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ABSTRACT 

Estimation of quantile regression curves individually causes quantile crossing, which 

eventually leads to an invalid estimation of the predictor effect. This work implemented 

quantile regression coefficient modeling (QRCM) where the regression coefficients are 

modeled as parametric functions of the order of the quantile in other to eliminate crossing. 

Four different samples of sizes 30, 50, 100 and 500 were simulated in other to investigate the 

effect of sample size on crossing and also to investigate the effect of crossing on model fit. 

The results show that as the sample sizes were increased crossing was reduced, but with a 

very large sample size crossing was not observed at all. The results also revealed that the 

presence of crossing caused the models not to be well specified but with the elimination of 

crossing the models were seen to be well specified. 

Keywrods: Quantile Crossing, Quantile Regression, Goodness of Fit, Cross Index and 

Quantile Function. 

 

INTRODUCTION 

Quantiles are said to be points in a 

distribution that pertains to the rank order 

of values in that distribution. Quantiles 

seem inseparably linked to the operations 

of ordering and sorting the sample 

observations that are usually used to define 

them. So it comes as a mild surprise to 

observe that we can define the quantiles 

through a simple alternative expedient as 

an optimization problem. Just as we can 

define the sample mean as the solution to 

the problem of minimizing a sum of 

squared residuals, we can define the 

median as the solution to the problem of 

minimizing a sum of absolute residuals, 

(Koenkerand Hallock,2001). Given a set of 

covariates, the linear-regression model 

(LRM) specifies the conditional mean 

function whereas the Quantile Regression 

model (QRM) specifies the conditional-

quantile function. The LRM is a standard 

statistical method that focuses on modeling 

the conditional mean of a response variable 

without accounting for the full conditional 

distributional properties of the response 

variable. In contrast, the QRM facilitates 

analysis of the full conditional 

distributional properties of the response 

variable. The QRM and LRM are similar in 

certain respects, as both models deal with a 

continuous response variable that is linear 

in unknown parameters, but the QRM and 

LRM model deal with different quantities 

and rely on different assumptions about 

error terms. The issue of crossing arises 

during multiple percentiles estimation, the 

quantile curves can cross, leading to an 

invalid distribution for the response, such 

as wrong coefficient effects Nwakuya and 

https://dx.doi.org/10.4314/sa.v21i1.20
mailto:1maureen.nwakuya@uniport.edu.ng


234 
 

 

Nwakuya, M.T. and Masha, M.I.: Quantile Crossing as it Pertains to Sample Size and Goodness of Fit: A Simulation… 

 

Onyegbuchulam (2021) investigated the 

effects of crossing on regression 

coefficients and they found out that 

crossing has a significant effect on 

regression coefficients. It’s paramount that 

crossing should be eliminated in quantile 

regression analysis. Some authors like Lui 

and Wu(2011), proposed a new kernel-

based multiple QR estimate technique 

called simultaneous non-crossing quantile 

regression, the method applies constraints 

on the kernel coefficients to avoid 

crossing. Chernozhukov et al. (2010) 

proposed estimating noncrossing quantile 

curves via a monotonic rearrangement of 

the original nonmonotonic function. Most 

recently Santos and Kneib (2020) 

considered a flexible Bayesian quantile 

regression model with Gaussian process 

adjustment to achieve a noncrossing 

property. Jiang and Yu(2022) considered 

single-index models and developed 

methods for QR that guarantees non-

crossing quantile curves which they 

extended to composite quantile regression. 

Patto and Matteo (2016) described an 

approach for modeling the regression 

coefficients as parametric functions of the 

order of the quantile. The method proved 

to be advantageous in terms of parsimony, 

efficiency and removal of crossing. Patto et 

al. (2021) applied this approach to 

longitudinal data were they described how 

the QRCM paradigm can be applied to 

longitudinal data. This work aims at 

investigating crossing as it relates to 

sample size and goodness of fit while 

modeling the regression coefficients as 

parametric functions of the order of the 

quantile, following the work of Patto and 

Matteo (2016). 

The quantile regression model is given by;  

     (1) 

Where p is the number of predictor variables, is the  effect on the response variable 

while e and x are the error term and predictor variable respectively. The best median Quantile 

regression line is found by minimizing median absolute deviation. 

   (2) 

Here the function 𝜌 is the check function which gives asymmetric weights to the error 

depending on the quantile and the overall sign of the error. 

 

 

 

 

 

 
Figure 1.1 Loss Function 

(e) 
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In figure 1.1,  increases linearly with slope  as e moves away from zero to the right 

and it increases linearly with slope   as e moves away from zero on the left. Nwakuya 

(2020) opined that the traditional frequentist quantile regression makes minimum assumptions 

that tolerate errors that are not normal given that the response variable (y) is continuous even 

in Bayesian framework. John & Nduka (2009) concluded that quantile regression offers a 

comprehensive strategy for completing the regression picture as it goes beyond this primary 

goal of determining only the conditional mean, and enables one to pose the question of 

relationship between the response variable and explanatory variables at any quantile of the 

conditional distribution function. Studying For better understanding of the intuition of 

quantile regression, let's begin with the intuition of ordinary least squares. Given the model 

          (3) 

the least squares estimate minimizes the sum of the squared error terms 

          (4) 

Comparatively, quantile regression minimizes a weighted sum of the positive and negative 

error terms: 

     (5) 

where τ is the quantile level. 

The  conditional quantile  of a real valued random variable Y given a vector of k 

predictors is given by;  

.        (6) 

The earliest research by Koenker and Bassset (1978) recognized that the solutions were 

determined by fitting certain observations exactly. When the quantile regression were 

introduced, it was found out that fitting certain observations exactly forced the regression 

quantile fits to cross, thus causing the conditional quantile function to be non-monotonic in its 

statement, τ at some values of the predictor variables, Koenker (2005). Crossing in quantile 

regression happens when regression predictions for different quantile probabilities do not 

increase as probability increases.  

QUANTILE CROSSING 

In view of the fact that quantile regression curves are estimated individually, these curves may 

cross, leading to an invalid distribution for the response. Reviewing the conditional 

distribution of the response given the predictor, one of the processes is to estimate multiple 

conditional quantile functions. Theoretically, the various conditional quantile functions ought 

not to cross each other as claimed by the basic principle of conditional distribution functions. 

However, this naive individual estimation can lead to estimated conditional quantile functions 

that may cross each other. Authors that worked on non-crossing include, He (1997) that 

suggested a technique to estimate the quantile curves while ensuring that it does not cross. 

Nevertheless, the approach presumes a heteroscedastic regression model for the response, 

which permits the predictors to have effect on the distribution of the response via a location 
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and scale change of an underlying base distribution. Wu and Liu (2009) suggested a technique 

to ensure non-crossing, by fitting the quantiles sequentially and constraining the current curve 

to not cross the previous curve. Dette and Volgushev (2008) and Chernozhukov et al. (2009), 

all secured non-crossing by the approach of modifying the estimation of the conditional 

distribution function. The indirect technique is considered if focus is purely in estimation of 

the conditional quantile. However, when our focus is on quantifying the effects of the 

predictors, the quantile curves are typically modeled via a parametric form, such as linear 

predictor effects, and a direct estimation approach is required.  

METHODOLOGY  

Let denote the outcome of interest conditional on a p dimensional vector , where  is a 

continuous random variable with cumulative distribution function  and let  be 

the quantile function⋅ The Quantile regression model with the  quantile for response (y|x) 

is of the form; , it is assumed that for  and that there 

is a p dimensional vector  such that; 

     (7)

  

, describes the effect of predictors on the  quantile of the response variable and we 

assume that the quantile regression coefficient function  can be modeled parametrically 

as  where  is an unknown parameter. We can define  as a function of  

that depends on a finite-dimensional parameter  so that;  

     (8)

  

Where  =  is a set of k known functions of . is a matrix with entries 

. Hence the conditional quantile function is; 

 ,     (9) 

this can be written as;       (10) 

 Considering a simple model given as      (11) 

If we denote the quantile function of distribution of a standard normal distribution as 

then; 

and , where is linear in and  depends on .  

In this model  is the intercept of ,  is the slope associated with  and the 

regression coefficient  is assumed to be constant across quantiles enforcing 

homoscedasticity. In other to estimate the quantile regression coefficients under equation 

(7) we minimize the objective function; 

     (12) 

Subject to     , t=2,…,q 
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Given that;  where I(.) is an indicator function. is estimated by 

minimizing the integrated objective function given in equation (13)below with respect to the 

order of the quantile. 

     (13) 

This approach allows the estimation of the entire quantile process without allowing crossing. 

This work applied simulated datasets with sample sizes 30, 50, 100 and 500 in other to 

investigate effect of sample size on crossing and to check the fitness of the model without 

crossing and with crossing.The simulated dataset with crossing was generated for binomial 

and uniform distribution, while the response was generated as a function of both the predictors 

from both distributions, for sample size n = 30, 50, 100 and 500.  The work was analyzed 

using Quantreg package and qrcm package in R. 

Goodness of fit test: 

Let  denote the empirical distribution function of the data defined by 

 where the indicator function  is defined as 1 

for a ≤ b and as 0 otherwise. Since  is the proportion of observations less than or equal 

to  is the true distribution of X, we expect  to be close . The closeness 

of  to  is assessed by the Cramer-von Mises statistics defined by Richard A. L. 

(2019) as; 

 

The hypothesis is given as; 

 (model is correctly specified) 

 (model is not correctly specified) 

Cross index: Cross index is the average length, across observations, of the sub-intervals of  

Cross index lies from 0 to 1, with 0 indicating no crossing and 1 indicating that observations 

cross at all quantiles. Cross index close to 0 indicates minimal crossing while cross index 

close to 1 indicates high crossing. 

RESULTS 

Sample size = 30. The dataset had crossing with a cross index of 0.3105, which is minimal 

crossing. 
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Table 4.1: Quantile regression coefficient results at different quantiles with crossing: 

Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept 0.6659 5.2904 0.126 0.900 

25% 
 

2.3316 2.6715 0.873 0.383 

 
 

5.3758 4.9869 1.078 0.281 

 Intercept 0.5452 5.7178 0.095 0.924 

50% 
 

2.9888 5.0242 0.595 0.552 

 
 

6.3411 7.0616 0.898 0.369 

 Intercept 5.708 17.947 0.318 0.750 

75% 
 

2.239 6.435 0.348 0.728 

 
 

1.607 16.995 0.095 0.925 

 Intercept 33.74 18.92 1.784 0.0745 

95% 
 

-7.32 11.11 -0.659 0.5099 

 
 

-17.76 15.51 -1.145 0.2522 

*Significant at 0.05 level of significance 

Table 4.1 presents the quantile regression coefficients with crossing and it shows that all the 

predictors are insignificant. 

AFTER REMOVING CROSSING: Number of observations that crossed is 0 (0%), with cross 

index of 0.0005462. 

Table 4.2 Quantile regression coefficient results at different quantiles after removal of 

crossing: 

Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept -0.9878 6.8540 -0.144 0.885410 

25% 
 

2.8530 0.8106 3.519 0.000433* 

 
 

7.0496 7.0053 1.006 0.3143 

 Intercept 0.8662 0.5311 1.631 0.103 

50% 
 

2.5729 0.2969 8.667 <2e-16* 

 
 

6.0500 0.6023 10.044 <2e-16* 

 Intercept 3.131 6.440 0.486 0.627 

75% 
 

2.805 1.444 1.943 0.050* 

 
 

4.076 6.336 0.643 0.520 

 Intercept 23.5386 17.3947 1.353 0.176 

95% 
 

0.2412 10.3794 0.023 0.981 

 
 

-10.3701 14.8580 -0.698 0.485 

*Significant at 5% level of significance. 

The table 4.2 above shows that the removal of crossing affected the effects of the predictors. 

We can see that  is now significant at the 25th, 50th and 75th quantiles but it showed no 

effect at the 95th quantile.  
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Table 4.3: Goodness of fit test result  

Test Statistics statistic     p-value 

Cramer-Von Mises (With Crossing) 0.036759 0.03061224 

Cramer-Von Mises (Without Crossing) 0.065670 0.68141414 

 

With crossing the model was seen not to be well specified but it can be seen that the removal 

of the crossing resulted to a well specified model. Table 4.3 shows that the model without 

crossing is well specified. 

SAMPLE SIZE = 50 

Number of observations that crossed were 28, the analysis shows that 56% of the observations 

has crossing somewhere in the domain with a cross index of 0.167. 

Table 4.4: Quantile regression coefficient results at different quantiles with crossing: 

Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept -0.3813 29.6825 -0.013 0.990 

25% 
 

2.4084 0.4750 5.070 3.97e-07* 

 
 

6.8926 29.6886 0.232 0.816 

 Intercept -0.1664 18.7418 -0.009 0.992916 

50% 
 

2.8370 0.8352 3.397 0.000682* 

 
 

7.0754 18.7010 0.378 0.7052 

 Intercept 0.7110 1.1470 0.620 0.535 

75% 
 

3.0647 0.7577 4.045 5.23e-05* 

 
 

6.7818 0.8928 7.596 3.05e-14* 

 Intercept 3.314 5.162 0.642 0.5210 

95% 
 

3.183 4.682 0.680 0.4967 

 
 

6.168 2.902 2.125 0.0335* 

*Significant at 5% level of significance 

Table 4.4 above shows that at all quantiles at least one predictor is significant. The effects in 

this result are similar to the effects in 25th quantile without crossing. We can say that even 

with crossing a little increase in the sample reveals some effects that were not visible with a 

smaller sample size. 

After Removing Crossing 

Number of observations that crossed: 0 (0%) with cross index of 0.00.  

Table 4.5: Quantile regression coefficient results at different quantiles after removing 

crossing: 

Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept -0.006231 0.956783 -0.007 0.995 

25%  2.490053 0.223359 11.148 < 2e-16* 

  6.4684 0.9532 6.786 1.15e-11* 

 Intercept 0.2236 1.5700 0.142 0.886766 

50%  2.7864 0.8063 3.456 0.000549* 
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  6.6696 1.2180 5.476 4.36e-08* 

 Intercept 1.100 2.016 0.546 0.58525 

75%  3.202 0.464 6.900 5.19e-12* 

  6.217 2.100 2.960 0.0031* 

 Intercept 3.390 10.245 0.331 0.741 

95%  3.621 4.319 0.838 0.402 

  5.477 8.133 0.673 0.501 

*Significant at 5% level of significance 

 

The Table 4.5 above reveals that after the removal of crossing all the predictors were seen to 

have a significant effect except for the 95th quantile. This also reveals an improvement in the 

significance of the predictors when crossing was removed. 

Table 4.6: Goodness of fit test result  

Test Statistics statistic     p-value 

Cramer-Von Mises (With Crossing) 0.0269145 0.04061224 

Cramer-Von Mises (Without Crossing) 0.0556175 0.9895233 

 

We can see that the removal of the crossing resulted in a well specified model. But with 

crossing the model is seen not to be well specified. 

SAMPLE SIZE = 100 

Number of observations that crossed: 4 (4%), the analysis shows that 4% of the observations 

has crossing somewhere in the domain with a cross index of 0.2018, which is minimal 

crossing. 

Table 4.7: Quantile regression coefficient results at different quantiles with crossing: 

Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept 0.8173 2.1689 0.377 0.706 

25%  2.2319 2.3523 0.949 0.343 

  5.5892 4.8617 1.150 0.250 

 Intercept 0.7969 0.4585 1.738 0.0822 

50%  3.1353 0.3558 8.813 <2e-16* 

  5.4893 0.4666 11.765 <2e-16* 

 Intercept 1.105 2.830 0.390 0.696 

75%  3.570 3.004 1.188 0.235 

  5.824 1.435 4.059 4.93e-05* 

 Intercept 1.763 13.935 0.127 0.899 

95%  4.108 7.459 0.551 0.582 

  6.047 5.236 1.1556 0.248 

*Significant at 5% level of significance 
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The Table 4.7 above shows that only at 50th and 75th quantile were the predictors significant. 

After Removing Crossing 

Number of observations that crossed: 0 (0%) with cross index: 0.0005462.  

Table 4.8: Quantile regression coefficient results at different quantiles after removing 

crossing: 

Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept 0.4839 0.1712 2.827 0.00469* 

25% 
 

2.7247 0.2083 13.080 < 2e-16* 

 
 

5.7347 0.2707 21.182 < 2e-16* 

 Intercept 0.7592 0.5305 1.431 0.152 

50% 
 

3.0785 0.3651 8.432 <2e-16* 

 
 

5.6786 0.3911 14.520 <2e-16* 

 Intercept 1.2280 0.5583 2.199 0.0279* 

75% 
 

3.3802 0.6632 5.097 3.46e-07* 

 
 

5.8394 0.3644 16.024 <2e-16* 

 Intercept 2.0509 0.8777 2.337 0.01946* 

95% 
 

4.1482 1.3904 2.984 0.00285* 

 
 

5.3353 0.8545 6.244 4.27e-10* 

*Significant at 5% level of significance 

The Table 4.8 above shows that after removing crossing all the predictors at all the quantiles 

were seen to be significant. Showing that the increase in the sample size has a role to play in 

reducing crossing. 

Table 4.9: Goodness of fit test result  

Test Statistics statistic     p-value 

Cramer-Von Mises (With Crossing) 0.0465311 0.00 

Cramer-Von Mises (Without Crossing) 0.098252 0.72433 

We can see that the removal of the crossing resulted to a well specified model.  

SAMPLE SIZE = 500 

Number of observations that crossed: 0 (0%), the analysis shows that 0% of the observations 

has crossing somewhere in the domain with a cross index of 0.000713. This shows us that 

when the sample size is very large crossing is eliminated. 

Table 4.10: Quantile regression coefficient results at different quantiles after removing 

crossing: 
Quantiles Coefficients Estimate std.err z value p(>|z|)) 

 Intercept 0.22442 0.06062 3.702 0.000214* 

25%  2.51083 0.08875 28.291 < 2e-16* 

  6.89674 0.15379 44.844 <2e-16* 

 Intercept 0.6673 0.1685 3.96 7.5e-05* 

50%  3.0750 0.1279 24.05 < 2e-16* 

  6.6703 0.1870 35.67 < 2e-16* 

https://dx.doi.org/10.4314/sa.v21i1.20
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 Intercept 1.3039 0.2549 5.116 3.12e-07* 

75%  3.5608 0.1693 21.035 < 2e-16* 

  6.7486 0.2995 22.534 < 2e-16* 

 Intercept 2.5857 0.5098 5.072 3.94e-07* 

95%  4.1522 0.2778 14.944 < 2e-16* 

  7.4926 0.4412 16.984 <2e-16* 

*Significant at 5% level of significance 

From table 4.10, we can see that all of the covariates were significant at the P-value 0.05.  

We also noticed that as the sample size increase the number of observations that crossed 

reduces significantly. With a sample size of 500, no crossing was observed at any point. 

CONCLUSION 

This paper investigated the effect of 

sample on crossing and also looked at how 

crossing affects model fitness. The analysis 

modeled the regression coefficients as 

parametric functions of the order of the 

quantile. This process removes crossing as 

was shown by Patto and Matteo (2016).  In 

the analysis four different datasets were 

simulated with sample sizes 30, 50, 100 

and 500. Using sample size of 30 with 

crossing all the predictors was seen to be 

insignificant and after crossing removal 

some of the predictors showed significant 

effects. There was an improvement when 

the sample size was increased to 50, even 

with crossing some predictors were seen to 

be significant and after removing crossing 

all the predictors were seen to be 

significant except the 95th quantile. For 

sample size 100, after the removal of 

crossing all the predictors were seen to 

significant and also at sample size of 500, 

there was no crossing at all. We also 

looked at the goodness of fit of the models 

and we discovered that without crossing 

the models were well specified while the 

presence of crossing produced models that 

were not well specified Based on the 

findings we can conclude that this work 

has been able to show that increase in 

sample size reduces crossing but with very 

large samples sizes crossing is totally 

eliminated. Also the work has been able to 

show that crossing affects the fit of a 

model by producing unspecified models 

while removal of crossing produces well 

specified model. 
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