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ABSTRACT 

In this paper we attempt to analyse the higher order deterministic wave equations. This study 

will concerns on the third order term of the same Stoke’s expansion for wave profile and 

velocity potential. The wave steepness parameter will be introduced in the expansion. This is 

preferred because, steepness parameter estimates the vertical asymmetry of the sea-surface 

elevation. It also enhances the convergence of the Stoke’s expansion. Approximate rogue 

wave solutions of the equation are presented and discussed. Numerical implications on wave 

crest height and trough depth will be better understood. 
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INTRODUCTION 

The rogue waves might be caused by many 

factors, such as the energy focusing due to 

the seabed geometry, wind-wave 

interaction, wave-current interaction, 

modulation instability, e.t.c. which have 

been discussed and reviewed by other 

researchers (Kharif et al., 2009; Haver, 

2005). 

The most distinguished feature of rogue 

wave is its transience, which means that it 

can happen and disappear very rapidly 

(Kharif et. al.,2009). Therefore, studies need 

be carried out in time domain to explore the 

physics of rogue waves. 

In this consideration and at the initial state 

of wave development in deep water, short 

wave group are at the front of long wave 

group (wave packet). As time involves, the 

longer wave group with higher group 

velocity will overtake the shorter one. 

Consequently, the longer wave group will 

extract energy from the shorter group, thus, 

grow in size. The effectiveness of this 

mechanism had been justified not only by 

observation but by numerical simulation and 

by laboratory experimental modeling 

(Boccoti, 1981, 1982, 2008; Fedele and 

Arena, 2006) 

Bearing the above in mine, Boccoti (1981, 

2008) showed that in a Gaussian sea, if a 

high wave develops at some point in time 

and space; with a high probability, then a 

well defined quasi-deterministic wave group 

generates extreme wave profile (maximum 

or minimum structure in wave profile). 

Boccoti, (1989) provided the quasi-

determinism theory; this is a form of 

generalised Fourier series for wave group. 

Applying Stoke’s expansion, the quasi-

determinism wave group was extended to 

the second order by Fedele (2006).  

In this study, the theorem will be extended 

to third order in Stoke’s expansion. 

Numerical implications on wave crest 

height and trough depth will be better 
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understood. This study will concern the 

third order term of the same Stoke’s 

expansion for wave profile and velocity 

potential. The wave steepness parameter 

will be introduced in the expansion. This is 

preferred because steepness parameter 

estimates the vertical asymmetry of the sea-

surface elevation. It also enhances the 

convergence of the Stoke’s expansion. 

 

Deterministic wave group 

The quasi-determinism theory provides the 

method of evaluating the subsequent wave 

crest  TtXx  ,  when a wave group 

with high crest occurs at the point x and 

time t  (Arena and Fedele 2005). The theory 

is based on the superposition of large 

number of quasi-monochromatic waves 

forming the groups with randomly 

distributed phases; thus resulting in rogue 

wave with high crest and deep trough. 

 

Review of the basic quasi-determinism 

theorem.  

Following Fedele and Arena (2003) a high 

wave crest with height 
cH  at the point 

ox  

and at time 
ot  occurs with elevation  00 , tx .  

With the probabilityapproaching unity, the 

subsequent elevation  TtXx  00 , as 


cH    ( =standard deviation 

calculated from discrete wave records of 

wave elevation time series) is obtained by 

Fedele and Arena (2003) in the 

deterministic form. 

 
 
 

     

    )3(,
1

,0,0

)2(,,
1

,,

)1(
,0,0

,,
,

0

000

2

0

0

000000

0

0
00











c

c

T

c

T

c

c

dttx
T

x

dtTtXxtx
T

xTX

where

H
x

xTX
TtXx










 




cH implies that wave height 
cH  is large 

compared with mean wave height. 

Corresponding to equation (1), the 

deterministic velocity potential   at depth 

z  is given by 
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equation (5) is inverse relationship to 

equation (4) 

cT = period of the dominant wave group 

forming the system. 

 

The Integral Representations 

If  E  is the frequency amplitude spectrum 

calculated from the wave record, 
cH is the 

elevation of the high wave crest at 
0xx   

and time 
0tt  , then alternative 

representation of equation (1) in the form of 

half range Fourier transformation  is given 

by 
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In deep water )10(
2

g
k


  

Equation (10) is derived from the deep 

water form of dispersion relation kg2  

To second order in Stokes expansion 

(Fedele and Arena 2003) provides that the 

free surface displacement and the velocity 

potential for the long crested deep-water 

waves are given respectively as follows; 
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the coefficients 
nm aa ,  are amplitudes for 

mode components usually specified, k is the 

wave number and in deep water  


,
2

g
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is the wave steepness parameter 

 3.01.0  

 

 

On the generalized Fourier series

 

Following Rahman 2003, a smooth function 

of  xfx,  is considered.  xf is smooth in 

the range k
k

llx .,0


  is a typical 

wave n umber. The half range Fourier sine 

series representation of  xf   is as follows  
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Equation (2) allows for the combination of 

identical group with same wave 

characteristics. Introduction of the 

parameters i and j specifies the groups 

distinctly. 

Thus, 
  )16(...)2sin()sin(sin  xkkCxkkBxkAxf jiijjiijii  

To accommodate a large number of group 

evolution 
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Each single mode in the entire group 

satisfies the hyperbolic equation of the form 

)18(02

2
 fk
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Where nk  varies with the wave group 

combination. The effects of the 

intercrossing of the monochromatic 

components in the group modify equation 

(17) to give 

    

  )19(...)2sin()2sin(

sin)sin(sin
1










N

i

M

j

jijiij

N

i

M

j

jijiij

N

i

ii

xkkxkkC

xkkxkkBxkAxf

 

Application to time involving wave form 

Equation (19) describes a group of spatial 

involving hyperbolic systems. However, in 

geophysical environment, events are space –

time dependent. In this consideration 

equation (19) takes the form  
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  thus 

equation (20) takes the form 
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If we substitute the values into (8) 
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The above definition follows structural observed characteristics of rogue wave event. The 

deterministic profile  tx,  of rogue wave event is thus provided by 
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Equation (23) embodies three orders. The 

first order contains a single group which 

was studied by Boccotti (1982), the second 

order which consists of two wave groups 

was studied by Arena and Fedele (2005). 

The disparity between their combined 

results and observed datae was significant 

enough to arouse my curiosity. 

Thus, I studied the third order which 

consists of three groups. Of these, two are 

assumed to be identical. This assumption is 

physically realistic because, the wave event 

is usually observed to be uni-directional. 

  

 

THE THIRD ORDER EXPANSION 

To a third order in Stoke’s expansion and, 

for the free surface displacement and the  

velocity potential in the event of the long 

crested deep water waves group, we have 
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Equations (24) and (25) above model 

asymptotically a system of interacting large 

amplitude mode in the long wave (n, m) 

system with probability of occurrence 

approaching 1, forming a large crested 

wave.  

The third order term in the expansion is 

expected to involve three summation 

conventions. However, it is assumed that in 

the evolution of wave group, some of the 

modes are identical with same amplitude 

components, wave numbers and 

frequencies. In this case, only two 

summation conventions are required and 

this makes analytical manipulation quite 

clearer and less complicated. Identical 

representation had been applied with 

success in the calculations involving double 

frequency micro-seismic waves and related 

earth tremors, so induced in the layered 

earth (Okeke 1985) and (Okeke and Asor 

1998) 

 

THIRD ORDER SPECTRAL 
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Take  ws  as the smooth frequency 

spectral operator. Then, we deduce the 

following representations,    11
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h = wave elevation to third order. 

The free surface wave elevation when 

exceptionally high wave crest occurs at 

 00 , tx  is generally represented in the form. 
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equation (30) is Stoke’s expansion for wave 

group (Boccotti, 2000) but now extended to 

third order in this study using Kinsman 

(1965) method in this study. 

Where  tx,1  is stated in equation (6) and 
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(see Fedele 2006) 
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in time domain. 

Similarly the third order velocity potential 

in continuous from is derived as  
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where
1k  and 

2k  are parameters identified with wave numbers of the dominant wave group. 

 zTX ;,2 was derived by Fedele and Arena (2003) and stated as; 
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NUMERICAL CALCULATIONS 

JONSWAP (Joint North Sea Wave Project) 

spectrum is given in (Fedele and Arena 

2003, Rahman 2003) as  
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is the non-dimensional spectrum, for a mean 

JONSWAP spectrum, we 

08.0,3.3 21  XX (Fedele andArena 2003). 

Thus, assume that the spectrum is narrow 

banded with pw  as the peak frequency; pk  

the dominant wave number, then in terms of 

non-dimensional variables we obtain; 
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In the 

subsequent calculations, we introduce the 

following mathematical expectations 
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 t is the profile of the sea-surface time 

series p(t) is the related probability density 

both in time domain. The non-dimensional 

form of the Rayleigh distribution (  tpR ) is 
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(Rahman 1994) 
rms 0

= root mean square 

wave crest height. 
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1 is the significant wave height, it is 

computed from 
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The frequency spectrum is derived in this 

case from (using equation 40) 
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numerically, r is a proper subset of N (r = 

0,1,2,...,N). 

 wE j is computed from the recorded wave 

profile when reduced to the non-

dimensional form. It represents the 

frequency amplitude spectrum of the sea-

surface profile. 

The recorded wave profile datae were 

supplied by a collegue Prof. E.O. Okeke.   

 

THE PROBABILITY OF 

EXCEEDENCE DERIVED TO THE 

THIRD ORDER 

From the previous analysis (equation 22) the 

crest elevation h to third order in non-

dimensional form is give now by 
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In terms of third order, as previously 

deduced by Arena and Fedele (2003) first 

and second order expansion, we obtained 
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The notation    ,2 1

2

1 wEwE aa   the 

superposition of two interacting component 

of quasi- monochromatic waves with equal 

frequency. 

Thus, crest height
w
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Thus, the probability density of exceedence 

relating to wave with absolute maximum 

crest height cH (i.e. measurable height) 

is obtained from parameter 
0z  where 
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 The expression is a function of two 

parameters 
3  and .  

Hence  Hp h   depends on the order of 

the Stoke’s expansion of these parameters. 

 

 
RESULTS 
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Figure A The exceedence probability density for the linear wave group
1 , the second order 

term
2 and the third order term 3  

ooooo….. the exceedence probability density to third order. 

xxxxx…..the exceedence probability density to second order. 

_________ the exceedence probability density first order 

 

 

 

 
Figure B Comparison between Rayleigh distribution and the third order term 3  

ooo Rayleigh probability density with mean 
1  

___________ Rayleigh probability density with mean 
2  generalised to third order in  t  

 

 
 

FigureC  The free surface displacement 321    and the second order 
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Figure DThe linear wave group
1  and the free surface displacement 321    a 
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DISCUSSION 

Figure A and Figure B appear to suggest 

that prediction efficiency of the third order 

model is slightly higher. For practical 

purposes, this difference is quite significant. 

In this regard, numerical calculation Figure 

A suggests a factor of 8.5% increase in 

probability prediction. In figure B, the third 

order form has higher global mean than that 

calculated from Rayleigh 

c extreme crest wave height 

T extreme trough wave depth 

CH global standard crest height (22m) 

TH global standard trough depth (19m) 

3.0

 

Table 1 

 
 First order term Second order term Third order term Forth and higher 

c

c

H


 

0.65 0.22 0.12 0.001 

T

T

H


 

0.61 0.23 0.14 0.002 

 

The contribution of various terms in wave 

group Stokes expansion is depicted. The 

dominance of the first is clearly shown. The 

data seem to suggest that after the third, the 

contribution from the higher order terms is 

negligibly small. 

By using generalized Stokes expansion and 

Rayleigh distribution spectrum, both 

32  and appear to be higher in amplitude, 

3  contributing quite significantly. 

 

 

Applying the Stoke’s expansion theorem, 

the quasi-determinism wave group was 

extended to the third order in Stoke’s 

expansion. The third order spectral 
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components that give an extreme crest were 

derived. They are solutions of a well-

defined constrained optimization problem. 

By means of the theory of quasi-

determinism of Boccotti, the probability of 

exceedance of the wave crest is then 

obtained. The numerical calculations using 

JONSWAP showed that for fixed values of 

the linear wave steepness , the parameter 

reaches a maximum. The linear crest 

amplitude H increases due to the third order 

nonlinear interaction among the free 

harmonics. 
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