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ABSTRACT 

Fixed point theorem is one of the theories in mathematics that has make many proofs been in 

existence. Lotka-Volterra model is a widely used pair of first-order nonlinear differential equations 

used to interpret the dynamics of two species that is a predator and a prey. The paper employs the 

contraction mapping and the Banach Fixed point theory on the Discrete Dynamical type of the Lotka-

Volterra to see the outcome of its behavior. The Banach Fixed Theory is used in determining the fixed 

point of discrete dynamical system of Lotka Volterra model. The following solutions (0,0), (−
𝛿

𝛾
,

𝛼

𝛽
) 

and (
(𝛼−𝛽𝑦𝑛−1)

𝑡
,

(𝛿+𝛾𝑥𝑛−1)

𝑝
) have all be discovered and they are fixed points of Lotka Volterra Model. 

The fixed point serving as the limiting behavior of Lotka Volterra is continuous and convergent.  

Keywords: Dynamical System, Discrete Lotka-Volterra, Fixed Point 

 

INTRODUCTION 

Many researchers have investigated dynamical 

systems. Din (2013) articulates the dynamics 

of a discrete Lotka-Volterra model. Farrukh 

Mukamedov and Mansoor Saburov (2014) 

state the dynamics of Lotka-Volterra (LV) 

type operators defined in a finite-dimensional 

simplex.  

Zhifang Bi and Shuxia Pan (2018), aimed at 

the dynamics of a Predator-Prey system with 

three species. In population dynamics, 

predator-prey systems have been widely 

studied due to their importance as well as 

plentiful dynamical behaviors. A 

mathematical formulation of any fixed rule 

that is time-dependently represented is called 

a dynamic system. Any of the three number 

systems—integers, real numbers, and complex 

numbers—can be used to measure time. A 

dynamical system that follows a fixed rule and 

whose state changes over a state space in 

discrete time steps is called a discrete 

dynamical system. (Sara Fernandes et al.  

2018) 

Hang Deng, et al. (2019) investigated the 

existence and stability of all possible equilibria 

of the system. Their studies also show that 

cannibalism has both positive and negative 

effect on the stability of the system, it depends 

on the dynamic behavior of the original 

system. The Lotka-Volterra (LV) systems 

typically model the time evolution of 

conflicting species in biology. The use of 

Lotka-Volterra discrete time systems is a well-

known subject of applied mathematics. 
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AmrElsonbaty and A. A. Elsadany (2021) 

aimed at introducing a new discrete fractional 

order model based on Lotka-Volterra prey-

predator model with logistic growth of prey 

species. 

MATERIALS AND METHODS 

Definition 1: (Sara Fernandes et al.  2018) 

A dynamical system is a system in which a 

function describes the time dependence of a 

point in an ambient space, such as parametric 

curve. In general, a system of 𝑛 first-order 

differential equations in the space 𝑅𝑛 is called 

a dynamical system of dimension 𝑛 which 

determines the time behavior of evolution 

process. 

Definition 2: (Sara Fernandes et al. 2018) 

(Carrasco-Gutierrez, et al., 2019) 

A discrete dynamical system is a system with 

a state that only change at a sequence of 

instants {𝑡0, 𝑡1,𝑡2, … }. A one-dimensional 

discrete dynamical system 𝑥𝑛+1 = 𝑓(𝑥𝑛) is 

given by iterating a map 𝑓, which we assume 

is smooth. 

Definition 3: (Qamar Din, 2013) 

Discrete Lotka-Volterra model is given by 

𝑥𝑛+1 =
𝛼𝑥𝑛−𝛽𝑥𝑛𝑦𝑛

1+𝛾𝑥𝑛
, 𝑦𝑛+1 =

𝛿𝑦𝑛+𝜖𝑥𝑛𝑦𝑛

1+𝜂𝑦𝑛
 where 

parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 𝜂 ∈ 𝑅+ and initial 

conditions 𝑥0, 𝑦0 are positive real numbers. 

Definition 4:(Layek, 2015): LINEAR 

STABILITY ANALYSIS 

A fixed point, 𝑥0 is said to be stable if for a 

given 𝜀 > 0, there exist a 𝛿 > 0 depending 

upon 𝜀 such that for all 𝑡 ≥ 𝑡0, ‖𝑥(𝑡) −
𝑥0(𝑡)‖ < 𝜀, whenever ‖𝑥(𝑡0) − 𝑥0(𝑡0)‖ < 𝛿, 

where ‖. ‖: 𝑅𝑛 → 𝑅 denotes the norm of a 

vector in 𝑅𝑛. 

Major definition and Theorem  

Definition 5: Contraction Mapping in 

Metric Space 

Given (𝑁, 𝑑) a metric space, a function 

𝑇: 𝑁 → 𝑁 is said to be a contraction mapping 

if there is a constant 𝑞 with 𝑞 < 1 such that 

for all 𝑥, 𝑦 ∈ 𝑁 
𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑞 ∙ 𝑑(𝑥, 𝑦) 

Theorem: Banach Contraction Principle 

Suppose (𝑃, 𝑑) is a complete metric space and 

𝐻: 𝑃 → 𝑃 is a mapping of contractions using 

the Lipschitz constant 𝑘 < 1. Then, the fixed 

point ∈ 𝑃, for all 𝑥 ∈ 𝑃 a unique point in 𝐻. 

That is; lim
𝑛→∞

𝐻𝑛(𝑥) = 𝜔 

Moreover, for each 𝑥 ∈ 𝑃, we have 

𝑑(𝐻𝑛(𝑥), 𝜔) ≤
𝑘𝑛

1−𝑘
𝑑(𝐻(𝑥), 𝑥), (Saleh, 

Qamrul and Khamsi, 2014). 

FINDINGS AND DISCUSSIONS 

Discrete Dynamical Type of the Lotka-

Volterra 

In this section, we investigate the discrete type 

of the Lotka Volterra to determine the roots, 

the solution, and the fixed point of each 

function. 

𝑥𝑛+1 =
𝛼𝑥𝑛−𝛽𝑥𝑛𝑦𝑛

1+𝑡𝑥𝑛
, 𝑦𝑛+1 =

𝛿𝑦𝑛+𝛾𝑥𝑛𝑦𝑛

1+𝑝𝑦𝑛
     1.1 

The Zeros/Roots of Eq 1.1 

For eq 1.1, 

let𝑥𝑛+1 = 0 

⇒
𝛼𝑥𝑛−𝛽𝑥𝑛𝑦𝑛

1+𝑡𝑥𝑛
= 0 

⇒ 𝛼𝑥𝑛 − 𝛽𝑥𝑛𝑦𝑛 = (1 + 𝑡𝑥𝑛) × 0 

𝑥𝑛(𝛼 − 𝛽𝑦𝑛) = 0 

𝑥𝑛 = 0 and 𝛼 − 𝛽𝑦𝑛 = 0⇒ 𝛼 = 𝛽𝑦𝑛, then 

𝑦𝑛 =
𝛼

𝛽
 

Also, let 𝑦𝑛+1 = 0 

𝛿𝑦𝑛 + 𝛾𝑥𝑛𝑦𝑛

1 + 𝑝𝑦𝑛
= 0 

⇒ 𝛿𝑦𝑛 + 𝛾𝑥𝑛𝑦𝑛 = (1 + 𝑝𝑦𝑛) × 0 

𝑦𝑛(𝛿 + 𝛾𝑥𝑛) = 0 

𝑦𝑛 = 0and𝛿 + 𝛾𝑥𝑛 = 0⇒ 𝛿 = −𝛾𝑥𝑛, then 

𝑥𝑛 = −
𝛿

𝛾
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Therefore, the roots of eq 1.1 are (0,0)and 

(−
𝛿

𝛾
,

𝛼

𝛽
). 

The Solution or Location of Eq 1.1 

𝛼𝑥𝑛 − 𝛽𝑥𝑛𝑦𝑛

1 + 𝑡𝑥𝑛
= 𝑥𝑛 

⇒ 𝛼𝑥𝑛 − 𝛽𝑥𝑛𝑦𝑛 = (1 + 𝑡𝑥𝑛) × 𝑥𝑛 

𝛼𝑥𝑛 − 𝛽𝑥𝑛𝑦𝑛 = 𝑥𝑛 + 𝑥𝑛
2𝑡 

𝑥𝑛
2𝑡 + 𝑥𝑛 − 𝛼𝑥𝑛 + 𝛽𝑥𝑛𝑦𝑛 = 0 

𝑥𝑛[𝑥𝑛𝑡 + 1 − 𝛼 + 𝛽𝑦𝑛] = 0 

𝑥𝑛 = 0and𝑥𝑛𝑡 + 1 − 𝛼 + 𝛽𝑦𝑛 = 0⇒𝑥𝑛𝑡 =

𝛼 − 𝛽𝑦𝑛 − 1 then 𝑥𝑛 =
𝛼−𝛽𝑦𝑛−1

𝑡
 

Again, 

𝛿𝑦𝑛 + 𝛾𝑥𝑛𝑦𝑛

1 + 𝑝𝑦𝑛
= 𝑦𝑛+1 

⇒𝛿𝑦𝑛 + 𝛾𝑥𝑛𝑦𝑛 = (1 + 𝑝𝑦𝑛) × 𝑦𝑛 

𝛿𝑦𝑛 + 𝛾𝑥𝑛𝑦𝑛 = 𝑦𝑛 + 𝑦𝑛
2𝑝 

𝑦𝑛
2𝑝 + 𝑦𝑛 − 𝛿𝑦𝑛 − 𝛾𝑥𝑛𝑦𝑛 = 0 

𝑦𝑛[𝑦𝑛𝑝 + 1 − 𝛿 − 𝛾𝑥𝑛] = 0 

𝑦𝑛 = 0and𝑦𝑛𝑝 + 1 − 𝛿 − 𝛾𝑥𝑛 = 0⇒𝑦𝑛𝑝 =

𝛿 + 𝛾𝑥𝑛 − 1 then 𝑦𝑛 =
𝛿+𝛾𝑥𝑛−1

𝑝
 

Hence, the solution of eq 1.1 is(0,0) and 

(
𝛼−𝛽𝑦𝑛−1

𝑡
,

𝛿+𝛾𝑥𝑛−1

𝑝
) 

Determination of the fixed point of Eq 1.1 

In this section, we use the points of 

intersection of the function to determine the 

fixed point of eq 1.1 

So, we determine the fixed point of eq 1.1 

That is, 𝑥𝑛+1 =
𝛼𝑥𝑛−𝛽𝑥𝑛𝑦𝑛

1+𝑡𝑥𝑛
 

At (0,0), that is 𝑥0 = 0 

𝑓(0) =
𝛼(0) − 𝛽(0)𝑦𝑛

1 + 𝑡(0)
= 0 

Also, at 𝑥𝑛 = (
𝛼−𝛽𝑦𝑛−1

𝑡
) 

𝑓(
𝛼 − 𝛽𝑦𝑛 − 1

𝑡
)

=
𝛼(

𝛼−𝛽𝑦𝑛−1

𝑡
) − 𝛽(

𝛼−𝛽𝑦𝑛−1

𝑡
)𝑦𝑛

1 + 𝑡(
𝛼−𝛽𝑦𝑛−1

𝑡
)

 

=
(

𝛼2−𝛼𝛽𝑦𝑛−𝛼

𝑡
) − (

𝛽𝑦𝑛𝛼−𝛽2𝑦𝑛
2−𝛽𝑦𝑛

𝑡
)

1 + (𝛼 − 𝛽𝑦𝑛 − 1)
 

=
(

𝛼2−𝛼𝛽𝑦𝑛−𝛼−𝛽𝑦𝑛𝛼+𝛽2𝑦𝑛
2+𝛽𝑦𝑛

𝑡
)

1 + 𝛼 − 𝛽𝑦𝑛 − 1
 

=
𝛼2 − 𝛼𝛽𝑦𝑛 − 𝛼 − 𝛽𝑦𝑛𝛼 + 𝛽2𝑦𝑛

2 + 𝛽𝑦𝑛

𝑡(𝛼 − 𝛽𝑦𝑛)
 

=
𝛼(𝛼 − 𝛽𝑦𝑛 − 1) − 𝛽𝑦𝑛(𝛼 − 𝛽𝑦𝑛 − 1)

𝑡(𝛼 − 𝛽𝑦𝑛)
 

=
(𝛼 − 𝛽𝑦𝑛)(𝛼 − 𝛽𝑦𝑛 − 1)

𝑡(𝛼 − 𝛽𝑦𝑛)
 

=
(𝛼 − 𝛽𝑦𝑛 − 1)

𝑡
 

Hence 𝑓 (
𝛼−𝛽𝑦𝑛−1

𝑡
) =

(𝛼−𝛽𝑦𝑛−1)

𝑡
 

This shows a fixed point. 

Also, for  
𝛿𝑦𝑛+𝛾𝑥𝑛𝑦𝑛

1+𝑝𝑦𝑛
= 𝑦𝑛+1 

Then, at (0,0), that is𝑦0 = 0 

⇒𝑓(0) =
𝛿(0)+𝛾𝑥𝑛(0)

1+𝑝(0)
= 0 

Also, at𝑦𝑛 =
𝛿+𝛾𝑥𝑛−1

𝑝
 

⇒𝑔 (
𝛿+𝛾𝑥𝑛−1

𝑝
) =

𝛿(
𝛿+𝛾𝑥𝑛−1

𝑝
)+𝛾𝑥𝑛(

𝛿+𝛾𝑥𝑛−1

𝑝
)

1+𝑝(
𝛿+𝛾𝑥𝑛−1

𝑝
)

 

=
(

𝛿2+𝛾𝛿𝑥𝑛−𝛿

𝑝
) + (

𝛿𝛾𝑥𝑛+(𝛾𝑥𝑛)2−𝛾𝑥𝑛

𝑝
)

1 + 𝛿 + 𝛾𝑥𝑛 − 1
 

=

𝛿2+𝛾𝛿𝑥𝑛−𝛿+𝛿𝛾𝑥𝑛+(𝛾𝑥𝑛)2−𝛾𝑥𝑛

𝑝

𝛿 + 𝛾𝑥𝑛
 

=
𝛿2 + 𝛾𝛿𝑥𝑛 − 𝛿 + 𝛿𝛾𝑥𝑛 + (𝛾𝑥𝑛)2 − 𝛾𝑥𝑛

𝑝(𝛿 + 𝛾𝑥𝑛)
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=
𝛿(𝛿 + 𝛾𝑥𝑛 − 1) + 𝛾𝑥𝑛(𝛿 + 𝛾𝑥𝑛 − 1)

𝑝(𝛿 + 𝛾𝑥𝑛)
 

=
(𝛿 + 𝛾𝑥𝑛)(𝛿 + 𝛾𝑥𝑛 − 1)

𝑝(𝛿 + 𝛾𝑥𝑛)
 

=
(𝛿 + 𝛾𝑥𝑛 − 1)

𝑝
 

Hence 𝑔 (
𝛿+𝛾𝑥𝑛−1

𝑝
) =

(𝛿+𝛾𝑥𝑛−1)

𝑝
 

This also shows a fixed point. 

FINAL RESULTS 

Under this section we impose the contraction 

mapping and the Banach Fixed point theory on 

the Discrete Dynamical type of the Lotka-

Volterra to see the outcome of its behaviour. 

From the definition of Banach fixed theorem, 

let (𝑁, 𝑑) be a complete metric space then 

every contraction has a unique fixed point. 

If 𝑇(𝑥) = 𝑥, 𝑇(𝑦) = 𝑦 then 𝑑(𝑥, 𝑦) =

𝑑(𝑇(𝑥), 𝑇(𝑦)) 

≤ 𝑞 ∙ 𝑑(𝑥, 𝑦) 

𝑞 < 1 so 𝑑(𝑥, 𝑦) = 0 or 𝑥 = 𝑦 

Considering the 𝑥 𝑞uantity first:  

𝑥𝑛+1=
𝛼𝑥𝑛 − 𝛽𝑥𝑛𝑦𝑛

1 + 𝑡𝑥𝑛
 

𝑥𝑛+1=
(𝛼 − 𝛽𝑦𝑛)𝑥𝑛

1 + 𝑡𝑥𝑛
 

To show that fixed point exists, define a 

sequence {𝑥𝑖}𝑖∈𝑧+ by setting 𝑥𝑛+1 = 𝑇(𝑥𝑛) 

Expressing the contraction formula as  

𝑥𝑛+1=
(𝛼 − 𝛽𝑦𝑛)𝑇(𝑥𝑛)

1 + 𝑡𝑇(𝑥𝑛)
 

From the Banach Fixed-point theorem: 

𝑑(𝑥𝑛+2, 𝑥𝑛+1) ≤
(𝛼 − 𝛽𝑦𝑛)𝑑(𝑥𝑛+1,   𝑥𝑛)

1 + 𝑡𝑞𝑑(𝑥𝑛+1,   𝑥𝑛)
 

Or 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤
(𝛼 − 𝛽𝑦𝑛)𝑞𝑛𝑑(𝑥1,   𝑥0)

1 + 𝑡𝑞𝑛𝑑(𝑥1,   𝑥0)
 

Since 𝑞𝑛 < 1 

𝑑(𝑥𝑛+1, 𝑥𝑛) < (𝛼 − 𝛽𝑦𝑛)𝑞𝑛𝑑(𝑥1,  𝑥0) 

Assuming 𝑛 < 𝑚 

𝑑(𝑥𝑚, 𝑥𝑛) < (𝑞𝑚−𝑛−1 + 𝑞𝑚−𝑛−2 + ⋯ + 𝑞
+ 1)𝑑(𝑥𝑛+1, 𝑥𝑛) 

𝑑(𝑥𝑚, 𝑥𝑛) < (
1 − 𝑞𝑚−𝑛

1 − 𝑞
) 𝑑(𝑥𝑛+1, 𝑥𝑛) 

𝑑(𝑥𝑚,  𝑥𝑛) < (
1 − 𝑞𝑚−𝑛

1 − 𝑞
) 𝑞𝑛(𝛼

− 𝛽𝑦𝑛)𝑑(𝑥1, 𝑥0) 

Since 𝑞𝑚−𝑛 < 1 

𝑑(𝑥𝑚, 𝑥𝑛) <
𝑞𝑛

1 − 𝑞
(𝛼 − 𝛽𝑦𝑛)𝑑(𝑥1, 𝑥0) 

Thus {𝑥𝑖} is Cauchy. This shows that (𝑥𝑛) is 

Cauchy sequence in 𝑋. 

Hence, (𝑥𝑛) must be convergent, say 

𝑙𝑖𝑚𝑛→+∞𝑥𝑛 = 𝑥. 
Since 𝑇 is continuous, we have: 

𝑇𝑥 = 𝑇 ( lim
𝑛→+∞

𝑥𝑛) 

= lim
𝑛→+∞

𝑇(𝑥𝑛) 

= lim
𝑛→+∞

𝑥𝑛+1 

𝑇𝑥 = 𝑥 

Since the limit of 𝑥𝑛+1 is the same as that of 

(𝑥𝑛). 
Thus, 𝑥 is a fixed point of 𝑇. 

Also considering the 𝑦 quantity,  

𝑦𝑛+1 =
𝛿𝑦𝑛 + 𝛾𝑥𝑛𝑦𝑛

1 + 𝑝𝑦𝑛
 

𝑦𝑛+1 =
(𝛿 + 𝛾𝑥𝑛)𝑦𝑛

1 + 𝑝𝑦𝑛
 

Define a sequence {𝑦𝑖}𝑖∈𝑧+ by setting 𝑦𝑛+1 =
𝑇(𝑦𝑛) 
Expressing the contraction formula as  

𝑦𝑛+1 =
(𝛿 + 𝛾𝑥𝑛)𝑇(𝑦𝑛)

1 + 𝑝𝑇(𝑦𝑛)
 

From the Banach Fixed-point theorem 

𝑑(𝑦𝑛+2, 𝑦𝑛+1) ≤
(𝛿 + 𝛾𝑥𝑛)𝑑(𝑦𝑛+1,   𝑦𝑛)

1 + 𝑝𝑑(𝑦𝑛+1,   𝑦𝑛)
 

or 

𝑑(𝑦𝑛+1,   𝑦𝑛) ≤
(𝛿 + 𝛾𝑥𝑛)𝑞𝑛𝑑(𝑦1,   𝑦0)

1 + 𝑝𝑞𝑛𝑑(𝑦1,   𝑦0)
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Since 𝑞𝑛 < 1 

𝑑(𝑦𝑛+1,𝑦𝑛) < (𝛿 + 𝛾𝑥𝑛)𝑞𝑛𝑑(𝑦1,   𝑦0) 

𝑑(𝑦𝑛+1,𝑦𝑛) < 𝑞𝑛(𝛿 + 𝛾𝑥𝑛)𝑑(𝑦1,   𝑦0) 

Assuming 𝑛 < 𝑚 

𝑑(𝑦𝑚,   𝑦𝑛) < 𝑑(𝑦𝑚,   𝑦𝑚−1)
+ 𝑑(𝑦𝑚−1,   𝑦𝑚−2) + ⋯
+ 𝑑(𝑦𝑛+1,   𝑦𝑛) 

𝑑(𝑦𝑚,   𝑦𝑛) < 𝑞𝑚−𝑛−1 + 𝑞𝑚−𝑛−2 + ⋯ + q
+ 1)𝑑(𝑦𝑛+1,   𝑦𝑛) 

𝑑(𝑦𝑚,   𝑦𝑛) <
1 − 𝑞𝑚−𝑛

1 − 𝑞
𝑑(𝑦𝑛+1,   𝑦𝑛) 

𝑑(𝑦𝑚,   𝑦𝑛) < (
1 − 𝑞𝑚−𝑛

1 − 𝑞
) 𝑞𝑛𝑑(𝑦1, 𝑦0) 

Since 𝑞𝑚−𝑛 < 1 

𝑑(𝑦𝑚,   𝑦𝑛) <
𝑞𝑛

1 − 𝑞
(𝛿 + 𝛾𝑥𝑛)𝑑(𝑦1,   𝑦0) 

Thus {𝑦𝑖} is Cauchy.  This shows that 𝑦𝑛is 

Cauchy sequence in 𝑌. Hence, (𝑦𝑛) must be 

convergent, say 𝑙𝑖𝑚𝑛→+∞𝑦𝑛 = 𝑦. Since 𝑇 is 

continuous we have: 

𝑇𝑦 = 𝑇 ( lim
𝑛→+∞

𝑦𝑛) 

= lim
𝑛→+∞

𝑇(𝑦𝑛) 

= lim
𝑛→+∞

𝑦𝑛+1 

𝑇𝑦 = 𝑦 

Since the limit of 𝑦𝑛+1 is the same as that of 

(𝑦𝑛). 
Thus, 𝑦 is a fixed point of 𝑇. 

CONCLUSION 

Fixed point has been used to prove many 

theorems in mathematics. In this paper, fixed 

point has helped in determining the fixed point 

of discrete dynamical system of Lotka Volterra 

model. The following solutions (0,0), (−
𝛿

𝛾
,

𝛼

𝛽
) 

and(
(𝛼−𝛽𝑦𝑛−1)

𝑡
,

(𝛿+𝛾𝑥𝑛−1)

𝑝
) have all be 

discovered and they are fixed points. Banach 

fixed theory was also explore on the discrete 

dynamical system of Lotka Volterra model to 

see the existence of the fixed point of discrete 

dynamical system of Lotka Volterra model. 
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