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ABSTRACT 

A new one-parameter distribution named inverse Akash distribution, for modelling lifetime 

data, has been introduced. Important statistical properties of the proposed distribution such 

as the density function, hazard rate function, survival function, stochastic ordering, entropy 

measure, stress-strength reliability and the maximum likelihood estimation of the parameter 

of the distribution have been discussed. Two real data sets were employed in illustrating the 

usefulness of the new distribution. Comparatively, the inverse Akash distribution provided 

better fits to the data than each of the inverse exponential distribution and inverse Lindley 

distribution. 

Keywords: Akash distribution, lifetime data, model selection criteria, stress-strength 

reliability, upside-down bathtub shape 

 

INTRODUCTION 

Modelling lifetime data is crucial in many 

fields including medicine, engineering, 

insurance and finance, amongst others 

(Shanker, 2015). Exponential, Akash 

(Shanker, 2015), Lindley (Lindley, 1958), 

gamma, lognormal and Weibull 

distributions and their generalizations are 

some of the continuous distributions used 

to model lifetime data. Notably, the 

exponential, Lindley and the Weibull 

distributions are more popular than the 

gamma and the lognormal distributions 

because the survival functions of the later 

cannot be expressed in closed forms. 

Though each of exponential, Lindley 

distribution and Akash distribution  have 

one parameter, the Lindley and Akash 

distributions have one advantage over the 

exponential distribution. The exponential 

distribution has constant hazard rate 

function whereas the Lindley and Akash 

distributions have monotonically 

decreasing hazard rate functions (Shanker, 

2015), making the Lindley and Akash 

distributions applicable in some cases 

where the exponential distribution is not 

useful. 

In his study, Shanker (2015) compared the 

goodness of fits of the Akash distribution, 

exponential distribution and Lindley 

distribution and concluded that the Akash 

distribution can be the most suitable 

distribution for data among the three 

distributions. The probability density 

function (pdf) and the cumulative 

distribution function (cdf) of Akash 

distribution are respectively given by 

Shanker (2015) as 
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The density in Eq. (1) is a two-component 

mixture of an exponential distribution with 

scale parameter θ   and a gamma 

distribution with shape parameter 3 and 

scale parameter θ with their mixing 

proportions 
𝜃2

𝜃2+2
 and 

2

𝜃2+2
 respectively.  

Though the Akash distribution has been 

found suitable for modelling some data 

sets, it still has a major limitation. In fact, it 

is incapable of having non-monotonic 

hazard rates. Consequently, authors have 

made considerable efforts to extend the 

Akash distribution in order to have 

relatively more flexible distributions. In 

particular, Shanker (2016) introduced the 

quasi Akash distribution and discussed its 

properties. Shanker and Shaukla (2016) 

proposed a weighted Akash distribution. 

Poisson Akash distribution was 

propounded by Shanker (2017) for the 

analysis of discrete data. Shanker et al. 

(2018) developed the generalised Akash 

distribution. Using the exponentiation 

method, Okereke and Uwaeme (2018) used 

the exponential technique to obtain the 

exponentiated Akash distribution. Eyo et 

al. (2019) introduced the weighted quasi 

Akash distribution. Additionally, the zero-

truncated discrete Akash and power size 

biased two-parameter Akash found by 

Sium and Shanker (2020) and Alhyasat et 

al. (2000) respectively, are also among 

distributions in the literature that are 

related to the Akash distribution ,  

From the foregoing, it is certain that not 

much has been done to introduce an 

extension of the Akash distribution that can 

have upside-down bathtub shaped hazard 

rates. Given a positive continuous random 

variable Y with a known distribution, one 

of the known methods of deriving more 

flexible distributions is to determine the 

pdf of 1X Y  . This results in the inverse 

distribution of .Y  The advantages of 

inverse distributions are obvious. First, 

they are as parsimonious as their 

corresponding parent distribution since 

they do not require extra parameters (Eliwa 

et al., 2018). Second, they can have 

upside-down bathtub shaped hazard rates 

(Lee et al., 2017; Eliwa et al., 2018). 

Considering the above mentioned desirable 

qualities of inverted distributions, we are 

motivated to introduce a new inverse 

distribution called the inverse Akash 

distribution and derive its mathematical 

properties. The rest of the paper is 

organised as follows. In Section 2, we 

derive the probability density function 

(pdf), cumulative distribution function 

(cdf), survival function and hazard rate 

function of the distribution. Plots of both 

the pdf and hazard rate function are given 

in this section so as to illustrate the 

possible shapes of the two functions.  

Other properties of the distribution such as 

stochastic ordering, entropy and stress-

strength reliability of the distribution are 

discussed in Section 3. Real data 

application is presented in Section 4 while 

the paper is concluded in Section 5. 
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THE INVERSE AKASH DISTRIBUTION 

Proposition 1. If a random variable Y follows Akash distribution AD(𝜃), then the random 

variable 
Y

X
1

  has inverse Akash distribution  with scale parameter 𝜃 and its probability pdf 

and cdf are respectively given by 
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Proof. 

If Y follows Akash distribution with parameter  , the pdf of Y  becomes 
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The cdf for the inverse Akash distribution can be expressed as 
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Let 1.w t   1t w   and 2d dw.t w    

Applying the technique of integration by parts, we haxe 
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We denote the inverse Akash distribution in Eq. (3)  by IAD(𝜃) and show the shapes of its pdf 

for different values of 𝜃 in Figure 1. 

 

          Figure 1. Pdf of  IAD  for different values of 𝜽. 

Figure 1 indicates that the density function of IAD(𝜃)  is uni-modal in x. 

The survival function of  IAD  is given by 
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Thus, the hazard rate function is given as: 
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The various shapes of hazard rate function of IAD(𝜃) for different values of 𝜃 are given in 

Figures 2. 

 

                           

 

 

 

 

 

 

 

 

 

 

Figure 2. Hazard rate functions of  IAD  for different values of 𝜽. 

From Figure 2, it can be observe that the hazard rate function of  IAD  has upside-down 

bathtub shape for different values of the parameter .  

OTHER PROPERTIES OF IAD 

In this section we discuss the stochastic ordering, entropy measure and the stress-strength 

reliability in inverse Akash distribution. 

Stochastic Ordering 

Stochastic ordering of positive continuous random variables is an important tool for judging 

their comparative behaviour. According to Shanker (2015), a random variable X is said to be 

smaller than a random variable Y in the; 

i. Stochastic order  (𝑋 ≤𝑠𝑡 𝑌)  if 𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥) for all x. 

ii. Hazard rate order (𝑋 ≤ℎ𝑟 𝑌) if ℎ𝑋(𝑥) ≥ ℎ𝑌(𝑥) for all x. 

iii. Mean residual life order (𝑋 ≤𝑚𝑟𝑙 𝑌) if 𝑚𝑋(𝑥) ≤ 𝑚𝑌(𝑥) for all x. 
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iv. Likelihood ratio order (𝑋 ≤𝑙𝑟 𝑌) if (
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
) decreases in x. 

The following results due to Shaked et al. (1994) are well known for establishing stochastic 

ordering of distributions 

(𝑋 ≤𝑙𝑟 𝑌)  ⇒ (𝑋 ≤ℎ𝑟 𝑌) ⇒ (𝑋 ≤𝑚𝑟𝑙 𝑌) 

⇓ 

                                                      (𝑋 ≤𝑠𝑡 𝑌) 

The inverse Akash distributions are ordered with respect to the strongest likelihood ratio 

ordering as shown in Theorem 1. 

Theorem 1: Let 𝑋~𝐼𝐴𝐷(𝜃1) and 𝑌~𝐼𝐴𝐷(𝜃2). 

If 𝜃1 < 𝜃2, then (𝑋 ≤𝑙𝑟 𝑌) and hence (𝑋 ≤ℎ𝑟 𝑌), (𝑋 ≤𝑚𝑟𝑙 𝑌) and (𝑋 ≤𝑠𝑡 𝑌) 

Proof.  

We have 
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Thus, for    𝜃1 < 𝜃2,
𝑑

𝑑𝑥
log

𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
> 0. This means that 𝑋 ≤𝑙𝑟 𝑌 and hence 𝑋 ≤ℎ𝑟 𝑌,

𝑋 ≤𝑚𝑟𝑙 𝑌 and 𝑋 ≤𝑠𝑡 𝑌. 

Entropy Measure 

Entropy of a random variable X is a measure of variation of uncertainty. A popular entropy 

measure is Renyi entropy Renyi (1961). If X is a continuous random variable having 

probability density function𝑓(. ), then Renyi entropy is defined as 

𝑇𝑅(𝛾) =  
1

1−𝛾
log{∫ 𝑓𝛾(𝑥) 𝑑𝑥}, 

where 𝛾 > 0 𝑎𝑛𝑑 𝛾 ≠ 1. 

For the Inverse Akash distribution, the Renyi entropy measure is defined by; 
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Stress-Strength Reliability and Maximum Likelihood Estimation 

Let Y and X be independent stress and strength random variables that follow Inverse Akash 

distribution with parameter  𝜃1 𝑎𝑛𝑑 𝜃2  respectively. Then, the stress-strength reliability (R) is 

defined as  
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Consequently, we get the expression for the stress-strength reliability as 

 R= (
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3
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) [
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+

Γ(1)

(𝜃1+𝜃2)
] +

𝜃1
3𝜃2

(𝜃1
2+2)(𝜃2

2+2)
[𝜃2 (

Γ(5)

(𝜃1+𝜃2)5
+

Γ(3)

(𝜃1+𝜃2)3
) +

                         2 (
Γ(4)

(𝜃1+𝜃2)4 +
Γ(2)

(𝜃1+𝜃2)2)] 

https://dx.doi.org/10.4314/sa.v20i2.1


68 
 

 

Okereke E. W., Gideon S. N. and Ohakwe J.: Inverse Akash Distribution and Its Applications  

 

   =
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Since R is the stress-strength reliability function with parameters 𝜃1 and 𝜃2, we need to obtain 

the maximum likelihood estimators (MLEs) of 𝜃1 and 𝜃2 to compute the maximum likelihood 

estimation R using the invariance property of the maximum likelihood estimators. 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 is a Strength randon variable sample from Inverse Akash distribution 

(𝜃1) and 𝑌1, 𝑌2, … , 𝑌𝑚is a Stress random sample from Inverse Akash distribution (𝜃2). Thus, 

the likelihood function based on the observed sample is given by; 
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The log-Likelihood function is given by 

log 𝐿(𝜃1, 𝜃2) = 3𝑛 log 𝜃1 + 3𝑚 log 𝜃2 − 𝑛 log(𝜃1
2 + 2) − 𝑚 log(𝜃2

2 + 2) − 𝜃1𝑆1 − 𝜃2𝑆2 +

∑ log (
1+𝑥𝑖

2

𝑥𝑖
4 )𝑛

𝑖=1 + ∑ log (
1+𝑦𝑗

2

𝑦𝑗
4 )𝑚

𝑗=1                                                                                                      

(12) 

Consider the partial derivatives in Eq. (13) and Eq. (14) 

𝜕 log 𝐿(𝜃1,𝜃2)

𝜕𝜃1
=

3𝑛

𝜃1
−

2𝜃1𝑛

(𝜃1
2+2)

− 𝑆1                                                                                                                 

(13) 

𝜕 log 𝐿(𝜃1,𝜃2)

𝜕𝜃2
=

3𝑚

𝜃2
−

2𝜃2𝑚

(𝜃2
2+2)

− 𝑆2                                                                                                                 

(14) 

From Eq. (14) and Eq. (15), we obtain the maximum likelihood equations 

𝜃1
3𝑆1 − 𝜃1

2𝑛 + 2𝜃1𝑆1 − 6𝑛 = 0                                                                                                         

(15) 

𝜃2
3𝑆2 − 𝜃2

2𝑚 + 2𝜃2𝑆2 − 6𝑚 = 0                                                                                                       

(16) 

The MLEs k̂  of k  for 2,1k can be obtained by solving the cubic equations in Eq. (15) 

and Eq. (16). The roots of the equations can be obtained using R software. Again, by the 

invariance property of the MLEs, the maximum likelihood estimator ˆ
mleR  of R can be 

obtained by substituting ̂
𝑘
 in place of 𝜃𝑘 for k = 1, 2. Hence, 

ˆ
mleR =

𝜃1
3{[2+(𝜃1+𝜃2)2][(𝜃2

2+2)(𝜃1+𝜃2)2]+𝜃2[24𝜃2+2𝜃2(𝜃1+𝜃2)2+12(𝜃1+𝜃2)+2(𝜃1+𝜃2)3]}

(𝜃1
2+2)(𝜃2

2+2)(𝜃1+𝜃2)5 ˆ , 1,2k k k  
.   (17) 
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REAL DATA APPLICATION 

Two real life data sets are used to demonstrate the application of IAD.   

Fits of the new model to the data are compared with those of the inverse exponential 

distribution (IED) and inverse Lindley distribution (ILD). The data sets given in Appendix, 

represent the survival times of two groups of patients suffering from Head and Neck cancer 

disease. The patients in one group were treated using radiotherapy (RT) (Data X) whereas the 

patients belonging to the other group were treated using a combined radiotherapy and 

chemotherapy (RT+CT) (Data Y). 

Firstly, we obtained the estimates and the standard errors (SE) of the estimates of the 

parameters of the IAD, IED and ILD) as shown in Table 1 

                      Table1.   Estimates of the Parameters of the Models Fitted to Data  

                        X and Data Y and their Corresponding Standard Errors 
 

 Distributions Parameter Estimate SE 

 

Data X 

IAD 59.2532 7.7671 

IED 59.1225 7.7632 

ILD 60.0883 7.7649 

 

Data Y 

IAD 76.7452 11.5580 

IED 76.7006 11.5631 

ILD 77.6754 11.5649 

 

Table 1 shows the proposed IAD performs better in the analysis of the two survival data sets 

than the IED and the ILD. 

Secondly, we compare fits of the distributions using Akaike information criterion (AIC), 

Bayesian information (BIC), Kologorov-Smirnov statistic (K-S), Cramer-Von Mises Criterion 

(W*) and Anderson Darling statistic (A*) as given in Table 2. 

Table 2. Goodness of Fit Statistics for the Distributions Fitted to Data X and Data Y 

 Distribution -L AIC BIC K-S W* A* 

 

Data 

X 

IAD 385.6517 773.3034 775.3638 0.30430 1.18450 5.65980 

IED 385.6871 773.3742 775.4346 0.30480 1.18960 5.68220 

ILD 385.7031 773.4062 775.4666 0.30480 1.19040 5.68630 

 

Data 

Y 

IAD 279.5750 561.1500 562.9342 0.08881 0.07589 0.49308 

IED 279.5773 561.1546 562.9388 0.08884 0.07592 0.49308 

ILD 279.5784 561.1568 562.9409 0.08888 0.07596 0.49308 
 

  

Observe from Table 2 that the IAD produced the smallest value of each of AIC, BIC, K-S, 

W*and A* as compared to the IED and the ILD. Thus, among the three models under 

consideration, the IAD provides the best fit to each of the two data sets. 

https://dx.doi.org/10.4314/sa.v20i2.1
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With the data, Eq. (13), Eq. (15), Eq. (16) and Eq. (17), we obtain the maximum likelihood 

estimates of 1, 2  and R  as shown in Table 3. 

                            Table 3. The Maximum Likelihood Estimates of 1, 2  and R  

Parameter MLE 

1  0.0042 

2  76.7472 

R  64.4294 10  

 

CONCLUSION 

The inverse Akash distribution (IAD) for 

modelling lifetime data has been proposed 

in this study. Its statistical properties such 

as the shape characteristics of density, 

survival function, hazard rate function, 

stochastic ordering are obtained. 

Specifically, the pdf of the distribution can 

be unimodal while the hazard rate function 

of the distribution has upside-down bathtub 

shape. Further, expressions for the entropy 

measure and stress-strength reliability of 

the proposed distribution have been 

derived. The method of maximum 

likelihood estimation has also been 

discussed for estimating its parameter. On 

the basis of two data sets, the fits of the 

new model are compared with those of the 

inverse exponential and inverse Lindley 

distributions. Consequently, the results 

obtained using some model selection 

criteria indicate that among the three 

models, the inverse Akash distribution is 

the best fitting model to the data. 

Therefore, the newly introduced 

distribution can be a better alternative to a 

number of well-known distributions. 
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APPENDIX 

Data X: 

6.53,7,10.42,14.48,16.10,22.70,34,41.55,42,45.28,49.40,53.62,63,64,83,84,91,108,112,129,13

3,133,139,140,140,146,149,154,157,160,160,165,146,149,154,157,160,160,165,173,176,218,

225,241,248,273,277,297,405,417,420,440,523,583,594,1101,1146,1417 

Data Y: 

12.20,23.56,23.74,25.87,31.98,37,41.35,47.38,55.46,58.36,63.47,68.46,78.26,74.47,81.43,84,

92,94,110,112,119,127,130,133,140,146,155,159,173,179,194,195,209, 

249,281,319,339,432,469,519,633,725,817,1776 

 

  


