[9] applied the Laplace-

Adomian Decomposition Method (LADM) to 

solve nonlinear differential equations 

commonly encountered in engineering 

applications. Focusing on second-order 

nonlinear differential equations, Naeem 

illustrates the step-by-step application of 

LADM, highlighting its utility in providing 

accurate approximate solutions for 

engineering design and analysis. By avoiding 

the complexities of numerical methods, 

LADM offers a systematic approach to 

modeling nonlinear dynamics in engineering 

systems, enhancing understanding and 

facilitating practical applications.[10] 

explored the broad applicability of the 

Laplace-Adomian Decomposition Method 

(LADM) across various disciplines including 

mathematical physics and engineering. By 

analyzing its theoretical foundations and 

practical implementations, Ji demonstrates 

LADM's effectiveness in solving diverse 

nonlinear differential equations. Through 

computational examples and theoretical 

analyses, Ji showcases how LADM provides 

insights into the qualitative behaviors of 

solutions, thereby contributing to 

advancements in theoretical understanding 

and practical applications in scientific 

research. Some useful studies include [5, 6, 

11]. 

MATERIALS AND METHODS 

Model Formulation. 

The total population (N),  is subdivided into 

seven compartments including: Susceptible 

individuals (S),  Vaccinated individuals (V),  

exposed individuals (E), infected individuals 

(I),  hospitalized individuals (H),  dead and 

unburied individuals (D),  and recovered 

individuals (R),Let Λ be the recruitment rate. 

Susceptible individuals become vaccinated at 

a rate 1 . Let 2  denote the rate at which 

vaccinated individuals become exposed due to 

vaccine failure,  be the rate at which 

susceptible individuals become exposed, and 

1 represent the rate at which exposed 

individuals become infected. Here, 2  

represents the hospitalization rate of infected 

individuals, 1  and  2 ,  denote the death rates 

of infected and hospitalized populations, 

respectively. 3 is the recovery rate of 

hospitalized individuals,  is the natural death 

rate. The death rates associated with infection 

and hospitalization are  1 and 2 and 4 ,  is the 

burial rate of deceased individuals. 

Susceptible (S): This compartment represents 

individuals who are susceptible to contracting 

Ebola virus disease. Susceptible individuals 

have not been infected with the virus and can 

become infected upon exposure to infected 

individuals or contaminated materials [1]. 

Vaccinated (V):  The vaccinated 

compartment consists of individuals who have 

received a vaccine against Ebola virus disease. 

Vaccination reduces the susceptibility of 

individuals to infection and can contribute to 

herd immunity, thereby helping to control the 

spread of the virus within the population [7]. 

Exposed (E): Individuals in the exposed 

compartment have been infected with the 

Ebola virus but have not yet developed 

symptoms. During the incubation period, these 

individuals are not infectious but can later 

transition to the infected compartment [8]. 

Infected (I): Infected individuals are those 

who have developed symptoms of Ebola virus 

disease and are capable of transmitting the 

virus to others. This compartment represents 

individuals who are actively contributing to 
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the spread of the disease within the population 

[1]. 

Hospitalized (H): The hospitalized 

compartment includes individuals who have 

developed severe symptoms of Ebola virus 

disease and require medical care. 

Hospitalization is necessary for managing 

complications and providing supportive 

treatment to improve patient outcomes [3]. 

Deceased (D): Individuals in the deceased 

compartment have succumbed to Ebola virus 

disease. This compartment represents the 

unfortunate outcome of severe cases of the 

disease and underscores the importance of 

timely medical intervention and public health 

measures to prevent fatalities [3]. 

Recovered (R): Recovered individuals have 

successfully cleared the Ebola virus from their 

system and have developed immunity to 

subsequent infections. This compartment 

reflects the resilience of the human immune 

system and the potential for individuals to 

overcome the disease with proper medical care 

and support [1]. 

Variables and Parameters Interpretation  

Table 1. Variables and Parameters Used. 

Variables  Interpretation  

N(t) Total human population  

S  Susceptible population 

V  Vaccinated population  

E  Exposed individuals  

I  Infected individuals  

H  Hospitalized Individuals 

D  Deceased population  

R Recovered individuals 

Parameters  Descriptions 

  Recruitment rate  

1  Vaccination rate  

  Force of infection 

2  Rate of exposure due to vaccine failure  

3  Infectionrate due to vaccine failure  

  Natural death rate  

1  Rate of infection of exposed humans 

1  Disease induced death rate associated with I compartment  

2  Disease induced death rate associated with H compartment  

2  Hospitalized rate of infected individuals  

1  Death rate of infected individuals   

2  Death rate of hospitalized individuals  

3  Recovery rate of hospitalized individuals  

4  Rate of burial for the deceased population  
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Figure 1. Schematic Diagram for the model.  
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Fractional Order of the Ebola Model 

The Caputo derivative is measured as a differential operator in our model. We present in this segment 

some well-known definitions and effects that we shall be using throughout this research.  

Definition 1. [7,8], The Caputo fractional order derivative of a function ( f ) on the interval [ TO, ] is 

defined by: 
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Definition 2. [7],Laplace transform of Caputo derivatives is defined as 
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Lemma 1 [7,8]. The following results hold for fractional differentiation equations 
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For arbitrary ,1,...,2,1,0,0  ni where 1][  n and ][ represents the integer part of  . 

Introducing fractional-order into the model, we now present a new model described by the following 

introducing fractional order derivative into the model we present new mathematical model describe 

by set of fractional difference of order   [7,8], for 10    
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The Laplace-Adomian Decomposition Method (LADM) Implementation 

We considered the general procedure of this method with the initial conditions. Applying Laplace 

transforms to both sides of the equation (1), and then we have: 
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With initial conditions 
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Dividing eqn. (7) by ( S  ) we have:  
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Decomposing the non-linear term of equation (6) whereby we assume the solution of 

1 2( ), ( ), ( ), ( ), ( ), ( )S t V t V t E t I t R t are in the form of infinite series given by:   
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We have three (3) non-linear terms. The non-linear term in equation (6) are decomposed by Adomian 

polynomial as follows: 
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Where    ( ), ,A n B n C n  are Adomian polynomials given by 
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The polynomials are given by  
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Substituting equation (9), (10) into equation (8) we obtained: 
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Evaluating the Laplace transform of the 2nd terms in the RHS of (16), we obtain 
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Taking the inverse Laplace transform of both sides of (14) 
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When 0n  we obtain, 
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When 2n  , we obtain, 



  233 

 

Scientia Africana, Vol. 23 (No. 4), October, 2024. Pp 223-242   

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

 

 

      
   

 

       
 

 
      

     

       

       

       

     

1

1 2

2 1

1 1 1 2

2 2 3 2

1 2 4

3

1 1 1
1

2 1 1

1 1 1
2 1 1

2 1 1

2

(2)
1

1

1

1

1

1

1

1

1

1

1 1

2 1 0 1

2 1 1
1

A B C
S

N

V S V

A B C
E V E

N

I E I

H I H

D I

t
S

t

S

S

S

S

H D

R H R


 

  


  

    

    

  













 





 
   

 

 
  

   



 
  

   

     

 
  

  

    

    

 

  

   





 
1

S




























         (18) 

   

When 1n n  , we obtain, 

      
   

 

       
 

 
      

     

       

       

       

 

1

1 2

2 1

1 1 1 2

2 2 3 2

1 2 4

( )
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

A n B n C n
n S n

N

V n S n V n

A n B n C n
E n V n E n

N

I n E n I n

H n I n H n

D n I n H n D n

t
S

t

S

S

S

S

R n


 

  


  

 









  

    








  

 
  

   

     

 
  

 

 
    

  

 
   

    

  



    

    

    

 

  

    3

1

1
H n R n

S



























    






   (19) 

The series solution of each compartment can be expressed as: 

 ( ) (0) (1) (2) ...S t S S S     

 ( ) (0) (1) (2) ...V t V V V     

 ( ) (0) (1) (2) ...E t E E E     
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 ( ) (0) (1) (2) ...I t I I I     

 ( ) (0) (1) (2) ...H t H H H          (20) 

 ( ) (0) (1) (2) ...D t D D D     

 ( ) (0) (1) (2) ...R t R R R     

 

Numerical Solution of Laplace Adomian Decomposition Method (LADM) 

In this section, we will see the numerical solution of the model. Using the initial conditions, the 

Laplace Adomian Decomposition Method (LADM) gives us an approximate solution in in terms of 

an infinite series presented as [7,8]: 
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      (21) 

For 1  , the series solution of (1) model becomes, 
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   (22) 

Numerical Simulation 

Numerical simulation is pivotal in mathematical epidemiology, enabling researchers to model and 

analyze the dynamics of disease spread within populations [13]. These models typically involve 

systems of differential equations that capture factors such as infection rates, recovery rates, and 

population movement patterns [12]. By numerically solving these equations over time, simulations 

provide predictions on how diseases may evolve under various conditions. Numerical simulation also 

supports parameter estimation and sensitivity analysis in epidemiological modeling. Parameter 

estimation involves fitting model predictions to real-world data to determine parameters like 

transmission rates or initial conditions [12]. Sensitivity analysis assesses how changes in parameters 

affect model outcomes, providing insights into the robustness of predictions [13] 

Furthermore, simulations allow researchers to explore different scenarios and intervention strategies. 

For instance, simulations can assess the impact of vaccination campaigns, social distancing measures, 

or changes in healthcare capacity on disease spread dynamics [12]. This capability is crucial for 

informing public health policies and interventions during disease outbreaks. Numerical simulation 

plays a vital role in advancing our understanding of disease dynamics, aiding in the development of 

effective public health strategies, and supporting preparedness efforts for future outbreaks. 

Table 1 Parameter table of values 

Parameter Value Source 

  0.202 Assumed 
  0.03 [14] 

1  0.25 [14] 

  0.001 Assumed 

1  0.1 [16] 

2  0.001 Assumed 

1  0.5 Assumed 

2  0.15 [16] 

2  0.80 [17] 
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1  0.01 [17] 

2  0.02 Assumed 

3  0.982 [14] 

4  0.0025 Assumed 

  0.027 Assumed 

 

Figure 2a. Effect of varying  on susceptible             Figure 2b. Effect of varying  on exposed 

 Population       Population 

 

Figure 2c. Effect of varying  on vaccinated        Figure 2d. Effect of varying  on hospitalized     

 Population       Population 
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Figure 2e. Effect of varying  on infected      Figure 2f. Effect of varying  on deceased     

 Population       Population 

 

Figure 2g. Effect of varying  on recovered   Population  
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convergence analysis confirmed that LADM 

provided a uniformly convergent series 

solution, validating its accuracy for 

approximating complex disease models. The 

method demonstrated several benefits, 

including rapid convergence, reduced 

computational complexity, and the capability 

to manage various nonlinearities. This made 

LADM a powerful tool for analyzing disease 

dynamics and performing parameter 

sensitivity analyses. The figures presented 

provided detailed insights into the 

effectiveness of strategies for controlling 

Ebola Virus Disease (EVD). Figure 2a 
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vaccination and preventive measures were 

successful in reducing the at-risk population. 

Figure 2b demonstrated that while the number 

of exposed individuals remained relatively 

stable initially, it eventually decreased as high 

vaccination rates took effect, suggesting 

effective control over the transition from 

exposure to symptomatic disease. 

Figure 2d depicted an increase in the number 

of hospitalized individuals, which aligned with 

enhanced treatment efforts for severe cases. 

This rise in hospitalizations was associated 

with a decrease in the number of infected 

individuals, as shown in Figure 2e, reflecting 

the positive impact of medical treatment on 

disease control. Figure 2f confirmed high 

recovery rates, indicating that treatment 

measures were effective in managing the 

disease. Meanwhile, figure 2g revealed an 

initial increase in the deceased population 

followed by a decline, which suggested that 

mortality rates were eventually reduced due to 

successful disease management. Overall, these 

figures highlighted the effectiveness of 

vaccination, treatment, and healthcare 

interventions in controlling and mitigating the 

spread of EVD. 

Convergence Analysis for the Laplace-

Adomian Decomposition Method (LADM). 

The solution of (1) is expressed in the forms of 

infinite series which converged uniformly to 

its exact solution. To verify the convergence of 

the series (22), we employ the method used in 

[7,8]. For sufficient conditions of convergence 

of the LADM, we present the following 

theorem: 

Theorem 1 

Let X be a Banach space and :T X X be a 

constructive nonlinear operator such that for 

       
' ', ,  ,0 1.x x X T x T x k    Then, 

T has a unique point x such that Tx x ,where

 , , , , , , .x S V E I H D R  The series given can 

be written by applying the Adominan 

decomposition method as follows [7,8]: 

 1 1,n n nx Tx x  , 

 
1

1

,  1,2,3,...
n

i

i

x n




   

And we assume that  0 ,rx B x where 

   ': ;rB x x X x x r    then, we have as 

follows: 

(i)  n rx B x  

(ii) limn nx x   

Proof 

For condition (i), invoking mathematical 

induction, 

For n=1, we have as follows: 

    0 0 0 .x x T x T x x x      

If this is true for m-1, then 

 
1

0 0 .mx x k x x    

This gives the following: 

 

   1 1 0 .n

m m mx x T x T x k x x k x x       

 

Therefore,  

0 .n n

mx x k x x k r r      

This directly implies that  .n rx B x  

Also, for (ii), we have that since 

0

n

mx x k x x   and lim 0n

n k  , we 

can write limn nx x  . 

Benefits of Using the Laplace-Adomian 

Decomposition Method (LADM) to Obtain 

Series Solutions for Disease Models, Such ss 

an Ebola Model: 

 Analytical Insight: LADM provides an 

analytical series solution that offers a deep 

understanding of disease dynamics, 

revealing insights into how different 
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parameters influence the spread and 

control of diseases [13]. 

 Rapid Convergence: The series solution 

obtained through LADM typically 

converges rapidly, even for nonlinear 

problems like disease models, ensuring 

that truncated series provide accurate 

approximations of solutions [12]. 

 Reduced Computational Complexity: 
LADM reduces the computational 

complexity of solving partial differential 

equations (PDEs) or nonlinear ordinary 

differential equations (ODEs) compared to 

traditional numerical methods, making it 

efficient for modeling complex disease 

dynamics [12]. 

 Parameter Sensitivity Analysis: With the 

series solution from LADM, researchers 

can easily perform sensitivity analyses on 

model parameters, assessing how changes 

in parameters affect disease dynamics and 

intervention strategies [20]. 

 Validation and Comparison: The series 

solution derived from LADM serves as a 

reliable benchmark for validating results 

obtained through other numerical or 

simulation methods, ensuring the 

robustness and accuracy of disease models 

[22]. 

 Flexibility in Model Complexity: LADM 

can handle a wide range of nonlinearities 

and complexities in disease models, 

making it adaptable for studying various 

real-world scenarios and dynamic 

interactions [19]. 

 Insights into Long-Term Dynamics: The 

series solution obtained through LADM 

provides insights into long-term behaviors 

and asymptotic stability of disease models, 

which is crucial for predicting outcomes 

over extended periods [18]. 

CONCLUSION  

Figure 2a shows the graph of Susceptible 

individuals over time. It is observed that the 

number of susceptible individuals decreases to 

zero over time, indicating effective disease 

control. In Figure 2b, the number of exposed 

individuals remains almost constant initially 

but later decreases as time progresses, likely 

due to effective high vaccination rates (refer to 

Figure 2c), which suggests that the disease can 

be controlled within the population. In Figure 

2d, the number of hospitalized individuals 

increases, leading to a decrease in the number 

of infected individuals in Figure 2e and a high 

recovery rate in Figure 2f, implying effective 

treatment measures. Consequently, the 

deceased population initially increases but 

later decreases, as illustrated in Figure 2g. 

In conclusion, the use of the Laplace Adomian 

decomposition method to model Ebola Virus 

disease incorporating vaccination and 

hospitalization as control measures 

demonstrates significant efficacy in disease 

control. Numerical simulations underscore the 

critical role of high treatment and effective 

vaccination in mitigating Ebola transmission 

and reducing its impact on population health. 

Implementing comprehensive vaccination 

campaigns, strengthening healthcare 

infrastructure, and fostering community 

engagement are essential steps in enhancing 

preparedness and response strategies against 

future Ebola outbreaks. 

Findings from the Study  

 Effective Disease Control: High treatment 

and vaccination rates lead to a significant 

reduction in Ebola transmission within the 

population. 

 Impact of Vaccination: Effective 

vaccination strategies result in a stable and 

subsequently decreasing number of 

exposed individuals over time. 

 Hospitalization Effects: Increased 

hospitalization rates correspond to a 

decrease in the number of infected 

individuals, reflecting successful treatment 

interventions. 

 Recovery Rate: The model shows a high 

recovery rate among infected individuals 

due to prompt hospitalization and 

treatment. 

 Mortality Trends: Initially rising mortality 

rates stabilize and decrease with sustained 
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control measures, indicating successful 

disease management. 

Recommendations: 

 Enhanced Vaccination Campaigns: Effort 

should be taken to implement 

comprehensive vaccination programs to 

ensure high coverage and effectiveness 

against Ebola outbreaks. 

 Improvement in Hospital Infrastructure: 

Government should Strengthen healthcare 

facilities to enhance the capacity for 

prompt diagnosis, treatment, and isolation 

of Ebola cases. 

 Training and Education: Government 

should provide continuous training for 

healthcare workers on Ebola prevention, 

early detection, and management 

protocols. 

 Community Engagement: Effort should be 

taken to foster community participation 

and awareness to promote vaccination 

acceptance and adherence to treatment 

protocols. 

 Global Collaboration: Effort should be 

taken foster international collaboration and 

resource-sharing to enhance preparedness 

and response capabilities against Ebola 

outbreaks. 
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