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ABSTRACT 

The relationship between the ionospheric critical plasma frequencies (f0F2) and GNSS-TEC 

(Global Navigation Satellite System –Total Electron Content) measurements was investigated 

using an artificial neural network method. About 20 pairs of ionosonde-GNSS receiver stations 

from 2000 to 2016 were used. Results from this work indicate that the relationship between f0F2 

and TEC is mostly affected by the seasons, followed by the level of solar activity, and then the 

local time. Geomagnetic activity was the least significant of the factors investigated. The 

relationship between f0F2 and TEC was also shown to exhibit spatial variation; the variation 

is less conspicuous for closely located stations. Single station models predicted the f0F2 more 

accurately at their particular localities and clearly overestimated values of the f0F2 ionosonde 

observations when used at different localities. This finding indicates that model predictions are 

better (in terms of reduced prediction errors) for the stations for which they are developed than 

for a different station. Our result visibly point out that models developed for a particular station 

cannot be effectively applied in another station located farther apart in space. The new 

approach described in this study represents an important contribution in space weather 

prediction. 
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INTRODUCTION 

The ionosphere is not a stable but a dynamic 

system that is intensely disrupted by various 

events such as; neutral winds, atmospheric 

tides, motion due to electric and magnetic 

fields and auroral particles at higher 

latitudes (Cander, 1998, Wintoft and 

Cander, 2000). Ionospheric variability is 

predominant in the F layer of the ionosphere 

and the complexity of this layer poses a 

major constraint to the efficiency of 

terrestrial and earth-space communications 

(Stamper et al; 2004, Oyeyemi et al; 2005). 

The efficiency of high frequency radio 

communication depends on the ability of 

one making a precise prediction of the 

ionospheric conditions (Oyeyemi et al; 

2005). The critical frequency of the F2 layer 

(f0F2) is an important parameter in studying 

the ionosphere and in radio communication. 

Equally; the Total electron content (TEC) of 

the ionosphere is also another significant 

descriptive parameter in ionospheric studies 

(Fayose et al., 2012). TEC values are used 

in describing the F2 region at various 

locations even during magnetically 

disturbed periods. Any operating system 

that encompasses radio wave propagation 

through ionosphere needs TEC quantities; 

since TEC affects code signal transmission 

as well as the phase signal transmission 

observed in radio communication. Over the 

years, researchers have discovered that 

these two parameters; f0F2 and TEC are 
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correlated (Spalla and Ciraolo, 1994; 

Kouris et al, 2004). And as such, recent 

studies adopt the use of TEC measurements 

for the approximation of f0F2 values (Otugo 

et al; 2019).  A standard formula has not 

been established as per the correlation 

between f0F2 and TEC in different seasons 

and different levels of solar activity; hence, 

studies are still carried out in this aspect to 

discover ore.  

In this study, we adopted a new approach; 

by using Artificial Neural Network to define 

the connection between TEC and f0F2. 

Neural network models trained with 

sufficient data offers a practical technique 

of modelling ionospheric dynamics since: 

they are sufficiently fast for real time 

processing and are able to describe non-

linear occurrence actively involved in the 

ionospheric variations (Wintoft and Cander, 

2000, Mckinnell and Poole; 2004, 

Habarulema et al.,2007, Athieno et 

al.,2017). We used f0F2 measurements from 

ionosonde stations and the corresponding 

TEC values from closely located GNSS 

receiver stations to develop a single station 

neural network models for different 

locations.  Each of the single station models 

were used to predict f0F2 values in different 

locations. The performance of the models at 

different locations and seasons depicts the 

temporal and spatial connections between 

TEC and f0F2. 

MATERIALS AND METHODS. 

Data sources and data pre-processing 

Ionosonde observations of f0F2 values were 

obtained from the archives of the Space 

Physics Interactive Data Resources 

(SPIDR, http://spidr.ngdc.noaa.gov/spidr), 

and from the South African National Space 

Agency (SANSA) Space Science. The 

ionosonde f0F2 data were averaged to get 1-

hour values. GNSS data were obtained from 

data archives of the University of 

California, San Diego 

(www.garner.uscd.edu), and from the South 

African network of continuously operating 

GNSS base stations (TRIGNET, 

http://www.trignet.co.za). The VTEC data 

were obtained in RINEX (Receiver 

Independent Exchange) format. RINEX is a 

data interchange format for raw satellite 

system data which allows a user to post 

process the received data to generate a 

better result. RINEX gives information 

measured by 2 or more receivers in a 

differential mode. These RINEX data files 

were post processed into TEC files using a 

GPS-TEC analysis application software 

developed by Gopi Seemala (Seemala and 

Valladares, 2011) (available from 

https://seemala.blogspot.com). The 

software calculates the relative TEC by 

using both f1 and f2 and by removing errors 

due to clock biases and the tropospheric 

water vapour effect. To obtain 30-s 

instantaneous VTEC values for a receiver 

station, the average of all VTECs computed 

for satellites visible within the 30-s interval 

were computed. VTECs from satellites 

below 30-degree elevation angles were 

excluded from the computation so as to 

reduce multipath errors. To further reduce 

the volume of data, smoothen out data 

spikes, and obtain VTEC values that 

correspond to the hourly f0F2 values, the 30-

s VTEC data were averaged in 1-hour 

interval.   

The GNSS receiver stations were selected 

based on the proximity to the corresponding 

ionosonde stations. The greatest separation 

between the GNSS receiver stations and 

corresponding ionosonde stations is less 

than 4 degrees of great circle. Since the state 

http://spidr.ngdc.noaa.gov/spidr
http://www.garner.uscd.edu/
https://seemala.blogspot.com/


163 
 

Scientia Africana, Vol. 20 (No. 3), December, 2021. Pp 161-172 https://dx.doi.org/10.4314/sa.v20i3.14 

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

of the ionosphere varies spatially, it is 

important to minimize the distance between 

the ionosondes and corresponding GNSS 

receivers so as to get minimal errors from 

the modelling. The ionosonde stations and 

corresponding GNSS receiver stations used 

in this work are illustrated in Figure 1. 

 

Figure 1. Locations of ionosonde and GNSS receiver stations.  

We also obtained the hourly values of both the sunspot values and Dst (Disturbance storm Time) 

indices from the Space Physics Data Facility of the Goddard Space Flight Center, National 

Space Administration’s omniweb (https://omniweb.gsfc.nasa.gov/form/dx1.html). 

Table 3.1: List of the ionosonde stations with their corresponding GPS stations 

Ionosonde Station GPS Station 

Code Latitude Longitude Code Latitude Longitude 

LG178 78.2 15.6  NYA1 78.9 11.9 

LM42B -22.2 114.0  KARR -21.0 117.1 

PA836 34.6 -120.7  VNDP 34.6 -120.6 

RO041 41.9 12.5  AQUI 42.4 13.4 

THJ77 77.5 -69.2  THU2 76.5 -68.8 

TR169 69.6 19.0  TRO1 69.7 18.9 

TR170 69.6 19.0  TRO1 69.7 18.9 

YA462 62.0 129.7  YAKT 62.0 129.7 

YG431 33.4 130.7  G121 33.5 129.8 

WP937 37.9 -75.4  HNPT 38.6 -76.1 

SN437 37.1 127.1  OSN1 37.1 127.0 

GR13L -33.3 22.4  GRHM -33.3 22.4 

HE13N -34.4 19.2  HNUS -34.4 19.2 

LV12P -28.5 21.2  UPTA -28.4 21.2 
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Neural network training algorithm 

Artificial Neural network (‘neural network’ 

for short) is an inter connected assembly of 

simple processing elements, units or 

neurons; which is based on the neural 

configuration of the brain (Gurney; 2009, 

Kohli et al; 2014). Neural network is a 

computational system designed to 

recognize patterns. The architectural design 

of a neural network consists of three layers; 

an input layer, a hidden layer and an output 

layer. Each of these layers is made up of 

nodes or neurons which are information 

processing units.  

Neural networks can be trained using 

different algorithms. In this work, we used 

the Levenberg-Marquardt (LM) algorithm. 

The LM algorithm is designed to minimize 

the error functions that arise during neural 

network training. Prior to training, the entire 

available data was sequentially split in time 

into three sets: the earliest 70% was kept for 

training, the next 15% was kept for 

validation, and the latest 15% was kept for 

testing. The MATLAB implementation of 

the LM training algorithm was used in this 

work. This implementation works by 

performing different iterations, the 

validation dataset is used to check when 

there was no further progress in the 

generalization, and the training stops 

automatically when there is no further 

progress in the generalization.  

The neural networks implemented in this 

work constitute an input layer, a hidden 

layer, and an output layer. Equations (2a) 

and 2(b) respectively contain the transfer 

functions used to transfer the input layer 

neurons to the hidden layer neurons and 

from the hidden layer neurons to the output 

layer neurons. 

𝐻𝑚 = tanh (𝐼𝑤𝑚 × 𝐼𝑚 + 𝐵1)    (2a) 

𝑂𝑚 = tanh (𝐻𝑤𝑚 × 𝐻𝑚 + 𝐵2)   (2b) 

𝐼𝑚,… 𝐻𝑚, and 𝑂𝑚 are matrices which 

respectively contain the input layer neurons, 

the hidden layer neurons, and the output 

layer neurons. 𝐼𝑤𝑚 and 𝐻𝑤𝑚 are 

respectively the input and hidden layer 

weight matrices, while 𝐵1and 𝐵2 are 

respective bias vectors for the input and 

hidden layers. At the start of training, the 

weight matrices and bias vectors are 

randomly initialized, and as training 

progresses, the training algorithm modifies 

the weight matrices and bias vectors in 

directions that lead to minimization of the 

sum of square errors. At the end of training, 

the resulting weight matrices and bias 

vectors contain optimized values that 

minimize the network prediction errors.  

Neural network training 

We trained a system of single-station 

networks which have TEC as the only one 

input and f0F2 as the output. The number of 

hidden layer neurons was varied starting 

from 1 to 30 in steps of 1. For each of the 30 

trained networks, we used the validation 

dataset to compute the root-mean-square 

deviations (RMSDs) of the network 

predictions from the ionosonde 

measurements using the formula in equation 

(3).  

RMSD = √
∑ (Xi−Pi)2n

i=1

n
  (3) 

Where the Xi𝑠 and Pis are respectively the 

ionosonde observations and the neural 

network predictions, and n is the total 

number of observation-prediction pairs. 

Results of the RMSD computations for the 

RO041 station are shown in Figure 2(a).  
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On the consideration that the relationship 

between f0F2 and TEC may vary depending 

on local time, season, and on the levels of 

solar and geomagnetic activities, we 

introduced more input layer neurons to 

investigate such dependencies. The 

following four parameters were used to 

represent the factors: the number of hours 

from local midnight of each day (for local 

time), the Julian number of days from the 

start of each year (for seasons), the Sunspot 

number (SSN) (for level of solar activity), 

and the disturbance storm time (Dst) index 

(for level of geomagnetic activity).  

We then trained four other systems of 

networks in which each of the four 

parameters were separately included as 

input layer neurons. As done for the system 

of networks which had only TEC as input, 

we trained 30 networks for each of the four 

systems (with number of hidden layer 

neurons varied from 1 to 30 in steps of 1). 

The formula in equation (3) was used to 

compute RMSDs, and the results are as 

shown in Figure 2(a). The text of legends in 

figure 2 are as explained here: TEC only 

(for the networks which have TEC as the 

only input layer neuron), TEC-LT (for the 

networks which have TEC and local time as 

the input layer neurons), TEC-DOY (for the 

networks which have TEC and day of year 

as the input layer neurons), TEC-SSN (for 

the networks which have TEC and SSN as 

the input layer neurons), and TEC-DST (for 

the networks which have TEC and Dst as 

the input layer neurons).   

RESULTS AND DISCUSSION.   

 

Figure 2. RMSDs for 5 different systems of networks trained with varying input layer neurons 

and varying number of hidden layer neurons (a) all available data used, (b) data used constitutes 

of 50% disturbed time data and 50% quiet time data. The vertical axes are plotted in logarithmic 

scale.  

Figure 2(a) shows that the system of 

networks which gave the least prediction 

errors is that which has TEC and DOY as 

inputs. This is followed by the system which 

has TEC and SSN as inputs, and then the 

system with TEC and local time as inputs. 

By considering that the most effective of the 

systems should be the one which minimized 

the prediction errors, we use minimization 

of prediction error as criteria to measure 

effectiveness of the input layer neurons. Our 

results therefore indicate that the 
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relationship between f0F2 and TEC is 

mostly dependent on the seasons, followed 

by the level of solar activity, and then the 

local time. The dependence on geomagnetic 

activity was the least significant. Based on 

the understanding that the observed 

insignificance of geomagnetic activity may 

actually be a result of the fact that the data 

used for training and testing are 

predominantly quiet-time observations, we 

conducted a control experiment. For the 

control experiment, we first selected all 

observations that were recorded during 

geomagnetically disturbed periods (with 

Dst≤-50), and then randomly selected an 

equal amount of observations from the 

remaining data. In this way, we had as much 

disturbed-time data as the quiet-time data 

(that is, 50% disturbed-time data and 50% 

quiet time data). Using this dataset, we 

repeated the neural network training and 

testing procedure, and the results are 

illustrated in Figure 2(b). The result is 

consistent with that of Figure 2(a), and still 

shows that the relationship between f0F2 

and TEC is mostly dependent on the 

seasons, followed by the level of solar 

activity, and then the local time. The 

dependence on geomagnetic activity was 

still insignificant. Therefore, the following 

four input parameters: TEC, day of year, 

SSN, and local time, were then used to train 

different neural network for different single 

stations so that each of the resulting 

networks is specifically designed for use at 

the particular locality of the 

ionosonde/GNSS receiver system. 

Furtherly, to investigate the space-

dependence of the TEC and f0F2 relation, 

we used the single-station models 

developed for a particular locality to predict 

the f0F2 values for other localities as 

illustrated in Figures (2) to (5).  Each of the 

figures consist of three diurnal plots: (i) The 

observed f0F2 values for the particular 

ionosonde station X (denoted obs-X on the 

plot legend), (ii) The predicted f0F2 values 

for station X using the single-station model 

developed for the same station X (denoted 

net-X on the plot legend), and (iii) The 

predicted f0F2 values for station X using the 

single-station model developed for another 

station Y (denoted net-Y on the plot legend). 

The stations and their coordinates are 

presented in Table 1 while the RMSDs of 

each of the single station model 

performance are presented in Table 2. 

 

Table 2: The RMSDs of the predictions of the single station models 

STN 1 STN 2 RMSD1A  RMSD 1B RMSD 2A RMSD 2B 

SN437 WP937 0.66 1.34 0.66 1.11 

RO041 PA836 0.45 1.32 0.58 1.53 

HE13N LG178 0.33 1.27 0.53 0.96 

LG178 RO041 0.32 0.84 0.40 0.77 

YA462 YG431 0.20 1.30 0.42 1.51 

LV12P GR13L 0.37 0.40 0.29 0.37 

TR169 TR170 0.28 0.35 0.26 0.32 

LM42B LG178 0.34 2.22 0.52 1.08 

THJ77 PA836 0.23 2.15 0.38 2.74 
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In table 2 above; RMSD1A represents the 

Root mean square deviation (RMSD) of the 

predicted f0F2 values for station X using the 

single-station model developed for the same 

station X. RMSD1B is the RMSD of the 

predicted f0F2 values for another station Y 

using the single-station model developed 

for station X.  The inverse scenario is given 

by RMSD2A which is the RMSD of the 

predicted f0F2 values for station Y using the 

single-station model developed for the same 

station Y. RMSD2B is the RMSE of the 

predicted f0F2 values for station X using the 

single-station model developed for another 

station Y 

 

Stations closely located in latitude but far apart in longitude 

 
Figure 2: f0F2 observations and predictions for similar latitude but different longitude stations 

 

In this part, the performances of the models 

of different stations which are closely 

located in latitudes but are far apart 

longitudinally were examined. In Figure 

2(left) the observations illustrated are for 

the WP937 station, and the networks trained 

for this station, as well as for the 

SN437station, were used to predict the f0F2 

values for the WP937 station. The inverse 

scenario is illustrated in Figure 2(right); the 

observations in this case are for the SN437 

station, and the networks trained for this 

station, as well as for the WP937 station, 

were also used to predict the f0F2 values for 

the SN437station. These two stations are 

closely located in latitudes but are spaced 
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out in longitude. The RMSD obtained in 

using the WP937-station model to predict 

f0F2 values in its station gives an RMSD of 

0.66 MHz for its prediction; but yields much 

higher RMSDs of 1.46 MHz at SN437. On 

the other side, SN437-station model 

predicted foF2 values with an RMSDs of 

just 0.66 MHz at its particular station but 

gives a much higher RMSDs of 0.94 MHz 

when applied at WP937. Both of the Single 

station models predicted the f0F2 more 

accurately at their particular localities and 

clearly overestimated values of the f0F2 

ionosonde observations when used at 

different localities. This finding indicates 

that model predictions are better (in terms 

of reduced prediction errors) for the stations 

for which they are developed than for a 

different station. This result, visibly point 

out that models developed for a particular 

station cannot be effectively applied in 

another station located farther apart in 

space. 

 

 

Figure 3: Stations closely located in longitudinally but separated in latitude. 
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In this part, it was demonstrated that there 

are observable differences in the 

performances of the two models for two 

stations with similar longitude but different 

latitudes. To do this, an investigation of the 

relationship between f0F2foF2 and TEC at 

HE13N, LG178, stations are illustrated. 

Both stations are separated by over 44 

degrees in latitude and separated just by less 

than 8 degrees in longitudes. HE13N is a 

mid-latitude station while LG178 station is 

a high latitude station. The RMSD obtained 

in using the HE13N-station model to predict 

f0F2 values at its locality is just 0.33 MHz 

while its predictions at LG178-station 

model produced an RMSDs of 1.27 MHz. 

Also, using the LG178-station model to 

predict f0F2 values at its locality gives an 

RMSE of 0.53 MHz and 0.96 MHz when 

used in HE13N.The results show that there 

are observable differences in the 

performances of the two models when used 

at either of the locations. The models 

perform more accurately at the stations for 

which they are developed than at the 

alternate stations. Conducting repeated tests 

using other similarly located stations 

showed that there were latitudinal 

differences in the relationships between 

f0F2 and TEC. 

Stations closely located both in latitude and longitude 

 
Figure 4: Stations closely located in latitudes and in longitudes. 
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More extensively, further investigation on 

the effect of latitudinal and longitudinal 

differences on the accuracy of singles 

stations models was done.  Figures 4 

illustrate a scenario of two stations (LV12P 

and GR13L) which are more closely 

located. The two stations are both in South 

Africa and are just 2 degrees apart. The 

figures show that the errors in the network 

predictions are not as high as the earlier 

cases demonstrated. The RMSD obtained in 

using the LV12P-station model to predict 

f0F2 values for the LV12P station is 0.37 

MHz while using the GR13L-station model 

for the same LV12P station prediction gives 

an RMSD of 0.40 MHz. On the other hand, 

using the GR13L-station model to predict 

f0F2 values for the GR13L station gives an 

RMSD of 0.29 MHz while using the 

LV12P-station model for the GR13L station 

prediction gives an RMSD of 0.37 MHz. 

The results therefore show that the 

relationships between f0F2 and TEC are 

similar when the two pairs of stations are 

more closely located in space. This supports 

the idea of using neural networks to 

spatially interpolate the relationships 

between f0F2 and TEC. 

Stations located far apart both in latitude and in Longitudes 

 

Figure 5: Stations Far apart in latitudes and in longitudes. 
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Finally, to validate that there are spatial 

differences in the relationship between f0F2 

and TEC, singles stations that are located far 

apart both latitudinally and longitudinally 

were studied. This is demonstrated in figure 

5. The two stations studied; LM42B and 

LG178, are separated by a distance of 

12,620 km. The RMSD obtained in using 

the LM42B-station model to predict f0F2 

values for the LM24B station is 0.34 MHz 

while using the LG178-station model for 

f0F2 prediction at the same LM42B station 

gives a much higher RMSE value of 2.22 

MHz.  On the other hand, using the LG178-

station model to predict f0F2 values for the 

LM42B-station gives an RMSD of 0.52 

MHz; while using the LM42B-station 

model for the LG178- station f0F2 

prediction also gives a much higher RMSE 

of 2.03 MHz. Obviously, it can be observed 

that there is greater error, when a model 

developed for a particular station is used for 

f0F2 prediction in another station located far 

away from the former.  Likewise, further 

analysis of similarly related stations 

portrays the same trend observed in the two 

Stations discussed above. The idea is to 

allow the neural network to use these two 

input neurons to learn spatial variations that 

are inherent in the relationship between 

f0F2foF2 and TEC. 

CONCLUSION 

A neural network based method for 

estimating ionospheric f0F2 from GNSS-

TEC measurements is implemented. By 

using GNSS-TEC, and certain other 

parameters, as input for the neural networks, 

the networks were trained to learn the 

relationship between the f0F2 and TEC. 

Available f0F2 and TEC data obtained from 

about 20 pair of ionosonde and GNSS 

receiver stations for the period from year 

2000 to year 2016 was used.    

Results from the work indicate that the 

relationship between f0F2 and TEC is 

mostly dependent on the seasons, followed 

by the level of solar activity, and then the 

local time. The dependence on geomagnetic 

activity was the least significant. The 

relationship between f0F2 and TEC also 

vary with space, and the variation is less for 

closely located stations. Considering these 

number of factors that affect the relationship 

between f0F2 and TEC, our study presents 

an elegant way of using neural networks to 

relate f0F2 and TEC. The method offers an 

effective and refined way of relating the 

f0F2 and TEC.  
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