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ABSTRACT  

The issue of multicollinearity is well published but the available methods for multicollinearity 

correction is still debated. In this paper, we review the strength or performance of 

standardization and centering techniques in reducing multicollinearity problem in both linear 

and non-linear regression model using the variance inflation factor (VIF). A Monte Carlo 

simulation was carried out to show the precise effects of mean centering and standardization 

on both individual correlation coefficients as well as overall linear and non-linear model 

indices.  Our findings reveal that use of centering and standardization are not very effective 

under severe collinearity. It is therefore hoped that practicing researchers will cautiously 

incorporate these diagnostics into their analyses.  
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INTRODUCTION  

The efficiency of the prediction results in 

regression model always depends on the 

effective identification of multicollinearity 

in the data before actual prediction. The 

literature on linear models with special 

focus on multicollinearity spans several 

decades already. However, no conclusive 

solution has been achieved so far due to 

some deficiencies in its diagnostics, so that 

there is still a continuing active interest on 

the problem.  Briefly, multicollinearity is a 

high degree of correlation (linear 

dependency) among several independent 

variables. It commonly occurs when a large 

number of independent variables are 

incorporated in a regression model. The 

presence of multicollinearity has some 

destructive effects on regression analysis 

such as prediction inferences and 

estimations. Consequently, the validity of 

parameter estimation becomes questionable 

(Montgomery et al., 2001; Kutner et al., 

2004; Chatterjee and Hadi, 2006; Midi et 

al., 2010). As multicollinearity increases, 

the least squares estimates of the regression 

coefficients remain unbiased, but the 

determinants of the independent variables’ 

covariance and correlation matrices 

approach zero, and the standard errors of the 

coefficients increase. Also, the expected 

distance between the vector of least squares 

coefficients and the vector of true 

regression coefficients increase with some 

estimates frequently having either 

unreasonably large values or unreasonable 
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signs. Moreover, slight sampling 

fluctuations in the estimates of the zero-

order covariances can cause large swings in 

the values and signs of least-squares 

estimates of the coefficients in the presence 

of multicollinearity- a phenomenon 

someone once called the problem of the 

“bouncing betas” (Smith & Sasaki, 1979).  

As the determinant of the covariance matrix 

decreases, the rounding error in computing 

the inverse of the matrix, which is needed 

for the least-squares estimates. (Blalock, 

1963; Gordon, 1968; Althauser, 1971; and 

Rockwell, 1975.)  

The notion of centering and standardizing 

variables in regression as solution to 

multicollinearity is the source of constant 

debate and questioning. There is a big 

controversy in literature about the 

standardization and Centering of data in 

regression. Several conflicting views appear 

on the question of whether data in the X-

matrix should be mean-centered or 

standardized before collinearity is assessed. 

Belsley (1984) contrasts with authors like 

Stewart (1987), Schall and Dunne (1987), 

Gunst (1983), Marquardt (1980) and 

Marquardt and Snee (1975) who advocate 

mean centering. There is less argument on 

the question on whether X should be 

standardized although the question of 'how 

the standardizing must be done could be 

vague. Stewart (1987) pointed out that any 

combination of three elements could be 

standardized: the matrix X, the vector   

(its elements should be close together). The 

effects of predictor scaling on coefficients 

of regression equations (centered versus 

uncentered solutions) and higher order 

interaction effects has thoughtfully been 

covered by Aiken and West (1991). Their 

example illustrates that considerable 

multicollinearity is introduced into a 

regression equation with an interaction term 

when the variables are not centered.  The 

variance inflation factor should detect the 

degree of multicollinearity when variables 

are uncentered (Freund, Littell, & 

Creighton, 2003). The problem of whether 

the observations should be centered around 

their mean or not before applying the 

diagnostic tools for multicollinearity is an 

issue which is still not completely resolved 

(Besley, 1984). In opposition to Smith and 

Campbell (1980), Marquardt (1980) states 

that the centering of observations removes 

nonessential ill conditioning. If the 

uncentered data is ill conditioned, then the 

small errors in inputs have large impact on 

the estimates of parameters. Kim (1987) 

pointed out that standardization can reduce 

multicollinearity among the linear, 

quadratic, and cubic terms is substantially 

reduced, while the correlation coefficients 

with other variables are not affected by this 

transformation. According to Kim (1993), 

without standardization, we may lose 

accuracy because of rounding errors in the 

course of calculating the variance or 

covariance. This is especially true when a 

variable with large values, such as income, 

is included as an independent variable in the 

regression equation, involving many 

variables and many cases. Furthermore, 

Marquardt and Snee (1975) argued, that 

"the ill conditioning that results from failure 

to standardize is all the more insidious 

because it is not due to any real defect in the 

data, but only the arbitrary origins of the 

scales on which the predictor variables are 

expressed". That is why they recommend 

standardizing whenever a constant term is 

present in the model. Belsley, Kuh and 

Welsch (1980), by contrast, indicated that 

"mean centering typically masks the role of 
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the constant term in any underlying near 

dependencies and produces misleadingly 

favorable conditioning diagnostics.  

The purpose of this paper is to highlight a 

basic data analytic solution in fitting linear 

and non-linear collinear equations to an 

observation matrix when the independent 

variables are centered or standardized. 

Attention is restricted to collinear models in 

two independent variables (second order 

polynomial) but the approach may be 

applied in more complex situations. The 

variance inflation factor as a measure of the 

degree of multicollinearity however has not 

been examined in context with 

standardized, centered versus uncentered 

variables in both linear and non-linear 

regression equations.  

The plan of the paper is as follows. In 

Section 2, various methods of dealing with 

multicollinearity were highlighted with 

theoretical framework on centering and 

standardization techniques. The 

relationship between centering and 

standardization in a regression model are 

considered in this section. The material and 

methods which involves simulation and 

results are presented in Section 3. In the last 

Section 4, findings and some conclusions 

are reported. 

Dealing with Multicollinearity  

A number of suggestions have been offered 

regarding how one should deal with data 

exhibiting high levels of multicollinearity. 

Virtually all of the approaches offered are 

aimed at increasing the precision of 

coefficient estimates. One suggestion that 

has been frequently made in trying to 

overcome the problem of multicollinearity 

is to collect new data (Ryan, 1997). 

Sometimes, the problem of 

multicollinearity occurs due to inadequate 

or erroneous data. Unfortunately, this is not 

always possible since some analysis must 

be based on the available data. Furthermore, 

this solution is not possible when the 

presence of multicollinearity is the result of 

internal constraints of the system being 

studied (Rawlings et al., 1998). 

Hoerl (1962) and Hoerl and Kennard 

(1970a, 1970b) have proposed ridge 

regression as one way of overcoming the 

problems of multicollinearity using larger 

or more efficient samples and by increasing 

the numerical accuracy in one’s data in 

order to reduce the size of the standard 

errors ; however, reasonable applications of 

these tactics frequently do not overcome the 

problems posed by the multicollinearity 

inherent in the models with cross product 

terms (see Marquardt and Snee, 1975; and 

Deegan, 1975, Henry, 1976.) The 

improvements suggested recently by 

Guilkey and Murphy (1975) and Kasarda 

and Shih (1977) make ridge regression even 

more attractive; however, ridge regression 

does not provide a minimum mean-square 

error for the model. The complication 

occurs in the choice of how the shrinkage is 

to be induced to achieve some ‘optimality’. 

Oftentimes, there is no assurance that a 

particular choice of shrinkage would indeed 

result to desirable properties of the 

estimators.  

Dropping of variables that duplicate the role 

of other ‘more’ important variables has 

been proposed as a natural solution to the 

multicollinearity problem. However, for 

models that strictly adhere to some 

theoretical framework, this is equivalent to 

massive loss of information. Dropping 

predictor variables is not only intellectually 

dishonest (Philippi 1993), it also 
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contaminates the remaining predictors (Box 

1966). Suppose we believe that the true 

causal relationship involves all three 

predictors, but we drop X3 to limit the 

effects of collinearity. In spite of this, the 

estimates of the regression coefficients 

remain contaminated by the eliminated 

predictor. Carnes and Slade, (1988) 

simulated apparent competition known to 

exist at least experimentally. They also tried 

to delete some variables from the model to 

resolve the multicollinearity problem, but 

realized that many important features of 

community organization/dynamics were 

lost. Thus, the true measure of competition 

cannot be assessed from a model that 

missed some important indexes in the 

competition framework because of the 

‘dropped’ variables. 

Then principal component regression is also 

proposed, hoping that the linear 

combination of the x’s as a regressor will be 

able to keep all the variables into the model. 

Depending on the structure of the 

relationship among the regressors, 

component loadings may affect parameter 

estimates, e.g., loadings are similar, 

resulting to regression coefficients that are 

similar for all regressors.  

This will cause problem in interpretation 

because the relative importance of 

predictors is being masked by the way the 

linear combination is formed.  

Centering    

Centering is defined as subtracting the mean 

(a constant) from each score, X, yielding a 

centered score. Aiken and West (1991) 

demonstrated that using other 

transformations, additive constant or 

uncentered scores can have a profound 

effect on interaction results. The X-scaled 

variables are assumed such that X'X has the 

form of a correlation matrix. Although 

centering in ordinary linear regression has 

been a subject of considerable debate 

recently (Hocking (1984), Snee (1983), 

Be1s1ey (1984b), it is generally recognized 

that centering reduces the condition number 

of the incidence matrix X in the (ordinary) 

linear regression model. As pointed out by 

Bradley and Srivastava (1979), centering in 

polynomial regression models is even more 

critical since the "intercorrelation" of the 

variables (X1, X2, X3, etc.) becomes higher 

as the degree of the polynomial increases.  

Regression with higher order terms has 

covariance between interaction terms (XZ) 

and each component (X and Z) depends in 

part upon the means of the individual 

predictors. Rescaling, changes the means, 

thus changes the predictor covariance, 

yielding different regression weights for the 

predictors in the higher order function.  

Centering is therefore an important step in 

testing for interaction effects in multiple 

regression to obtain a meaningful 

interpretation of results. 

Consider a regression model with two 

independent variables. When two 

independent variables are included in a 

multiple linear regression model, the model 

can be defined as 

iiii XXY   22110 ,    

,...,.........2,1 ni                           (1) 

where the y is the score on the dependent 

variable of i the ith subject, x1i and x2i are the 

values of the independent variables for the 

ith subject, , and 210 ,,   are population 

regression coefficients and i   is the error 

term  assumed to be normally distributed 

with mean of zero and constant variance. 
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Often collinearity is assured by considering 

the explanatory variables only and ignoring  

the intercept 0 . This is accomplished by 

centering the response and predictor 

variables, which corresponds to fitting the 

model  
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this can be put in another notation as     

 22110 XXY  
                   (2) 

Subtracting (2) from (1) implies a centered 

regression model without intercept 
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original model, we observe that centering 

the predictors and the response forces the 

estimated intercept in that centered model to 

be 0. Hence, it can be dropped from that 

model.  

Standardization 

To obtain standardized regression 

coefficients, we can transform the variables 

of the mean as shown in (3) above by 

dividing with the standard deviation of y on 

both sides, and multiply each term on the 
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putting (6) in vector notation, we have                   
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The coefficients for the standardized model 

is given by  
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MATERIALS AND METHODS 

The purpose of this paper is to review the 

impact of standardization and centering 

techniques in reducing multicollinear 

regression models using simulated 

incidence matrices and the COLLIN option 

in SAS 9.0 version PROC REG. To 

compare the performance of standardization 

and centering methods for dealing with 

collinearity, we simulated datasets with 

various range of predictor collinearity. Let 

X be a matrix of two independent variables: 

X1, and X2; and, let Σ be a variance-

covariance matrix of a vector X. Our 

purpose is to generate the vector X from 

multivariate normal distribution with mean 

zero vector and variance-covariance matrix 

Σ, where Σ is a symmetric 2 by 2 matrix and 

a positive definite. We can obtain correlated 

normal variables X = C ′ Z where Z are 

standard normal random variables and C is 

an upper triangular matrix such that C ′ C = 

Σ for any positive definite matrix Σ.  We 

begin by multiplying each of the selected 

variable with 0.5 in order to make the 

variables uniform. U = ranuni (start), 

X1=U+rannor (start)*0.5 X2=U+rannor 

(start)*0.5 with Y=1+X1+X2+rannor (start). 

For our simulation experiment, we created 

datasets that had sample size n (n = 1000) 

and two explanatory normally distributed 

variables (predictors). Sample sizes of 100, 

200, 250 and 500 were considered; 

however, in order to obtain a more complete 

assessment, a small sample (50) and very 

large sample (1000) were included as well. 

The simulation study is performed to 

examine how collinearity between two 

independent variables in multiple linear and 

non-linear regression models could be 

reduced using both standardization 

technique and centering method.   

RESULTS  

The results of the simulation are presented 

in Tables I and 2. In order to save space only 

the results for correlations 0.5, 0.7 and 0.9 

are reported here. Table 1 displays the mean 

variance inflation factors (VIF) of each 

method in a linear and non-linear 

component observed in the 1000 sample. In 

this table, the result showed that the 

centered and standardized techniques 

outperformed the OLS (uncentered). As 

expected, the VIF increases with increase in 

correlation between the independent 

variables. Both the centered and 

standardized techniques exhibited absence 

of collinearity (with minimum VIF) in the 

linear model following Hair et al. (1995) 

which suggest variance inflation factors 

(VIF) less than 10 is indicative of 

inconsequential collinearity. VIF values 

calculated using centering and 

standardization methods remained 

relatively constant over sample sizes and 

simulation runs for both linear and non-

linear models. This agrees with the findings 

that mean centering and standardization 

help reduce potentially bad effects of 

interrelated variables  (Irwin & McClelland, 

2001; Jaccard, Wan, & Turrisi, 1990; Smith 

& Sasaki, 1979). However, as the 

collinearity gets more severe )9.0( 21 xx , 

the presence of multicollinearity becomes 

pronounced. With sample size of 50, the 

centered model performed better than 

standardized technique but as the sample 

size increases, both performed equally. That 

is to say that centered technique performs 

better for small samples. For the non-linear 

model, the centered method performed 

better than the standardized technique 

irrespective of the sample size. There was a 

pronounced difference in the mean VIF 

https://link.springer.com/article/10.3758/s13428-015-0624-x#CR11
https://link.springer.com/article/10.3758/s13428-015-0624-x#CR12
https://link.springer.com/article/10.3758/s13428-015-0624-x#CR19
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between centered and standardized method. 

We therefore recommended that use of 

centering should be preferred to 

standardizing technique when dealing with 

multicollinearity problems for non-linear 

models.  

 

Table 1: Mean VIF for both linear and non-linear models 

n  Linear model Non-linear model 

 21xx  Uncentered  Centered  Standardized  Uncentered  Centered  Standardized  

50 

0.5 32.38785 4.7799 6.7062 194.8376 1.7416 49.3982 

0.7 58.837 6.2940 9.6415 345.7295 3.5393 76.4091 

0.9 124.2699 14.3211 19.8592 1002.247 23.9121 281.6419 

100 

0.5 10.6838 3.8116 4.3751 49.3685 1.5942 13.7337 

0.7 27.5349 5.8824 6.1137 150.9621 2.5328 31.6597 

0.9 89.7225 13.62775 13.6056 632.2307 10.7475 131.789 

200 

0.5 8.9708 4.04375 3.8669 55.1101 1.5679 17.8093 

0.7 21.1189 5.92958 5.6631 141.0235 2.8102 37.2936 

0.9 70.68965 13.61145 14.3445 560.7861 15.10735 153.3723 

250 

0.5 9.31275 3.89265 3.76735 55.7062 1.53835 17.9999 

0.7 20.8460 5.5562 5.3882 136.4729 2.7364 35.9106 

0.9 65.4489 12.8681 12.875 526.3433 14.4871 140.9292 

500 

0.5 8.70695 3.7781 3.8147 51.6663 1.69025 17.44865 

0.7 19.1807 5.47725 5.6217 126.5204 3.13035 35.2614 

0.9 63.4686 13.5421 13.8173 542.9985 16.3107 152.2818 

1000 

0.5 8.42425 3.72435 3.8946 49.8798 1.7922 17.3781 

0.7 18.2917 5.48925 5.8273 122.0067 3.39 35.3736 

0.9 60.2517 13.9542 14.5036 539.849 18.082 157.6132 

 

The graphs in figures 1a and 1b show the mean VIF for both linear and non-linear models at 

different levels of collinearity. The effect of increasing sample size is clear from the graphs 

showing that at the large sample sizes both variables have a low VIF indicating stable behaviour 

over the simulation runs. This suggests that very large sample sizes negate the effect of 

multicollinearity in that coefficient estimation of highly collinear variables becomes relatively 

stable. Figure 1a shows that centering exhibited slight lower VIF when the sample is 50 but 

approximates the standardized method as the sample increases. For the non-linear graph in fig. 

1b, centering again maintained a stable lower VIF, this time all through the samples. As 

expected, the VIF values drop sharply if the correlated variables are removed from the fitted 

model. 
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 Fig. 1a: Comparison of mean VIF with a linear model for different scaling methods. 

 

 

 
  Fig. 1b: Comparison of mean VIF with non-linear model for different scaling methods. 

 

To assess the effect of centering and standardization techniques on the stability of coefficient 

estimation when multicollinearity is present, the mean Standard Error (SE) of the coefficients 

of each of the variables was calculated under linear and non-linear models. Table 2 shows that 

centering as well as standardized model were more reliable estimates than the uncentered for 

linear component since the standard error of the coefficient indicates the precision of the 

coefficient estimates. The importance of centering and standardization techniques become even 

more clear when one considers the graphs of these techniques as indicated in figures 2a and 2b 

below. However, figure 2b again confirmed the superiority of centering over standardization in 

solving multicollinear problems for non-linear model since it maintains a minimum standard 

error for the samples under study.   

 

Table 2: Mean Standard Error of regression coefficients on both linear and non-linear models 

n  Linear model Non-linear model 

 21xx  Uncentered  Centered  Standardized  Uncentered  Centered  Standardized  

50 

0.5 0.2542 0.1016 0.1197 0.0655 0.0184 0.0469 

0.7 0.3944 0.1324 0.1635 0.1029 0.0349 0.0718 

0.9 0.6259 0.2130 0.2509 0.1861 0.1087 0.1429 

100 

0.5 0.0973 0.0581 0.0622 0.0204 0.0090 0.0144 

0.7 0.1772 0.0823 0.0839 0.0418 0.0167 0.0277 
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0.9 0.3492 0.1373 0.1334 0.0952 0.0476 0.0672 

200 

0.5 0.0652 0.0438 0.0428 0.0166 0.0067 0.0123 

0.7 0.1135 0.0601 0.0587 0.0309 0.0126 0.0221 

0.9 0.2273 0.0997 0.1024 0.0683 0.0392 0.0527 

250 

0.5 0.0604 0.0390 0.0384 0.0151 0.0060 0.0112 

0.7 0.1030 0.0532 0.0524 0.0277 0.0112 0.0198 

0.9 0.2009 0.0891 0.0891 0.0607 0.0346 0.0465 

500 

0.5 0.0403 0.0266 0.0267 0.0099 0.0042 0.0075 

0.7 0.0681 0.0364 0.0369 0.0181 0.0082 0.0134 

0.9 0.1361 0.0629 0.0635 0.0422 0.0259 0.0333 

1000 

0.5 0.0279 0.0186 0.0190 0.0068 0.0030 0.0052 

0.7 0.0466 0.0256 0.0263 0.0125 0.0059 0.0094 

0.9 0.0929 0.0447 0.0456 0.0296 0.0189 0.0238 

 

 
Fig. 2a: Comparison of mean standard error of regression coefficients for linear model in 

Centering and Standardized methods. 

 

 
Fig. 2b: Comparison of mean standard error of regression coefficients for non-linear model in 

Centering and Standardized methods. 
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VIF at n = 200 

 

21xx  

OLS Centered Standardized 

Linear  Non-Linear Linear  Non-Linear Linear Non-Linear 

 

0.50 

9.5212 59.7188 4.28 1.4980 4.0551 20.5896 

8.4204 50.5014 3.80754 1.6378 3.6787 15.0290 

 

0.60 

13.4625 88.2977 4.9888 1.8873 4.7097 27.2204 

13.2247 85.5925 4.5834 2.0556 4.3031 22.8969 

 

0.70 

20.1678 135.5114 6.12365 2.6875 5.8207 38.0424 

22.0699 146.5356 5.7355 2.9328 5.5055 36.5448 

 

0.80 

30.9466 212.4456 7.9418 4.4209 7.6758 56.6317 

36.1635 247.4167 7.4775 4.8753 7.6260 60.7676 

 

0.90 

64.7614 492.4905 13.9964 14.2672 14.0010 137.1997 

76.6179 629.0817 13.2265 15.9475 14.6880 169.5448 

 

0.96 

152.2208 1626.5412 30.5533 74.4346 31.6656 548.1982 

172.6957 2238.3277 29.3080 82.0857 33.4013 719.5539 

 

VIF at n = 250 

 

21xx  

OLS Centered Standardized 

Linear  Non-Linear Linear  Non-Linear Linear Non-Linear 

 

0.50 

9.7717 58.9661 4.0524 1.5102 3.9881 20.2632 

8.8538 52.4462 3.7329 1.5665 3.5466 15.7365 

 

0.60 

13.5271 85.3520 4.6449 1.91166 4.5658 26.2091 

13.6213 86.3870 4.4209 1.9527 4.1488 23.2229 

 

0.70 

19.8026 129.3417 5.6647 2.7244 5.5403 36.0936 

21.8893 143.6041 5.4476 2.7484 5.2361 35.7275 

 

0.80 

29.8465 202.5697 7.3865 4.4572 7.1582 53.4972 

34.5188 236.1196 7.0286 4.4701 7.1004 57.2919 

 

0.90 

61.1124 474.6687 13.3162 14.0268 12.6201 130.0257 

69.7854 578.0179 12.4199 14.9473 13.1299 151.8327 

 

0.96 

139.7615 1567.3052 29.6897 70.3390 27.6343 514.9495 

152.7096 1989.7931 27.9396 70.4712 28.9476 622.5118 

 

VIF at n = 500 

 

21xx  

OLS Centered Standardized 

Linear  Non-Linear Linear  Non-Linear Linear Non-Linear 

 

0.50 

9.5017 60.7947 4.1830 1.6859 3.9978 20.3068 

7.9122 42.5379 3.3732 1.6946 3.6316 14.5905 

 

0.60 

13.6209 89.5747 4.8043 2.1684 4.6634 26.9523 

11.4973 68.3127 4.0116 2.1699 4.3072 20.9741 

 

0.70 

20.4800 137.2792 5.8588 3.1389 5.7891 38.0033 

17.8814 115.7615 5.0957 3.1218 5.4543 32.5195 
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0.80 

31.2945 217.1005 7.6439 5.1979 7.6490 57.7720 

28.5769 202.1484 6.9099 5.1345 7.3648 54.2658 

 

0.90 

64.3305 528.1081 13.9202 16.4712 13.8657 148.7279 

62.6067 557.8889 13.1639 16.1501 13.7689 155.8357 

 

0.96 

147.7285 1872.7307 31.7235 82.2972 30.8281 622.8872 

148.1251 2093.3441 30.7316 80.7850 31.0774 675.0853 

 

VIF at n = 1000 

 

21xx  

OLS Centered Standardized 

Linear  Non-Linear Linear  Non-Linear Linear Non-Linear 

 

0.50 

9.4159 59.1879 3.9701 1.8054 3.9831 20.3650 

7.4326 40.5717 3.4786 1.7790 3.8061 14.3912 

 

0.60 

13.6055 88.4174 4.6219 2.23414 4.7478 27.4625 

10.5443 63.7005 4.1264 2.3048 4.4861 20.3854 

 

0.70 

20.5432 138.1499 5.7319 3.4157 6.0155 39.5322 

16.0402 105.8635 5.2466 3.3643 5.6391 31.2150 

 

0.80 

31.4488 223.8855 7.60542 5.6892 8.0755 61.5499 

25.3215 183.1277 7.1517 5.6199 7.5653 51.8542 

 

0.90 

64.60149 569.2332 14.1279 18.1211 14.8781 164.2748 

55.9019 510.4648 13.7805 18.0429 14.1291 150.9516 

 

0.96 

146.7917 2093.8852 32.4831 90.8335 33.2649 701.4855 

135.3616 1985.3914 32.2982 91.0454 32.2181 675.8134 

 

 

CONCLUSION 

In this paper, we reviewed the importance 

of centering and standardization technique 

in dealing with multicollinearity problem 

using variance inflation factor from a 

hypothetical regression model. This 

procedure allowed us to identify how VIF 

as a collinearity diagnostic responds to 

centered or standardized technique in linear 

and non-linear models. Our findings 

revealed that use of centering and 

standardization play an important role in 

regression model especially when 

collinearity is not very severe. Although the 

performance of the fitted models using both 

techniques  seem not to be adversely 

affected by the presence of 

multicollinearity, on close inspection the 

values of the VIFs vary substantially, 

especially at small sample sizes, sometimes 

may result to misleading interpretation of 

the regression coefficients. It is important to 

note here that centering and standardization 

are not very effective under severe 

collinearity as shown in the results (Ijomah 

2019, Dalal & Zickar, 2012; Echambadi & 

Hess, 2007). This is an indication that the 

use of centering and standardization is 

restricted to the degree of severity of 

multicollinearity. Based on our analysis, we 

conclude that centering and standardization 

techniques as solution to multicollinearity 

are only necessary for moderate 

collinearity.  

 

 

https://link.springer.com/article/10.3758/s13428-015-0624-x#CR6
https://link.springer.com/article/10.3758/s13428-015-0624-x#CR8
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