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ABSTRACT 

Utilizing wind energy necessitates a thorough understanding of wind profiles as well as a precise 

forecast of wind speed at a study location. In this study, ten Numerical Methods (NEMs), which 

include the Empirical Method of Lysen (EML), Percentile Method (PCM), Maximum Likelihood 

Method (MLM), Modified Maximum Likelihood Method (MMLM), Empirical Method of Justus 

(EMJ), Alternative Moment Method (AMM), Median and Quartiles Method (MQM), Probability 

Weighted Moments Based on Power Density Method (PWMBPM), Method of Mabchour (MOMAB) 

and Energy Variance Method (EVM) were applied to estimate the two-parameter (k and c) Weibull 

(Wbl) distribution in five locations (Jos, Kano, Maiduguri, Abuja, and Akure) in Nigeria. The 

performance of these NEMs was assessed using five different metrics and the most effective NEM 

was determined for each studied location. Daily wind speed data spanning 11 years for the studied 

locations were sourced from the Meteorological Agency in Nigeria and used in this study. The k 

and c parameters range from 2.91 to 5.46 and 9.95 to 10.26 (Kano); 2.31 to 4.50 and 5.63 to 6.20 

(Maiduguri); 3.19 to 7.61 and 12.16 to 12.99 (Jos); 2.18 to 6.77 and 4.99 to 5.50 (Abuja), and 1.84 

to 3.18 and 3.83 to 3.90 (Akure). Findings revealed that the best methods for estimating Wbl 

parameters for the Kano, Maiduguri, Jos, Abuja, and Akure locations were MMLM, MMLM, 

MQM, MQM, and EMJ, EML, and AMM, respectively, as MOMAB remained the least performing 

NEM for all the studied locations. The results also showed that the msV ,  mpsV , and maxeV varied 

from 3.47 m/s to 11.63 m/s, 3.40 m/s to 11.90 m/s, and 4.58 m/s to 12.59 m/s, respectively, with the 

most recorded for Jos. The WPDP  augmented from 36.45 W/m2 (Akure) to 1000.06  W/m2  Jos), at a 

hub height of 10 m.Based on these results Jos was the best location for installing wind turbines 

while Kano was an excellent place for integrating the grid. Additionally, the Maiduguri location 

was determined to be suitable for a stand-alone application while Abuja and Akure were 

considered to be unsuitable for wind energy applications. 

Keywords: Wind speed, Wind energy, Numerical method, Weibull distribution, Probability density 

function. 
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INTRODUCTION 

The primary source for meeting global energy 

demand has been the utilization of fossil 

fuels. However, there are just a few fossil fuel 

deposits left, and burning them has a terrible 

impact on human health and the ecosystem. 

The posibility of wind energy source for 

electricity generation has gained more 

acceptance around the world due to its 

affordability, cleanliness, abundance in 

nature, and environmental friendliness 

(Okakwu et al., 2021). The need to reduce the 

continuous use of fossil fuels due to its rapid 

depletion, unstable prices, and harmful effects 

on public health and the environment has 

necessitated the need for a cleaner and more 

sustainable energy source such as wind. 

Utilizing a wind turbine to transform wind 

into a more usable type of energy (electricity) 

is known as wind energy (or wind power) 

(Panwar et al., 2011). Wind energy, one of 

the main renewable energy sources, can 

provide more than four times the annual 

world electricity demand (Lu et al., 2009; 

Jung and Schindler, 2016). Numerous 

benefits come with using wind energy as an 

alternative energy source, such as lower 

energy costs, environmental friendliness, job 

opportunities, increased economic activity, 

etc. (Masseran, 2015; Abbasi and Abbasi, 

2016; Masseran and Razali, 2016; Sulaiman 

et al., 2020; Sohoni et al., 2016). 

Due to the cubic relationship of wind speed 

with wind power, which means a significant 

variation in power will occur even with a 

small variation in wind speed. The wind 

speed is the most important factor in 

determining wind energy, and is therefore 

essential to harnessing the wind energy 

potential of a location. Therefore, some 

specific statistical distribution (probability 

distribution function) that must provide the 

best fit for the wind data must be used to 

describe the data. Due to its flexibility, two-

parameter nature, ease of calculating the 

parameters, and near-exact findings when 

compared to other probability density 

functions, the Weibull (Wbl) distribution 

function is reportedly a more practical way of 

describing wind speed data for wind energy 

evaluation applications (Golam et al., 2023). 

Therefore, choosing an effective method for 

calculating the Wbl parameters is a crucial 

component of evaluating the wind energy 

potential of a location using the Wbl 

distribution. A biased evaluation of the Wbl 

characteristics would undoubtedly result in an 

incorrect estimation of wind power 

production. 

The numerical method (NEM) is the 

technique that is most frequently employed in 

the literature for evaluating the Wbl 

parameters in wind energy potential 

evaluation. Prominent NEMs deployed for 

estimating the Wbl parameters have been 

published in several researches. In a study by 

Werapun et al., 2015, five techniques 

(Empirical Method of Justus (EMJ), energy 

pattern factor method (EPM), Maximum 

Likelihood Method (MLM), Modified 

Maximum Likelihood Method (MMLM) and 

graphical Method (GM)) were used to 

calculate the Wbl parameters from 2012 to 

2014 for the wind speed data. To find the best 

fit, they evaluated the data using various 

statistics-based metrics (root mean square 

error (RMSE), R2, percent error, and 

Kolmogorov-Sminorv (KS)). The MLM was 

the best NEM, according to their findings. A 

comparison of NEMs, including the mean-

standard deviation method (MSDM), rank 

regression method (RRM), power density 

method (PDM), and MLM was conducted in 

(Ahmed, 2013) to model the wind speed 

frequency distribution for 4 years (2001-

2004). RMSE and R2 were the metrics 

utilized to determine the best fits. The best 

NEM was found to be the RRM. In (Parajuli, 

2021), the Wbl parameter for wind speed data 

in Jumla, Nepal was estimated using the 

method of moment (MOM), least square error 

method (LSEM), and PDM. The most 

effective strategy, which was MOM, was 

determined using the RMSE. For the purpose 

of calculating the Wbl parameter utilized in 

wind energy, the wind energy assessment of 

Meşelik region in Eskişehir was modeled 
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with two-parameter Wbl distribution between 

2013 to 2014, comparison research of NEMs 

employing MLM, LSEM, MOM, logarithmic 

moment method (LMM), percentile method 

(PCM), and L-moment technique (LM) was 

conducted in (Aras et al., 2020). The best 

approach for estimating the Wbl parameters 

was MLM, which was demonstrated by 

comparing the accuracy of their results using 

mean square error (MSE) and mean absolute 

percent error (MAPE). The Wbl parameters 

of the wind speed data of Jeju Island, South 

Korea were estimated using six NEMs (EMJ, 

MOM, GM, EPM, MLM, and MMLM) by 

Kang et al., 2018. Their findings show that, 

while estimating the Wbl parameters, MOM 

performed the best while GM did the worst.  

To estimate the Wbl characteristics of wind 

data in Zuwara, Libya, Teyabeen et al., 2017, 

explored the use of seven NEMs (GM, 

MSDM, EMJ, Empirical Method of Lysen 

(EML), EPM, MLM, and MMLM). Using 

MAPE, mean absolute bias error (MABE), 

RMSE, and R2, respectively, the performance 

of these seven NEMs was assessed. EMJ and 

EML recorded the best performance whereas 

GM performed least according to the 

deployed performance metrics. In Guarienti et 

al., 2020, an examination of the performance 

of six NEMs for calculating Wbl 

characteristics applied to Brazilian wind 

speed data was carried out. R2, RMSE, and 

KS were used to evaluate the approaches' 

accuracy. The best NEMs were determined to 

be the MLM and MMLM. The equivalent 

energy method (EEM) and seven alternative 

NEMs (GM, MOM, MSDM, MLM, PDM, 

MMLM, and STDM) were utilized to 

estimate the Wbl parameters for the 

assessment of wind speed in Bangladesh 

(Azad et al., 2014). The two techniques found 

to be most effective for estimating the Wbl 

were MOM and MLM. To estimate the Wbl 

characteristics for a wind energy application 

in Eastern Jerusalem, Palestine, Alsamamra et 

al., 2022, deployed five NEMs (MLM, 

MMLM, MOM, EPM, and EMJ). The EMJ 

and MOM were the most accurate, according 

to their findings, which were supported by 

three goodness-of-fit methodologies (MAPE, 

RMSE, and χ2). A study of the wind energy 

potential of China's onshore and offshore 

coastal regions was conducted by Li et al., 

2020. In this study, they examined four 

NEMs for estimating Wbl parameters: MOM, 

MLM, PDM, and curve fitting technique 

(CFM). Six distinct NEMs were used by 

Mohammadi et al., 2016 in four different 

Canadian locales. The authors concluded that 

MLM, EMJ, and EML were superior to the 

other approaches. Six NEMs were examined 

by Khalid et al., 2019 for estimating Wbl 

parameters of wind speed between 2016 to 

2018 in Pakistan, and they concluded that the 

MLM is the most effective of all the NEMs.  

The above literature surveys showed the 

estimation of Wbl parameters of wind speed 

using data garnered from various locations in 

different countries of the world which cut 

across developed and developing nations and 

intercontinental spread. In addition, various 

NEMs have been deployed by different 

authors for the estimation of Wbl parameters 

of wind speed in different countries. 

However, documentation in this regard is 

lacking for the continent of Africa as there is 

potential for wind power generation as a 

renewable energy source in the continent 

(Oyewo et al., 2023). Of huge interest is 

Nigeria, which has the untapped wind power 

potential and estimating the Wbl parameters 

of wind speed in the country would be a giant 

stride in harnessing and documenting the 

wind energy potential in the country. As a 

signatory to the sustainable development 

goals (SDG) and other similar parties on 

renewable and sustainable energy 

development, Nigeria is committed to 

transitioning from a carbon-based economy to 

a zero-carbon economy. In the current study, 

the Wbl parameters of wind speed data for 

five different locations in Nigeria were 

estimated using 10 distinct NEMs (both 

standard and rare approaches). Five 

goodness-of-fit parameters were used to 

evaluate the effectiveness of these NEMs in 

estimating the Wbl parameters. The best 

NEM that would provide a more accurate 
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estimate of the Wbl parameter was achieved 

in an attempt to lower the level of uncertainty 

in forecasting wind energy at the five 

different locations in Nigeria. 

MATERIALS AND METHODS 

Study coverage area and Data source 

In the current study, Kano, Maiduguri, Jos, 

Abuja, and Akure were chosen as the 

locations in Nigeria whose wind speed data 

were used to estimate the Wbl parameters. 

The choice of Nigeria was premised on its 

popularity, population, and need to shift from 

a fossil fuel-dependent nation to renewable 

energy to achieve sustainable development 

goals. The choice of these locations was 

based on the high wind speed published 

concerning these areas (Okakwu et al., 2023) 

and the need to shift from fossil fuel 

dependence in Nigeria. The wind speed data 

for these geographical locations in Nigeria 

was sourced from a Meteorological Agency 

in Nigeria. The sourced data were for 11 

years (2002 – 2012). The geographical 

coordinates of the case study areas is given in 

Ayodele et al., 2018. 

Numerical methods for estimation of 

Weibull parameters 

Various numerical techniques can be used to 

estimate the Wbl parameters ( k  and c ). 

However, in the present work, 10 distinct 

NEMs (both standard (MLM, MMLM, EMJ, 

EML, and PCM) and rare approaches) were 

used to estimate the Wbl parameters of the 

sourced wind speed data. The choice of these 

NEMs was based on their performance in the 

estimation of Wbl parameters as related in the 

literature (for standard NEMs) and prediction 

accuracy for the rare NEMs (Bidaoui et al., 

2019). Five goodness of fit metrics were used 

to evaluate the prediction effectiveness of 

these NEMs. 

 

Maximum likelihood method (MLM) 

Eqs. (1) and (2) were used to compute the k  and c  parameters using the maximum likelihood 

method (MLM) (Mostafaeipour et al., 2014; Belabes et al., 2015; Safari et al., 2022): 
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where; n  is the number of "non-zero" wind speed data points and iV  is the wind speed in time step 

i . The Wbl parameters in the MLM must be determined by numerical iterations.  

Modified maximum likelihood method (MMLM) 

Eqs. (3) and (4) were used to compute the k  and c  parameters using the modified maximum 

likelihood method (MMLM) (Mostafaeipour et al., 2014; Belabes et al., 2015; Safari et al., 2022): 
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where; )( iVf is the Weibull frequency of the wind speed in intervals i  and )0( Vf   is the 

probability of the wind speed for 0iV , where iV  is the wind speed central to bin i . The Wbl 

parameters in the MMLM must be determined by numerical iterations. 

Empirical method by Justus (EMJ) 

The k  parameter was estimated by Eq. (5) while the c  parameter was determined using Eq. (6) 

according to the empirical technique (EMJ) suggested by Justus (Bidaoui et al., 2019): 
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In such a situation, the standard deviation and mean wind speed were represented by σ and V

respectively (Akdag and Guler, 2018). 

Empirical method by Lysen (EML) 

The c  parameter was determined using Eq. (7), while the k  parameter was estimated by Eq. (5) in 

the empirical technique (EML) suggested by Lysen (Bidaoui et al., 2019): 
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Alternative moment method (AMM) 

The k  parameter was computed using Eq. (8) for the alternative moment method (AMM), and the 

c  parameter was estimated by applying Eq. (6) (Akdag and Guler, 2018): 
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Using Eq. (6), Table 1 provides the coefficients of ia  and ib  for i = 0, 1, 2, 3, 4. 

Table 1: Coefficients of ia  and ib  when using AMM (Akdag and Guler, 2018). 

i  a  b    

0 294843x10-5 320694x10-12   

1 150722x10-5 229887x10-5   

2 256734x10-5 248525x10-5   
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3 90316.4x10-5 235103x10-5   

4 20899.5x10-5 1.0000x100   

 

Percentile method (PCM) 

To use the percentile method (PCM) to evaluate the Wbl parameters, a Wbl distribution's quantile 

function is expressed as follows according to Bidaoui et al., 2019: 

 
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By putting   6321.01exp1 p , we obtain the parameter c  as follows: 

6321.0Vc                   (10) 

where 6321.0V  is the 63.21th percentile of the wind speed data. 

The percentile-based estimate for k  was obtained by putting c into Eq. (9) to estimate Vp which 

was substituted in Eq. (11). 
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The optimum value of p  was assumed to be 0.31 (Bidaoui et al., 2019): 

Where Vp, c, and p, are quantile functions of the Weibull distribution, Weibull parameter, and 

optimum percentile estimation respectively.    

Median and quartiles method (MQM) 

Using the median and quartiles method (MQM) to estimate the Wbl parameters, the k  and c  

parameters were given by Bidaoui et al., 2019: 

If the median, 25th percentile, and 75th percentile were mV , 25.0V   and 75.0V  respectively. 
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Probability weighted moment based on power density method (PWMBPDM) 

The k  parameter was derived using Eq. (14) (Bidaoui et al., 2019): 

Using the probability-weighted moment based on the power density method (PWMBPDM): 

)ln(

)2ln(

C
k                                                     (14) 

where, C  was given by Eq. (15) (Bidaoui et al., 2019): 
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where iV  is the ordered sample wind speed data and V  is the mean wind speed, with 

nVVV  21 . Eq. (16) (Bidaoui et al., 2019): 

provides the value for the c parameter. 
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Method of Mabchour (MOMAB) 

Using the method of mabchour (MOMAB), Eqs. (17) and (6) were used to determine the k  and c  

parameters, respectively (Bidaoui et al., 2019): 

  51.0
)2(483.01  Vk                  (17) 

Energy variance method (EVM)       

The energy variance method expressed in Eq. (18) was used to calculate the k  parameter and Eq. 

(6) was used to determine the c  parameter (Bidaoui et al., 2019): 
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Numerical method accuracy assessments 

Five different statistical-based estimators—root mean square error (RMSE), coefficient of 

determination (R2), the chi-square error (
2 ), mean absolute percentage error (MAPE), and mean 

absolute bias error (MABE)—were used to assess the precision of the NEMs deployed for 

estimating the Wbl parameters that were presented. The estimators were calculated using Eq. (19–

23) (Azad et al., 2014; Alsamamra et al., 2022; Okakwu et al., 2019): 
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where iy  is the frequency of the actual data, iwx  is the frequency of the Wbl parameter, n  is the 

number of intervals, and y  is the average of the measured data. 

Wind speed analysis 

Eqs. (24) and (25) (Sulaiman et al., 2020), were used to obtain the daily mean wind speed ( V ) and 

the standard deviation (𝜎)of the wind resource data: 
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where n  and iV  are the number of wind speed data points and the daily wind speed, respectively. 

Eqs. (26) and (27) provide the wind power density function ))(( vfw  and the cumulative distribution 

function ))(( Vfw  (Sulaiman et al., 2020): 
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where the wind speed (in m/s), the shape parameter (which has no dimensions), and the scale 

parameter (in m/s) are each represented by the variables v , k , and c . Eqs. (28) and (29) also 

provide the wind speed at the highest energy ( maxeV ) and the wind speed at the most likely speed (

mpsV ) (Sulaiman et al., 2020): 

k

mps
k

k
cV

1

1







 
                              (28) 

k

e
k

k
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1
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2







 
               (29) 
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Wind power estimation 

The wind potential capability of a specific location per unit swept area of the blades is indicated by 

the wind power density ( WPDP ). The wind power density was estimated using Equation (30) 

(Sulaiman et al., 2020): 











k
cPWPD

3
1

2

1 3                          (30) 

where the air density (i.e., 1.225 
3/ mkg ) is represented by  , while he WPDP   parameter is 

expressed in W/m2. 

RESULTS AND DISCUSSION 

Wind speed distribution of estimated wbl probability distribution function 

Figures 1 to 5 present a comparative graphic wind speed histogram with the predicted probability 

density functions (PDFs) for the various NEMs at the designated study locations. These Figures 

make it obvious that each NEM's PDF corresponds to the location-specific observed wind speed 

histogram. Generally, it was observed that as k  increases, the Wbl density function narrows and 

becomes peaked, indicating that wind speeds tend to remain within a narrow range. As the value of 
c  rises, the peak also shifts toward the direction of higher wind speeds. As an illustration, figure 1 

show that the computed value of k  was higher for PWMBPM, AMM, EMJ, and EML than for 

other NEMs, leading to the peak character of the PDFs relative to others. The NEMs in Figure 1 

have close-knit parameter c  ranges, hence there was hardly any significant overlap amongst the 

curves. PWMBPM, AMM, EMJ, EML, and MMLM have peakier PDFs than other NEMs in Figure 

2 due to the computed value of k  being higher for these NEMs than for other NEMs. Except for 

MOM, which is higher, and MQM, which is least, the parameter c  ranges of the NEMs in Figure 2 

are near to one another. When compared to other NEMs in Figure 3, the computed value of k  is 

higher for PCM, MQM, PWMBPM, AMM, EMJ, EML, and MMLM, which results in the peak 

character of the PDFs. The NEMs in Figure 3 have close-knit parameter c  ranges, hence there was 

hardly any significant overlap amongst the curves. The peak character of the PDFs in Figure 4 is 

due to the computed value of k  being higher for PCM, MQM, PWMBPM, AMM, EMJ, and EML 

compared to other NEMs. The curves in Figure 4 hardly overlap because the NEMs' parameter c  

ranges are so near to one another. AMM, EMJ, EML, MLM, and PWMBPM PDFs in Figure 5 have 

peaks compared to other PDFs because the computed value of k  for these NEMs is higher than it is 

for other NEMs. There wasn't much overlap between the curves because the parameter c  ranges of 

the NEMs in Figure 5 are near to one another. 
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Figure 1: Comparison of the PDFs for Kano 

 

Figure 2: Comparison of the PDFs for Maiduguri. 
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Figure 3: Comparison of the PDFs for Jos. 

 

 

Figure 4: Comparison of the PDFs for Abuja. 
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Figure 5: Comparison of the PDFs for Akure. 

 

Table 2:Statistical comparison of numerical methods for Kano 

 MLM MMLM EMJ EML AMM PCM MQM PWMBP

M 

MOMA

B 

EVM 

k  4.62 4.93 5.34 5.34 5.39 4.81 4.82 5.46 2.91 4.78 

c  10.12 10.19 10.19 10.19 10.19 9.95 10.01 10.21 10.53 10.26 

RMSE 0.0223 0.0189 0.0159 0.0159 0.0157 0.0201 0.0197 0.0158 0.0530 0.0213 

Ranking 8 4 3 3 1 6 5 2 9 7 

R2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

Ranking 8 4 3 3 1 6 5 2 9 7 

2  0.0456 0.0402 0.0681 0.0681 0.0753 0.0648 0.0548 0.0821 0.3227 0.0399 

Ranking 3 2 6 6 7 5 4 8 9 1 

MAPE 17.910 18.339 23.255 23.255 24.026 24.073 22.179 24.850 65.460 17.862 

Ranking 2 3 5 5 6 7 4 8 9 1 

MABE 0.0140 0.0126 0.0131 0.0131 0.0133 0.0145 0.0137 0.0138 0.0423 0.0145 

Ranking 6 1 2 2 3 8 4 5 9 7 

 

Tables 2 – 7 show the results of the calculated Wbl parameters from each of the ten NEMs (MLM, 

MMLM, EMJ, EML, AMM, PCM, MQM, PWMBPM, MOMAB, and EVM) and the five 

performance metrics (RMSE, R2, MAPE, 
2 , and MABE) for evaluating the effectiveness of these 

NEMs across all five locations taken into consideration. The statistical-based metrics for gauging 

estimation efficiency were taken up to 9 decimal places but presented in the tables to three or four 

decimal places for a thorough comparison of all NEMs. These tables show that of the 10 NEMs for 

estimating Wbl parameters, EMJ and EML have the same estimation efficiency since they have 

been estimated using the same values for k  and c , respectively, in each of the five locations. On a 



427 
 

Scientia Africana, Vol. 23 (No. 2), April, 2024. Pp415-432   

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

scale from 1 to 9, each NEM has been rated according to its performance (with 1 being the best 

efficient and 9 as the least efficient). According to Table 3, AMM and MOMAB performed best 

and worst, respectively, using RMSE and R2 as performance metrics while EVM performed best 

and MOMAB performed worse with 
2  and MAPE as prediction effectiveness metrics. In terms of 

MABE, MMLM is the best while MOMAB continues to be the least effective. Other NEMs have 

also been ranked halfway between these two extremes. 

Table 3:Statistical comparison of numerical methods for Maiduguri. 

 MLM MMLM EMJ EML AMM PCM MQM PWMB

PM 

MOMA

B 

EVM 

k  4.12 4.37 4.46 4.46 4.50 3.99 3.87 4.47 2.31 4.09 

c  6.01 6.02 6.02 6.02 6.02 5.86 5.63 6.04 6.20 6.05 

RMSE 0.0298 0.0291 0.0295 0.0295 0.0297 0.0317 0.0410 0.0298 0.0794 0.0307 

Ranking 4 1 2 2 3 7 8 5 9 6 

R2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9997 0.9999 

Ranking 4 1 2 2 3 7 8 5 9 6 

2  0.0450 0.0432 0.0449 0.0449 0.0461 0.0587 0.1204 0.0445 0.3392 0.0464 

Ranking 4 1 3 3 5 7 8 2 9 6 

MAPE 37.717 34.516 34.145 34.145 33.998 47.289 67.267 32.894 119.77 38.721 

Ranking 5 4 3 3 2 7 8 1 9 6 

MABE 0.0245 0.0253 0.0259 0.0259 0.0261 0.0261 0.0350 0.0256 0.0621 0.0246 

Ranking 1 3 5 5 6 7 8 4 9 2 

 

Table 4:Statistical comparison of numerical methods for Jos. 

 MLM MMLM EMJ EML AMM PCM MQM PWMB

PM 

MOMA

B 

EVM 

k  5.63 6.15 6.52 6.52 6.58 7.61 7.08 6.89 3.19 5.71 

c  12.41 12.45 12.48 12.48 12.48 12.2 12.16 12.48 12.99 12.58 

RMSE 0.0294 0.0260 0.0252 0.0252 0.0250 0.0186 0.0161 0.0247 0.0643 0.0320 

Ranking 7 6 5 5 4 2 1 3 9 8 

R2 0.99999

3500 

0.99999

4925 

0.99999

5240 

0.99999

5240 

0.99999

5296 

0.99999

7395 
0.99999

8050 

0.99999

5399 

0.99996

8881 

0.99999

2295 

Ranking 7 6 5 5 4 2 1 3 9 8 

2  0.08665

2032 

0.08887

8297 

0.11236

3315 

0.11236

3315 

0.11934

812 

2.41458

9695 

0.82773

6345 

0.17559

8252 

0.46763

4817 

0.09439

7009 

Ranking 1 2 4 4 5 7 8 6 9 3 

MAPE 38.6406

0725 

33.4456

8467 

31.0142

3691 

31.0142

3691 

31.0675

6905 
29.6502

9226 

30.1254

3494 

31.1795

4362 

74.6192

0678 

39.5666

326 

Ranking 7 6 3 3 4 1 2 5 9 8 

MABE 0.02548

2249 

0.02236

0498 

0.02123

6171 

0.02123

6171 

0.02133

1801 

0.01614

7508 
0.01441

1028 

0.02179

8674 

0.05413

6353 

0.02783

3531 

Ranking 7 6 3 3 4 2 1 5 9 8 

 

According to RMSE, R2, and
2  correspondingly, Table 4 show that MMLM is listed as the most 

efficient NEM whereas MOMAB is regarded as the least efficient NEM. While PWMBPM and 

MLM are regarded as the most effective in terms of MAPE and MABE, respectively, MOMAB 

continues to hold the position of least effective NEM. According to Table 5, MQM is the most 

efficient NEM approach while MOMAB is the least effective one in terms of RMSE and R2, 

respectively. Regarding
2 , MLM exhibited the best performance and MOMAB the lowest 
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performance with the least numerical value. Additionally, in Table 5, the PCM and MQM 

performed best using MAPE and MABE as accuracy gauging metrics, respectively whereas 

MOMAB continued to hold the poorest NEM performer position. Furthermore, it can be observed 

in Table 6 that MOMAB continued to exhibit the least effective performing NEM in terms of 

RMSE, R2, and MABE while the PCM displayed the best performance. The most effective model is 

found to be MQM while the PWMBPM and MOMAB exhibited the worst performance in terms of 
2  and MAPE, respectively. Because the computed Wbl parameters for EMJ, EML, and AMM 

were the same, they demonstrated the best performance in Table 7, but MOMAB continued to 

perform the poorest in terms of RMSE and R2 metrics, respectively. Additionally, EVM and 

MMLM showed the best performance in terms of
2 , MAPE and MABE, respectively, with 

MOMAB being the least effective. 

Table 5:Statistical comparison of numerical methods for Abuja. 

 MLM MMLM EMJ EML AMM PCM MQM PWMB

PM 

MOMA

B 

EVM 

k  4.76 4.99 5.95 5.95 6.01 6.77 5.97 6.34 2.18 5.27 

c  5.23 5.25 5.25 5.25 5.25 4.99 5.03 5.27 5.50 5.29 

RMSE 0.0704 0.0719 0.0692 0.0692 0.0696 0.0362 0.0406 0.0755 0.0774 0.0711 

Ranking 5 6 3 3 4 1 2 8 9 7 

R2 0.9997 0.9997 0.9997 0.9997 0.9998 0.9999 0.9999 0.9997 0.9997 0.9998 

Ranking 5 7 3 3 4 1 2 8 9 6 

2  0.1091 0.1123 0.1667 0.1667 0.2148 0.2619 0.0416 1.5390 0.4461 0.1082 

Ranking 3 4 5 5 6 7 1 9 8 2 

MAPE 110.77 104.93 88.155 88.155 78.418 47.316 34.884 49.757 117.51 97.036 

Ranking 8 7 5 5 4 2 1 3 9 6 

MABE 0.0385 0.0439 0.0476 0.0476 0.0478 0.0258 0.0280 0.0520 0.0533 0.0443 

Ranking 3 4 6 6 7 1 2 8 9 5 

 

Table 6:Statistical comparison of numerical methods for Akure. 

 MLM MMLM EMJ EML AMM PCM MQM PWMB

PM 

MOMA

B 

EVM 

k  3.01 3.18 3.04 3.04 3.04 2.33 2.36 2.99 1.84 2.96 

c  3.86 3.88 3.88 3.88 3.88 3.95 3.83 3.87 3.90 3.89 

RMSE 0.0190 0.0184 0.0177 0.0177 0.0177 0.0455 0.0449 0.0187 0.0732 0.0182 

Ranking 5 3 1 1 1 7 6 4 8 2 

R2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9999 0.9995 0.9999 

Ranking 5 3 1 1 1 7 6 4 8 2 

2  0.0180 0.0210 0.0162 0.0162 0.0162 0.0775 0.0745 0.0168 0.2096 0.0154 

Ranking 4 5 2 2 2 7 6 3 8 1 

MAPE 12.734 10.425 12.654 12.654 12.654 49.649 42.644 13.720 71.443 15.506 

Ranking 3 1 2 2 2 7 6 4 8 5 

MABE 0.0163 0.0138 0.0153 0.0153 0.0153 0.0372 0.0376 0.0163 0.0624 0.0162 

Ranking 5 1 2 2 2 6 7 4 8 3 

 

As the statistics-based metrics (RMSE, R2, 
2 , MAPE, and MABE) for ranking estimation 

changed, it is observed that the efficiency of the NEMs also changed. For example, in Table 3, 

AMM was determined to be the most efficient NEM concerning RMSE and R2 metrics, but seventh 



429 
 

Scientia Africana, Vol. 23 (No. 2), April, 2024. Pp415-432   

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

for
2 , sixth for MAPE, and third for MABE. As a result, a location-based overall rating of these 

NEMs is necessary, and this ranking was based on an average of the individual rankings shown in 

Table 8. It can be observed in Table 8 that the best NEMs for estimating the Wbl parameters for 

Kano, Maiduguri, Jos, Abuja, and Akure locations were MMLM, MMLM, MQM, MQM, and 

EMJ/EML/AMM, respectively. The results obtained in this study through the use of conventional 

NEMs (MMLM, EMJ, and EML) for Wbl parameter estimation are found to agree with previous 

studies (Kang et al., 2018; Teyabeen et al., 2017; Li et al., 2020). Also, this present study showed 

that the use of rare NEMs such as MQM and AMM outside the orthodox NEMs is effective in 

predicting the Wbl parameters of wind speed with good performance metric values. 

Table 7: Overall ranking of Weibull parameters estimation 

NEMs Kano Maiduguri Jos Abuja Akure 

MLM 7 4 7 4 4 

MMLM 1 1 6 7 2 

EMJ 3 2 3 3 1 

EML 3 2 3 3 1 

AMM 2 5 4 5 1 

PCM 8 7 2 2 6 

MQM 4 8 1 1 5 

PWMBPM 6 3 5 8 3 

MOMAB 9 9 9 9 7 

EVM 5 6 8 6 2 

 

Wind characteristics of selected locations 

The locations wind speed characteristics are shown in Table 8. It can be inferred that the msV  varied 

from 3.47 m/s (lowest) in the Akure site to 11.63 m/s (highest) in Jos as the k  varied from 3.04 

(least) in Akure to 7.08 (most) in Jos while the c  varied from 3.88 m/s (lowest) in Akure to 12.16 

m/s (highest) in Jos. This implies a direct relationship between the msV  and the c and k . Also, the 

mpsV  increased from 3.40 m/s in Akure to 11.90 m/s in Jos as the maxeV rose from 4.58 m/s in Akure 

to 12.59 m/s in Jos. The WPDP  was also found to augment from 36.45 W/m2 (in Akure) to 1000.06 

W/m2 (in Jos), all at a hub height of 10 m. Because the wind power density at a hub height of 10 m 

is greater than 400 W/m2, the outcomes further demonstrate that the research locations in Kano and 

Jos are suitable for grid integration (Okakwu et al., 2023). Maiduguri is only appropriate for a 

stand-alone application since the wind power density there is >100 W/m2, however, the locations of 

Abuja and Akure were not suitable for generating wind energy because the wind power density in 

these locations is <100 W/m2 (Ahmed, 2013). 

Table 8:Wind speed characteristics of selected locations 

Location msV  k  c  
mpsV  maxeV  WPDP  

Kano 9.39 4.93 10.19 9.73 10.92 593.91 

Maiduguri 5.49 4.39 6.02 5.68 6.56 123.98 

Jos 11.63 7.08 12.16 11.90 12.59 1000.06 

Abuja 4.87 5.97 5.03 4.88 5.28 70.78 

Akure 3.47 3.04 3.88 3.40 4.58 36.45 
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CONCLUSION 

This work has conducted a thorough 

comparative evaluation of ten NEMs for 

estimating the Wbl parameters of the wind 

speed in five locations (Kano, Maiduguri, Jos, 

Abuja, and Akure) in Nigeria. Eleven years of 

daily wind speed data for these locations were 

sourced and used in this study. The k and c 

parameters range from 1.84 to 7.61 and 3.83 

to 12.99 respectively, with the least values 

recorded for the Kano location and the 

maximum values observed for the Jos 

location. According to the findings, the best 

methods for estimating the Wbl parameters 

for the Kano, Maiduguri, Jos, Abuja, and 

Akure locations were MMLM, MMLM, 

MQM, MQM, and EMJ, EML, and AMM, 

respectively, as MOMAB remained the least 

performing NEM for all the locations. Also, 

the results showed that the msV  varied from 

3.47 m/s (lowest) in the Akure site to 11.63 

m/s (highest) in Jos. Also, the mpsV  increased 

from 3.40 m/s in Akure to 11.90 m/s in Jos as 

the maxeV rose from 4.58 m/s in Akure to 

12.59 m/s in Jos. Additionally, the WPDP  was 

found to augment from 36.45 W/m2 (in 

Akure) to 1000.06  W/m2 (in Jos). The results 

of the wind speed characteristics revealed that 

Jos was the best location for installing wind 

turbines while Kano was an excellent place 

for integrating the grid. Also, the Maiduguri 

location was determined to be suitable for a 

stand-alone application while Abuja and 

Akure were considered to be unsuitable for 

wind energy applications. 
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