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ABSTRACT 

The properties of symmetric nuclear matter at zero temperature were considered. The equations of 

state (EOS) of nuclear matter were studied in the non-linear Walecka models at different 

parameterization. At normal nucleon density, there is strong correlation among the different 

parameter sets, however the linear Walecka model gives values of nucleon effective mass 𝑀0
∗ and 

nuclear incompressibility (𝛫) at variance to the experimental values.The calculated values  of 

saturation density ranges from (0.143-0.152) fm-3 , nucleon effective mass (0.132-0.157) MeV, 

binding energy per nucleon (-16.01 to -16.20) MeV, compression modulus (223.55-271.36) MeV, and 

fermi-wavelength (1.30-1.31) fm-1 for the non- linear Walecka model (NLWM). The results of the 

numerical computations were compared with the empirical analysis of the giant isoscalar monopole 

resonance data. These quantities are important for understanding the structure of finite nuclei, 

neutron stars and equation of state of other dense matter in astrophysical contexts. 

Keywords: Symmetric nuclear matter, Lagrangian density, non-linear-Walecka model, relativistic 

mean field theory, equation of state 

 

INTRODUCTION  

The non-linear Walecka model (NLWM) is a 

relativistic quantum field theoretical 

framework used for describing nuclear matter 

properties (Abhijit and Ghosh 2018; Aper et 

al., 2018 and Chung et al.,2008). At zero 

temperature, it incorporates interactions 

between nucleons mediated by scalar and 

vector mesons. The lagrangian density for this 

model includes terms for nucleons (protons 

and neutrons), Scalar mesons (𝜎), vector 

mesons (𝜔)  and self-interaction terms for the 

sigma meson field. This is aimed at addressing 

some limitations of the original linear Walecka 

model thereby providing a more accurate 

description of nuclear matter properties at high 

densities. Like the linear model, the equations 

of motion (EoM) for the various fields are 

derived from the Lagrangian density which 

involves contributions from the scalar and 

vector fields (Parmer et al., 2023; Mpatis, 2020 

and Parmer, 2019). Also, in the mean field 

approximation, the meson fields are replaced 

by their expectation values which provides the 

equations of state (EoS) for the symmetric 

nuclear matter. The EOS relates the energy 

density, pressure density to the baryon density 

which is crucial for understanding the 

properties of neutron stars and heavy-ion 

collision experiments (Sumiyoshi et al.,2019; 

Von-Maco, 2018; and Walecka, 2004. This 
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model will help to provide saturation 

properties of nuclear matter such as binding 

energy per nucleon, the nuclear matter 

incompressibity, Symmetry energy and the 

nucleon effective mass etc. In an earlier 

attempt to study nuclear matter properties 

within the framework of quantum 

hadrodynamics (QHDI), Walecka and other 

co-workers were able to describe the saturation 

and other properties of nuclear matter using the 

well-studied linear - model (Patrigani, 2016 

and Schmitt, 2010). However, this model 

yields the nuclear incompressibility Ko around 

550MeV which is unacceptably high and again 

the effective nucleon mass M* around 0.54M 

which seems too low (Parmer,2019; Fiase and 

Gbaorun 2011; Francesco, 2017; Gambhir and 

Ring 1989; Patrigany, 2016; Passamani and 

Cescato, 2007), hence the introduction of the 

non-linear Walecka model.  

MATERIALS AND METHOD 

The Formalism of the Non-Linear Model 

The non-linear Walecka model is otherwise known as the quantum hadrodynamicII (QHD II). It is a 

relativistic quantum field theory just like the linear Walecka model used for describing the main 

features of the nucleon-nucleon and nucleon-meson interactions (Walecka, 2004). This model is 

governed by the following lagrangian density: 

ℒ 2 21
( ) ( ) ( ) ( )

2
i ig m g m  

                           

  
2 3 41 1 1 1

( ) ( )
4 2 3 4

nm m b g c g 

                                                (1)  

Where: 

  is nucleon field. 

  is the sigma fieldwith mass 𝑚𝜎 

  (the omega field), with mass  𝑚𝜔 

 g𝜎and g𝜔 are the respective coupling constants for the nucleon-sigma and nucleon-omega 

interactions. 

 b and c are coefficients of the non-linear sigma meson self-interaction terms. 

The scalar self-interaction term is  non-linear made up of  cubic and quartic polynomials defined by 

the potential:  

 
3 41 1

( ) ( ) ( )
3 4

nU m b g c g                              (2) 

Where b and c are dimensionless constants and 𝑚𝑛 = 939 𝑀𝑒𝑉 thought to be a mass equal to that of 

a neutron (Francesco,2017)  . 

The equations of motion of the meson fields are obtained using the Euler-Lagrange equation: 

𝜕ℒ

𝜕𝜙
− 𝜕𝜇 (

𝜕ℒ

𝜕(𝜕𝜇𝜙)
) = 0                (3) 

Substituting eqn. (1) into eqn. (3), the meson field equations are obtained as follows: 

𝜕(ℒ𝜎+ℒ𝑖𝑛𝑡−𝑈(𝜎)

𝜕𝜎
=  −𝑚𝜎

2𝜎(𝑥) + 𝑔𝜎(�̅�𝜓 − 𝑚𝑛𝑏(𝑔𝜎𝜎(𝑥))
2

− 𝑐((𝑔𝜎𝜎(𝑥))
3
                              (4)  
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So that after imposing mean-field procedures, eqn (4), turns out to:  

      
2 32

nm g m b g C g                               (5) 

Recalling the expression for the computed    ,  in terms of g  becomes:  
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The expectation value of the Lagrangian also modify as:  

 〈ℒ〉    432
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1
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1
  gCgbmmm n                           (7) 

2.2    Energy density and Pressure for the non- linear Walecka model 

The energy (ε) and pressure (P) for the expectation values are in the rest frame and are on the diagonal 

of the matrix form. 

Tμυ =  Tμυ =    (

ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

)        (8) 

But by definition, the energy-momentum tensor is given by (Francesco, 2017 and Diener, 2008) as:  

Tμυ = ημυL −
∂L

∂(∂μϕi)
∂vϕi(9) 

Where ϕi represents an arbitrary field example ψ, σ, ω − fields etc. with the Lagrangian for 

ψ nucleons in momentum space. 

Tμυ = ημυL −
∂L

∂(∂μψ)
∂vψ                                       (10) 

From the energy-momentum tensor, the energy and pressure densities are obtained respectively as: 

ε = −〈ℒ〉 + 〈�̅�𝛾0𝑝0𝜓〉                          (11) 

𝑃 = 〈ℒ〉 +
1

3
〈�̅�𝛾ἱ𝑝ἱ𝜓〉                          (12) 

Evaluating the above expectation values gives : 

(ψ̅γ0P0ψ) =
2

π2 ∫ ∂P P2√P2 + (m−𝔤σ〈σ〉)2                                                             (13) 

(ψ̅γiPiψ) =
1

𝜋2 ∫ 𝑝2𝑑𝑝
𝑝2

√P2+(m−𝔤σ〈σ〉)2

𝑝𝐹

0
                                                                               (14) 

Substituting eqn (7), eqn (13) and eqn (14) into eqn(11) and (12) respectively, the equations of state 

(EoS) for the non-linear Walecka model with the self-interaction term are obtained as:
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NUMERICAL RESULTS  

 

Figure 1: Self-consistent effective masses of nucleon as a function of baryon density for  different 

parameter sets at T = 0 in the NLWM 

 

Figure 2 :Energy density against baryon density for NLWM at T= 0 for the parameter sets 
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Figure 3: Binding energy as a function of baryon density and Fermi-wavelength for the different 

parameter sets using the NLWM 

 

Figure 4: Binding energy as a function of baryon density for the different parameter sets under 

different asymmetry coefficient at T = 0 in the NLWM 

Table 1: Parameter sets for the model. The nucleon mass is taken as 939MeV 

FSU Garnet IOPB-1 G3 NL3 

𝑚𝜎 𝑀⁄  0.529 0.533 0.559 0.541 

𝑚𝜔 𝑀⁄  0.833 0.833 0.833 0.833 

𝑚𝜌 𝑀⁄  0.812 0.812 0.820 0.812 

𝑚𝛿 𝑀⁄  0.0 0.0 1.043 0.0 

𝑔𝜎 4𝜋⁄  0.837 0.827 0.782 0.813 

𝑔𝜔 4𝜋⁄  1.091 1.062 0.923 1.024 

𝑔𝜌 4𝜋⁄  1.105 0.885 0.962 0.712 

𝑘3(𝑓𝑚−1) 1.368 1.496 2.606 1.465 

𝑘4 -1.397 -2.932 1.694 -5.688 

𝜍0 4.410 3.103 1.010 0.0 

𝜂1 0.0 0.0 0.424 0.0 

𝜂2 0.0 0.0 0.114 0.0 

𝜂𝜌 0.0 0.0 0.645 0.0 

Λ𝜔 0.043 0.024 0.038 0.0 
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Table 2: Calculated Nuclear Matter Observables for N LWM at zero temperature 

FSU Garnet IOPB-1 G3 NL3 

𝜌0(𝑓𝑚−3) 0.152 0.143 0.146 0.147 

𝑀∗ 𝑀⁄  0.132 0.143 0.136 0.157 

𝜀0(𝑀𝑒𝑉) -16.01 -16.09 -16.03 -16.20 

𝑝𝐹
0(𝑓𝑚−1) 1.31 1.33 1.30 1.30 

𝐾∞(𝑀𝑒𝑉) 228.4 223.55 242.95 271.36 

 

DISCUSSIONS 

In figure 1, the nuclear matter effective mass 

as a fuction of the baryon density for all the 

parameter sets were plotted. It was observed 

that the G3, FSUGarnet and IOPB-1 parameter 

set underestimate the EoS as shown by the 

NL3 set. These parameter sets showed similar 

behavior due to the fact that they share the 

same structure of couplings (Table1). The 

baryon effective mass decreases exponentially 

as density increases among the force 

parameters. This is because the solution of the 

self-consistent equation( Gil,2023 and 

Ilona,2007)will always yield solutions of 

effective mass(M*) which is a decreasing 

function of the baryon density ( Antic and 

Typel ,2014) and Krane, 1988).This pattern of 

monotonic decrease arises from the interaction 

of large  condensed scalar field (𝑔𝜎𝜎) which is 

attractive and a large repulsive  energy per 

baryon component coming from the vector 

field (𝑔𝜔𝜔 ). 

The readiness for the NL3 set to overestimate 

the EoS is well observed in the effective mass 

as a function of baryon density curve (Fig.1). 

This is because the effective masses 

determined the values of both the scalar and 

vector potentials through the self-consistent 

equation for scalar density. The plots of the 

binding energy of nuclear matter as a function 

of baryon density and Fermi-wavelength are 

also displayed in figure 3. The binding energy 

per nucleon was estimated based on the force 

parameters to be about -16.41MeV at the 

saturation density of approximately 0.14 fm-3 

and Fermi-wavelength (𝐾𝐹 
0 =1.40 fm-1). These 

results are within the range obtained in other 

literatures (Parmer et al.,2023, Parmer, 2019; 

Schmitt,2010). The above results are 

indications that nuclear matter is considered as 

a Fermi degenerate gas at superhigh density 

(Sumiyoshi et al., 2019; Aper et al.,2018; Chin 

and Walecka, 2008). Furthermore, it was 

noticed that figure 3 depicted the softness of 

the G3 parameter set and the stiffness of NL3. 

Thus, the NL3 set is not a good tool for nuclear 

matter studies at superhigh density. It was 

observed that the symmetric nuclear matter is 

a dilute fermi system where the 

particles(nucleons) are interacting in a 

strongly repulsive potentials at short distances. 

The saturated values of the fermi momentum, 

density, binding energy, nuclear 

incompressibilty are in good agreement with 

accepted experimental values (Abhijit and 

Ghosh,2018; Antic and Typel,2014). Values of 

the nuclear matter incompressibility among 

the various parameter sets are further enhanced 

and lowered as expected based on results 

obtained by other researchers due to the 

inclusion of non-linear scalar potential to the 

original linear langrangian density. Figure 4 

depicted the binding energy versus baryon 

density for the various force parameters at 

different nuclear asymmetry parameter (𝛼). 

For symmetric nuclear matter, 𝛼=0 

(Mpantis,2020; Patrigani,2016 and Walecka, 

2004) and nucleons are seriously bound at 

saturation. It was observed that boundness 

becomes weaker as the degree of asymmetry 

tends towards unity. That is the energy per 

nucleon decreases as density increases. There 

is a transition between symmetric nuclear 

matter (SNM) to pure neutron matter (PNM). 

At these points, the cusps or the pockets of the 
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bound states begin to disappear. Increasing the 

asymmetry coefficient, the EoS become stiff 

which might become stiffer in high 

temperature studies. It was noticed that the at 

high densities, the system become unbound 

with the condition that E/B> 𝑀. Also at 

intermediate densities the attractive scalar 

interaction will dominate and the system will 

saturate. Note that, it is the relativistic nature 

of the scalar and vector fields that is 

responsible for this saturation. From the 

observed trends of behavior, these parameter 

sets can be use to explore the mass-radius 

profile of neutron stars with the aid of the well-

known Tolman-Oppenheimer-Volkoff (TOV) 

equation for simulating the sites of 

gravitational waves strain, neutron star 

mergers, core-collapse supernovas e.t.c. 

(Parmer etal.,2023; Oppenheimer and Volkoff 

,1939). Thus, the force parameters IOPB-1, G3 

and FSUGarnet can be used for estimating 

astrophysical properties of objects oscillating 

at supernormal densities (Von-Maco,2018 and 

Schmitt,2010). 

 Symmetric nuclear matter observables at zero 

temperature depicting nuclear matter 

incompressibility, nucleon effective mass, 

binding energy, and saturation density for 

these force parameters for the non-linear 

Walecka model are displayed in Table .2. The 

calculated values of saturation density ranges 

from (0.143-0.152) fm-3, nucleon effective 

mass (0.132-0.157) MeV, binding energy per 

nucleon (-16.01 to -16.20) MeV, compression 

modulus (223.55-271.36) MeV, and fermi-

wavelength (1.30-1.31) fm-1 for the non- linear 

Walecka model (NLWM) in Table.2. 

The non-linear Walecka model introduces 

non-linear self-interaction terms of the sigma 

meson field into the Lagrangian. These self-

interactions are necessary to reproduce the 

empirical properties of symmetric nuclear 

matter such as the binding energy per nucleon, 

the compressibility of nuclear matter and 

nucleon effective mass. From the results and 

calculations, at the zero temperature limit, the 

non-linear model greatly enhances the 

compressional modulus to soften the EoS due 

to the inclusion of the cubic and quartic terms 

of the scalar meson field to the original 

lagrangian.  On increasing the nuclear 

asymmetry parameter, symmetric nuclear 

matter (system) become unbound, EoS 

become stiffer and trends continueuntillSNM 

turns to Pure neutron matter (PNM). The non-

linear Walecka model (NLWM) significantly 

softens the nuclear matter equation of State 

(EoS) by reducing the incompressibity to an 

appreciable value at zero temperature. These 

quantities are important for understanding the 

structure of finite nuclei, neutron stars and 

equation of state of other dense matter in 

astrophysical contexts. 
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