COMPARATIVE MORPHO-ANATOMY OF TWO SEDGES (Cyperus cyperoides (L.) Kuntze and Cyperus rotundus L.)

*1 Wahua, C. and ² Abass, M.

 ^{1, 2} Department of Plant Science and Biotechnology, University of Port Harcourt, Choba, P.M.B. 5323, Nigeria
 *E-mail:chika.wahua@uniport.edu.ng; *Phone: 2348064043448

Received: 18-11-2023 *Accepted:* 20-03-2024

https://dx.doi.org/10.4314/sa.v23i2.10

This is an Open Access article distributed under the terms of the Creative Commons Licenses [CC BY-NC-ND 4.0] <u>http://creativecommons.org/licenses/by-nc-nd/4.0</u>. Journal Homepage: <u>http://www.scientia-african.uniportjournal.info</u>

Publisher: Faculty of Science, University of Port Harcourt.

ABSTRACT

The research investigated the comparative morpho-anatomy of two sedges (Cyperus cyperoides (L.) Kuntze and Cyperus rotundus L.), members of the family Cyperaceae. They are perennial herbs and the former commonly known as commonflat sedge and the latter nut sedge or purple nutsedge. The epidermal peels were obtained by standard methods. The samples were fixed in formaldehyde, glacial acetic acid, 70% alcohol in the ratio of 1:1:18, dehydrated in alcohol solutions of 50%, 70%, 90%, absolute and sectioned, stained in 2% aqueous solution of Safranin O, counter stained in Alcian blue, mounted in glycerine. The result on epidermal studies showcased both kidney and dumbbell-shaped guard cells, graminaceous stomata which is amphistomatic for both species. The anatomical studies revealed scattered vascular bundies in ground tissues of stems, bulliform cells at adaxial foliar organs. The pith sections have large pith and a single row of barrel shaped endodermis prominently pronounced. The research findings here would assist in improving upon already existing knowledge about C. cyperoides and C rotundus.

Keywords: Anatomy, Comparative, Cyperaceae, Cyperus, Morphology,

INTRODUCTION

Members of Cyperaceae are monocotyledonous graminoid flowering plants grouped as sedges, and they resemble grasses and rushes; contained about 113 genera and 5,732 species (Milne and Milne, 1975).Cyperaceae is the third largest of families in monocots (Lunkai et al., 2010). Consisting of about 600 species and Cyperus L. is the second largest genus in Cyperaceae (Kukenthal 1936; Rad & Sonboli 2008). They are widely distributed with centres of occurring in diversity Tropical Asia andTropical South America (Hipp, 2007). One unique attribute of sedges is their

triangularcross section and spirally arrange leaves in three ranks, unlike grasses that havealternate leaves forming two ranks. Cyperus rotundus is considered to have originated in India but some believed that the origins are more widespread, including northern and eastern Australia (Parsons and Cuthberson. 1992). and the recorded occurrence in 92 countries also assumed their existence in countries of the tropics and subtropics (Holm et al., 1977). However, the most widely accepted distribution range considers C. rotundus as native to Africa and Eurasia (USDA-ARS, 2014). Cyperus rotundusis a C4 plant with kranz anatomy which supposedly made it increasingly

competitive due to high temperature and light intensity (Black et al., 1969). Cyperus rotundus has low shade tolerance and one of the most invasive sedges (Holm et al., 1977); based on countries, Cyperus rotundus also known as purple nutsedge, is a perennial weed. Cyperus rotundus is one of the most invasive weed known, found both in the tropical and temperate zones. In literature, it is believed to occur as a weed in over 90 countries, and infests over 50 crops worldwide (Omezine and Harzallah-Skhili, 2009). It is a disturbing weed of farm lands 2009). (Martin and Pol, There are aerenchymatous cells, bulliform cells, large meta xylem vessels and thick leaf which enabled С. rotundus get adapted to environmental conditions in agricultural fields, dryland salinity, salt marshes, and desert and semi-desert climates; its ecological success is due to plasticity in structural and functional features: bulliform cells, large meta xylem vessels, storage parenchyma, stomatal complexes and thick leaf which enabled C. rotundus in particular get adapted to varying environmental conditions be it in the tropics, sub tropics, desert and temperate regions as also supported by Mumtaz et al. (2019)storage parenchyma, wide xylem vessels conduction for of solutes. sclerenchyma and features stomatal for minimizing water loss (Mumtaz et al.. 2019).Measured angles of keel for adaxial and abaxial surfaces for C. cyperoides less than 90° and more than 90° for C. rotundus (Mallick and Ghosh, 2018). Members of the genus Cyperus are increasingly becoming known for their great importance as food, medicine and industrial materials such as biogas production etc. Proper identification using taxonomic lines of evidence is relevant. Hence. the objectiveinvestigated the comparative morpho-anatomy of two sedges

(*Cyperus cyperoides* (L.) Kuntze and *Cyperus rotundus* L.).

MATERALS AND METHODS

Geographic Location

The location of the parent plant studied was University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.

Morphological Studies

The meter rule was used to ascertain the plant height from the root-collar to theterminal bud while leaf length from the leaf tip to the petiole base. The leaf width ismeasured across the leaf lamina, from one margin to another at the widest region. The epidermal studieswere done following standard method as given by Cutler (1977). Slides with good preparations were photo-micro graphed using Song Digital Camera on Monocular Microscope.

Anatomical Study

The plants were harvested from the wild for the secondary anatomy. The harvestedstems, leaves, petioles, flowers, fruits and roots were dehydrated in alcohol solutions following the methods of (Johansen, 1940) and free hand sections according to the method of Wahua (2020). Microphotographswere taken from good preparations using Sony camera of 7.2 Mega pixels having 2.411LCD monitor and High sensitivity ISO 1250.

RESULT

Morphological Studies

Cyperus cyperoides and *Cyperus rotundus* are sedges resembling grasses and rushes but leaves of *C. cyperoides* are shorter, narrower, flat, and linearthan those of *Cyperus rotundus* which are cylindrical and rounded. The differences and similarities are shown in Table 1, Plates 1 and 2.

Plate 1: Cyperus cyperoides(L.) Kuntze; Plate 2: Cyperus rotundus L.

Features	Cyperus cyperoides	Cyperus rotundus	
Ecological habitat	Damp grassy places or marshy land	Invasive weed wastelands and in crop fields and evasive	
Plant height	Grows up to 45 ± 20 cm in height	40 ± 15 cm in height	
Leaf	Glabrous, linear, bluish green up to 30 ± 6 cm long, blade acute, margins finely scabrous		
Leaf sheath	Closed and Disposed tristically at base of stem. Both sides hairless.	Purple sheaths	
Stem base	Dense tufted, trigonous, with basal leaves and short underground rhizomatous system.	Smooth with swollen bases.	
Inflorescence	Simple umbel,	Smaller, more compact Compound umbel, terminal, open umbel subtended by several leafy bracts.	
Spikes	In groups of small cylindrical head	Oblong to cylindrical, 1.2 ± 0.3 cm in length	
Spikelets	Compressed 1 to 4 flowers protected by glumes with pointed apex.	3-8 reddish-brown to purplish-brown, flattened spikelets, each containing up to 30 glumes, 3.5- 4 mm long.	
Matured spikelets	small greenish or reddish one or two- flowered spikelet	Linear with acute tip, curved and sinuous.	
Glumes	Imbricate in 2 rows	2.3 ± 0.5 mm in length	
Achene	trigonous slightly arched longitudinally	3-angled achene, dark brown or black.	
Rhizomes	Woody, and of swollen stem base	Rhizomes are wiry, dark and persistent, connecting a network of daughter shoots and tubers.	
Root	Fasciculate and numerous	Fibrous	

Table	1: Comp	arative r	norphology	y of C .	cyperoidesandC.	rotundus

Epidermal Studies

Epidermal cells were of irregular shaped graminaceous structure. Their epidermal cells were observed in opposite direction with virtually no stomata found on the adaxial foliar layersat right angle to the vein-islets (Plates 3 and 4).

104

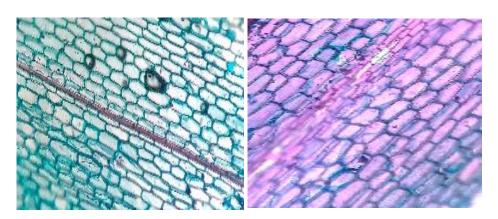
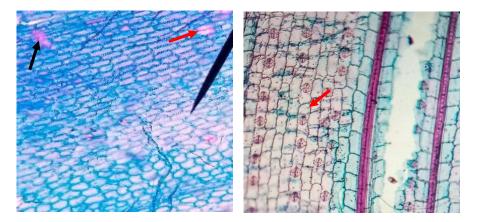
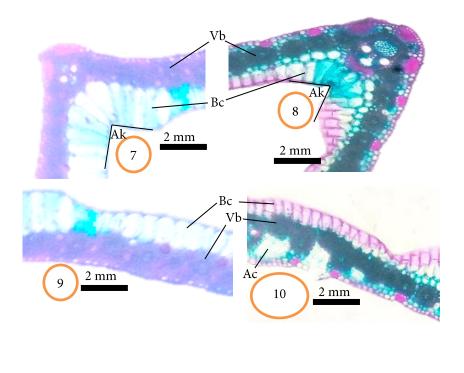
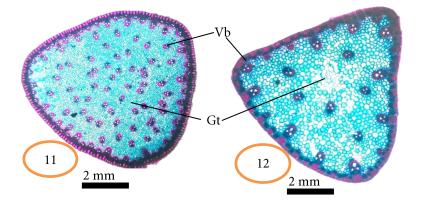
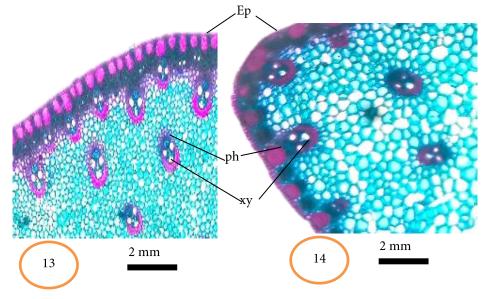


Plate 3: Adaxial surface of *C. cyperoides*; Plate 4: Upper Epidermal surface of *C. rotundus* The cells lined up by vein-islets are more rectangular and organized in *C. cyperoides* than those of *C. rotundus*.

The abaxial foliar surfaces of *C. cyperoides* and those of *C. rotundus* have numerous stomata but more on the latter than on the former. The cells lining the vein-islets are larger than those of the rest of epidermal cells in *C. rotundus* while the reverse is the case with *C. cyperoides* (Plates 5 and 6).


Plate 5: Abaxial surface of *C. cyperoides*; Plate 6: Lower foliar surface of *C. rotundus* Black arrow showed club headed trichome, red arrows is pointing stomata which is basically paracytic and gramenacous in structure.

Anatomical Studies

Sections made from the mid-rib, leaf lamina, stem and roots respectively, showcased similarities and differences between the species. Bulliform cells are larger in *C. cyperoides* than those of *C. rotundus*(Table 2;Plates 7 to 16).

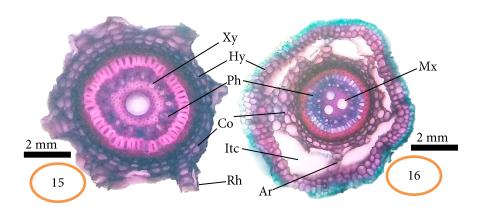


Plate7: Anatomy of Mid-rib of *C. cyperoides* (T.S.); Plate 8: Anatomy of Mid-rib of *C. rotundus* (T.S.)
Plate 9: Section of leaf lamina of *C. cyperoides*; Plate 10: Section of leaf lamina of *C. rotundus*;
Plate 11: Stem anatomy of *C. cyperoides* (T.S.); Plate 12: Stem anatomy of *C. rotundus* (T.S.)
Plate 13: Magnified portion of stem *C. cyperoides*; Plate 14: Magnified portion of stem of *C. rotundus*Plate 15: Root anatomy of *C. cyperoides* (T.S.); Plate 16: Root anatomy of *C. rotundus* (T.S.), Ep - Epidermis
Bc – Bulliform cells, Vb – vascular bundles, Gt – Ground tissues, Ac – air chamber, Ph – phloem, Xy – xylem, Co - cortex, Hy – hypodermis, Itc – intercellular spaces, Ar – aerenchyma, Mx – metaxylem, Rh – root hair, Ak – Angle of the keel.

Characteristics	C. cyperoides	C. rotundus	
Ground tissues of stem	Scattered vascular bundles very	Scattered vascular bundles not	
	numerous	numerous	
Hypodermis	3 to 6 rows of Sclerenchymatous	3 to 6 rows of	
	cells	Sclerenchymatous cells	
Shape of section	Rounded to triangular	Triangular	
Angle of keel (foliar surfaces)	Less than 90 ⁰	More than 90°	
Nature of vascular bundle	Closed	Closed	
Mid rib adaxial foliar	Lined with tightly packed	Lined with tightly packed	
mesophyll	bulliform cells, with central ones	bulliform cells, with mid ones	
	biggest.	biggest.	
Mid –rib abaxial mesophyll	Air chamber not very	More air chambers, very	
	prominently pronounced.	prominently pronounced	
Phloem tissues	Towards the palisade mesophyll	Towards the palisade mesophyll	
Xylem tissues	Towards the spongy mesophyll	Towards the spongy mesophyll	
Roots	Concentric arrangement, no	Concentric arrangement with	
	intercellular spaces	intercellular spaces at cortex	
Foliar Leaf blade mid-section	V-shaped	Flanged V-/W-shaped	
Foliar vascular bundles	less than 50	More than 50	
Stem vascular bundles	More numerous	Less numerous	
Foliar air chamber	Absent	Present	

Table 2: Anatomical properties of C. cyperoides and C. rotundus

Aerenchyma of root	Absent	Present
Vascular bundle sheath	Present	Present
Bulliform cells in leaf	Dissimilar to rest of epidermis	Dissimilar to rest of epidermis
Foliar leaf sclerenchyma	Formed strand above and below	Formed strand above and below
	Vascular bundles	Vascular bundles

DISCUSSION

Cyperus cyperoides and C. rotundus have bundle sheaths which were very evident as also reported by Black et al. (1969) who also mentioned them to be C4 plants. There are bulliform cells, large meta xylem vessels, storage parenchyma, stomatal complexes and thick leaf which enabled C. rotundus in particular adapted to varving get environmental conditions be it in the tropics, sub tropics, desert and temperate regions as also supported by Mumtaz et al. (2019); the same applied to C. cyperoides. Stem vascular bundles are more numerous than those of C. rotundus. The angles of keel differ for both species as also supported by Mallick and Ghosh (2018).

Scientia Africana, Vol. 23 (No. 2), April, 2024. Pp101-108

CONCLUSION

Cyperus cyperoidesand Cyperus rotundus on morphological basis, easier to differentiate during flowering season, though the color of the leaves slightly varies. Anatomically, their roots show clear variation, aerenchyma prominently pronounced in C. rotundus than as in C. cyperoides. Areas of further work may include: Histological properties, DNA barcodes and Cytological characteristics among others.

REFERENCES

- Black, C., Chen, T., Brown, R.(1969). Biochemical basis for plant competition. Weed Science 17:338-344.
- Cutler, D.F. (1977). Applied Plant Anatomy. Longman-Group Limited London.
- Govaerts, R.(2014). World Checklist of Cyperaceae. London, UK: Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/
- Hipp, A.L. (2007). "Nonuniform processes of chromosome evolution in sedges (Carex:

Cyperaceae)". Evolution. 61 (9): 2175doi: 10.1111/j.1558-5646.2007. 2194. 00183.x. ISSN 0014-3820. PMID 17767589. S2CID 19514206

- Holm, L.G., Plucknett, D.L., Pancho, J.V., Herberger, J.P. (1977). The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA, University Press of Hawaii.
- Johansen, H. (1940). Plant Micro technique cGraw Hill. New York. 532pp.
- G. Kukenthal. (1936). Cyperaceae-Scirpoideae-Cyperceae. In: Engler (Ed.). Das Pflanzenreich IV. 20, 101: 1-671.
- Lunkai, D., Sungyun, L., Shuren, Z., Yancheng, T., Koyama, T., Tucker, G.C., Simpson, D.A., Noltie, H.J., Strong, M.T., Bruhl, J.J., Wilson, K.L., Muasya, A.M. (2010). Cyperaceae. Flora of China. 23: 164-461. http://www.efloras.org/ florataxon.aspx?flora_id=2&taxon_id=1 0246
- Martin, R., Pol, C. (2009). Weeds of Upland CambodiaArchived 2014-02-25 at the Way back Machine, ACIAR Monagraph 141, Canberra.
- Mallick, T., Ghosh, A. (2018). Comparative study of foliage leaf and bract leaf anatomy of six species of Cyperus L. (Cyperaceae) from West Bengal. Modern *Phytomorphology*, 12(1):106-116.
- Milne, L.J., Milne, M.J.G. (1975). Living plants of the world. Random House. Pp. 301.
- Mumtaz, S., Hameed, M., Ahmad, F., Sadia, B. (2019). Structural and functional modifications in osmoregulation for ecological success in purple nutsedge (Cyperus rotundus). Intl. J. Agric. Biol., 22: 1123-1132

ISSN 1118 - 1931

Wahua, C. and Abass, M.: Comparative Morpho-Anatomy of Two Sedges (Cyperus cyperoides (L.) Kuntze and Cyperus rotundus L.)

- Omezine, A., Harzallah-Skhili, F. (2009). "Biological Behavior of Cyperus rotundus in Relation to Agro-Ecological Conditions and Imposed Human Factors". African Journal of Plant Science and Biotechnology. Global Science Books.
- Parsons, W.T., Cuthbertson, E.G. (1992). Noxious Weeds of Australia. Melbourne, Australia. Inkata Press, 692 pp.
- Rad, M.A., Sonboli, A. (2008). Leaf and stem anatomy of *Cyperus* subgenus *Cyperus* in Iran. Rostaniha 9: 6-22.

https://www.sid.ir/en/journal/ViewPaper. aspx?ID=122723

- USDA-ARS, (2014). Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. <u>https://npgsweb.arsgrin.gov/gringlobal/taxon/taxonomysearc h.aspx</u>
- Wahua, C. (2020). Free-Hand Sectioning Machine Invented for Anatomical Studies of Biological Materials. *Scientia Africana*, Vol. 19 (No. 1), April, 2020. Pp 159-162.