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ABSTRACT

This article is sequel to [18] except that a moving mass case is considered that is the inertial
term was not neglected as in [5,6,7,8,9,13,14,18 ]. The dynamical problem is solved using
Mindlin Goodman, Generalized Generalized Galakin's method (GGM), Struble’s asymptoticC
techniques, Laplace Integral transformations and then convolution theory as alluded to in
[5,6,7,8,9,13,14,18]. Using numerical example, various plots of the deflections for beams are
presented and discussed for different values of axial force N, foundation modulli K and at
fixed rotatory Inertial (r) and also for fixed axial force N and foundation moduli K but at
various rotatory inertial (r) for moving mass. However, both moving force and moving mass
cases were compared and reported as well. Obviously, the results presented in this paper
shows good agreement with what is obtainable when compared with that of existing
literatures.

Key Words: Non- uniform Rayleigh Beam, Moving mass, Critical Speed, Time-Dependent
and Resonance, rotatory inertia,.

INTRODUCTION is to compare the results in [18] with the
As mentioned in the abstract this work is the result of the moving mass in this paper as
continuation of [18], recall that it was  shown in the plotted graphs. Effects of some
reported in [18] that the moving force case ~ very important beam parameters on the
was obtained while that of moving mass motions of the vibrating systems are also
was difficult and even cumbersome which investigated and reported.

led to the emergence of this work. The same

equation procedure from the governing THEORETICAL FORMULATION OF
equations (1.0-63.0) were as reported in[18]. THE GOVERNING EQUATIONS

Hence the totality of equation (63.0) shall be Considered here is a simply supported non-
solved which is called simply supported  uniform Rayleigh beam resting on elastic
moving mass case where the inertial term foundation where the beams properties such
which was set to zero in [5,6,7,8,9,13,18]  as the moment of inertia | , and the mass
will be strongly considered here and that is per unit length of the beam 4 vary along
the novelty or the contribution in this paper. the span L of the beam. The r° is the
The introduction, methodology and the  Rotatory inertia, K is the elastic foundation

solution  procedures are as in  Modulli, x is the spatial coordinate. The
[5,6,7,8,9,13,14,]. The interest of this paper
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transverse displacement U(x,t) of the beam
when it is under the action of a moving load
of mass M which is moving with a non-
uniform velocity such that the motion of the

contact point of the moving load is
described by the function
f(t):(x0+ct+%at2j (1.0)

0° 0° 0°
aX_z{a(x)ax_zu (x,t)} N UG e
- McS[x —(xo +ct +lat2)j(azz+ 200" + 02822
2 ot oxot  ox

where g is the acceleration due to gravity,
I(x) is the variable moment of inertia and
u(x)is the variable mass of the Rayleigh
beam per unit area. Next, the example in [7]
shall be adopted and I(x) and (x) take
the forms:

3
1(x)= |0[1+sinﬂ:j and y(x)=ﬂ0£1+sin7i(j (3.0)

where |, and |, are constants. The boundary
conditions of the above equation (2.0) are
taken to be time dependent, thus at each of
the boundary points, there are two boundary
conditions written as:

El, 0°

X 37X

where X, is the point of application of force

P = Mg at the instance t = 0, c is the initial
velocity and a is the constant acceleration of
motion governed by the fourth order partial
differential equation given by

d°U(x,t)

atZ

0

—{#(X)rf’

OX

*U(x,t)

oxot?

|

jU (x,t)+ KU(x,t)= Mgé(x—(xo +ct +;at2D (2.0)

D [U(Ot)]=f(t) i=12and
D [U(Lt)]=ft) =34 (4.0)
where D, are linear homogenous

differential operators of order less than or
equal to three. The initial conditions of the
motion at time t=0 are specified by two
arbitrary functions thus:

U(x,0)=U,(x) and aU;"O)zuo(x) (5.0)

But

3
(1+sinﬂxj =1[10—60052ﬂx+155in7zx—sin37zx}
L 4 L L L
(6.0)
Substituting equations (3.0) to (6.0) into
equation (2.00) on simplifications and
rearrangements,gives.

U (x,t) o%U (x,1) 2x ) 02U (x,1)

Ely 9" 110 6c0s?™ +15sin ™ —sin >
4 ox L L

‘)

1+ sin %) FUXY)

) 0
—_ r_
o 8{ L’ oot

et

ox* dx? L dt?

}_N

+ ,uo(1+ sin—

)

& 2(c+at)p? . (c+at)o?
oxot ox?

2

ju (x,1)
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+KU(x,t)=Mg5(x—(x0+ct+1at2)j (7.0 introduce the auxiliary variable Z(x,t) in
2 the form

3.0 Operational Simplifications of Equation U(x,t)=2z(x,t)+
In this work, the initial-boundary value

problem (7.0) consisting of a non-

homogeneous partial differential equation Substituting  equation (8.0) into the
with non-homogeneous boundary conditions ~ boundary value problem (7.0) and
is transformed to a non-homogeneous  simplifying, transforms the latter into a
partial  differential  equation  with  boundary value problem in terms of Z(xt).
homogeneous boundary conditions, using  The displacement influence functions g, ()
the Mindlin-Goodman’s method described are chosen so as to render the boundary

in [1-5]. In order to solve the above initial- .o itions for the boundary value problem
boundary value problem. Thus, we in Z(x,t) homogenous. Thus, gives:

fi(t)g, (x) (8.0)

-

Il
JUN

4 3
Ely (10— 6cos 2™ 4 155in 2 —sin % 8—4Z(x,t)+6§ asin 2% 4 5c0s™ —cos ™ 8—3Z(x,t)
4 L L L Jox L L L L Jox

2
+37|i (SCOSZTﬂX—SSIn%+3sm %)%Z(x t)}u({usin%jzn(x,t)
— 14 F° o5 (x t)+sinﬁiz (x t)+£cosﬁiz (x,t)
Colaxt Lo 77 L Lo
1 2¢0 c’0’ ol
+M5[x—(x0+ct+5atzn{zn(x )+ 2 Zn(x,t)+yzn(x,t)}+KZ(x,t) N2 2(e)

b4
:Mg5[x ( X, +Ct+— at D Z{ {10 GCoszTﬂXHSSln%—sm?’Tﬂxjg, ()

i=1
162 4sm2—ﬂx+5cosﬁ—cos g,”'(x}+3 8cos—ﬂx—53|nﬁ+35|n3—ﬂx g/"(x)
L L L L L L

L

+ 44, T, (t{1+sin %)gi (X)— por° 1, (t{gi“ (x)+sin % 9" (x)+ Zc:os% 9/ (x)j

; M5[x—(x0 e +%at2jj(ﬁ ()0 (0)+ 264, )t (6)+ 2102 () + K 0o )+ NE g )} ©0)



Ajibola S. O.: Flexural Motions Under Moving Loads of Structurally Prestressed Non- Uniform Simply Supported Beam...

3.1 Method of Solution

Evidently, an exact closed form solution of
the above partial differential equation does
not exist. The method of separation of
variables is inapplicable as difficulties arise
in getting separate equations whose
functions are functions of a single variable.
As a result of these difficulties, one resort to
an approximate method commonly called
Galerkin’s method.

3.2 Galerkin’s Method
The Galerkin’s method is used to solve
equations of the form

r[z(xt)]-P(xt)=0 (10)
where I" is the differential
operator.

Z(x,t)is the structural displacement and

P(x,t)is the transverse load acting on the

structure
A solution of the form

Zj(X7t):qj(t)¢j (x)

is sought when j=

for j=123,...,n
1,23, ......... n. (11)

5%

m=1

The function ¢, (x) are chosen to satisfy the

approximate boundary conditions. The
Galerkin’s method requires that the
expression (11) be orthogonal to the
function ¢ (x) for i=123,...,n

Thus
j[qu (t); (x } (x)dx=0  for i

=12,......... ,n (12)
This gives us a set of ordinary differential
equations in q;(t) to be solved. These

differential equations are called Galerkin’s
equations.

3.3 Analytical Approximate Solution.
The Galerkin’s method requires that the
solution of equation (9.0) takes the form

ZY (tV,(x)(13)

where V, ( ) is chosen such that the desired

boundary conditions are satisfied.
Equation (13) When substitutéd1into
equation (9.0 yields

10 - 6c052—+15smﬁ—sm— WV (x)+6= 4sin 2 4 5c0s™ _ cos ™ 11i(x)
L L L L L L

2
+3’i (8c052TﬂX—55|n%+3sm3Tﬂx | (X)JYm(t)— NV, Y. () + ,uo[vm(x)+sin %vm(x)jvm(t)

_ ,uoro(v (x)+5in G )+%cos%v,,:(x)]v';n(t)

+Ma(x-(xo+ct+gatzj}<vm(x>v (0)+ 20, (X, 1)+ AV, (Y, 1)

i=1

+ KV, (XY, (t) |- Mgé( (xo +ot+ = at D+i

)((10 60032—+153|n——sm3—ﬂxjg, ()}
L L L
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2
+62~ 4S|n2—ﬂx+5003z—cos 9" (x)+3% 8c0s 2™ _5sin ™ 4+ 3sin o2 a!"(x)
L L L 2 L L L

+

u, T (t)(1+ sin %)gi(x)—yor" f (t)(gi” (x)+sin % g/ (x)+%cos% 9 (x)j

t M(S[X _(Xo +ct +%at2D(ﬁ (t)a(x)+ 2Cf,(t)g; (x) +C*fi(t)oy" (X))_ Nf (t)g, +Kf,(t)g,(x) ]=0 (14)

In order to determine Y, (t) , it is required that the expression on the left hand side of
equation (13) be orthogonal to the functionV, (x)
Thus,

3 HHi(m,k)+Hz(m,k)—ro(HB(m,k)+H4(m,k)+%H5(m,k)ﬂY}n(t)

m=1

Bl (0H () 25# k)61, (K)o )

2

+6%[4H10(m,k)+15H11(m,k)— H,,(m,k)] +3%[8H13(m,k)+15H4(m,k)+3Hl4(m,k)] )

N k) Wa®)+ 2 H (oK) Y, ()
Hy Ho

M[H15<m,k)v;n<t>+chm<m,k)v'm<t>+c2Hu<m,k>vm(t>ﬂ

0

_I\:I,_?V( ct)+[G, (t)- G, (1) +G.(t) ~G4 (t)+ G.(t) + G (1) -G, (t) + G, (1) -G (¢)
+G;(1)+ G (1)+Gi(t)- Gy (1) -Gy (1) -G, (t) + G, (1) + G,(t)+ Ge(t) + G,(th G- (0] =0 (25)

where
Hi(mK)= [V (M (dx,  Hy(mk)= [ V! (), (x)ax
(k)= 1 sin T, (M, (i, H (k)= [sin v, (e, (xkx
Hy(m.K) Icos A M, (e, H6<m,k>=j; V2 (), ().
(k) = [[sin 2V, (oM, (x)ax, Hy(mK) = chosz%\/ v (%, (x)dx
H, (m, k) = jLsin3—ﬂXV'V(x)\/k(x)dx, Hyo(m.k) = [['sin ’”\/"'(x)/k(x)dx
H,,(mk) jcos V(XM (x)dx,  Hy(mk)= [ cos%\/n:” (xIV, (x)dx
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H,,(m,k) I cos—V”(x)\/k )ax, Hy,(m j sin S P\ (xV, (x)dx

Hls(m,k):j(s . [x rete j} (XM()
Hle(m,k)zi‘é x—(xo+ct+%at2j}/,;(x)\/k(x)dx
Hﬂ(m,k)::[é(x— X, + Ct + 2at J}/“(x)\/k( x)dx  (16)

o

Furthermore,

C.0=10 3 6]} 0 (0 (0 Gy (1) =S 3 A0 cos™ " (s
15E1, & L 4
Gc(t):4—ﬂo; ft)), sin 2 gV (xIV, (x)dx, G, (t :721:f I sin 5% Y (xV, (x)dx
,ee<t>=2“i—zf O sin 2% 0" (oM, (x)ix

4, L

1(0)= =3 KO cosT " (M

Gg(t)=%tzl:f j c0s> g!" (xV, (X)dx

24El,

G,(t)=—"= ™ LZZf I COST "(x V, (x)dx

GN(t):roii O sin ™ g (oW, (),
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310, a0u 0 NS 10 0V, (x)ox an

luo i= /uo i=1

At this juncture, a solution valid for all cases of classical boundary conditions is sought.
Consequently, V._(x)is chosen as the beam function given as

Vi (x)=
Thus, (18)
V, (x)=sin ﬂr_x + A cosﬂkL +B, sinh ﬂkT+C coshﬂr_

Consequently,

(xo+ct+;at2J (x0+ct+;at2] (x0+ct+;at2j
+ A, cos + B, sinh
3 A COS 4, 3 « SInh 4, 3

+

Vk(x0 +ct +%at2j:sin A

[xo +ct +;at2j (19)
+C, cosh A, C

In order to evaluate the evolving integrals
I yeeed gy Hy (MK, H,g(m, k), H;;(m,n,k)..etc (20)

Use is made of the property of the Dirac Delta function as an even function to express it in
Fourier cosine series namely:

S| x— x0+ct+1at2 _1.25 cos % x0+ct+lat cos % (21)
2 L LS L 2 L

Thus, in view of (18), using equation (19) in equation (15), after some simplification and
rearrangements yields.

mizl[%(m,k)v';n(t)+al(m,k)ym(t)
+ qul(m, k)+ 25“ cosnT”(x0 +ct +%at2jHlA(m, n, k)}\'('m (t)

n=1

+ ZC{ng(m, k)+ Zicosn%(xo +ct +%at2jH18A(m, n, k)}\('m (t)

n=1

. cz[H3(m, K)+ gicosn{(xo e +%at2jH3A(m, n, k)}Ym (t)ﬂ

n=1



237

Ajibola S. O.: Flexural Motions Under Moving Loads of Structurally Prestressed Non- Uniform Simply Supported Beam...
1 .
AK| X, +ct + > at

(x0+ct+;at2j (x0+ct+;at2j
Mg sin 4, 1 + A, COsA, T + B, sinh T +

(xo +ct +;at2j
+C, coshA,

L
~[G.(1)-G, 1)+ G.(t)-G4(t)+ G, (t)+ G, (1)-G, (t)+ G, (1)- G 1)+
G;(t)+Gi(t)+G\(t)-G,(t)-G,(t)-G,(t)+G, 1)+ G,1)+ G 1)+ G,1)+G ()] (22)

where €= mk (23)

Ho

ao(m,k){Hl(m,kp Hz(m,k)—ro(Hg(m,k)+ H4(m,k)+%H5(m,k)ﬂ and

al(m,k)=f—L‘(’[[lOHs(m,k)+15H7(m,k)—6H8(m,k)—Hg(m,k)] —%Hs(m,k)+ﬂ£oHl(m,k)
+6%[4H10(m,k)+5H11(m,k)—le(m,k)]+3LL22[8H13(m,k)—5H4(m,k)+3Hl4(m,k)]} 04)

Equation (22) is the transformed equation  also, for normal modesV, (0)=0=V, (L),
governing the problem of non-uniform dv, (0) dav, (L)

Rayleigh beam resting on a constant elastic e =0= v (26)
foundation and transverse by a moving load.

This second order differential equation is Similarly

valid for all variants of the classical

boundary conditions. In what follows, we Vi(0)=0=Vi(L),

shall consider boundary conditions such as &kz(o) 0= dz\/kgL) (27)

simply supported boundary conditions as dx™ dx

illustrative example. Thus, it can be shown that

3.4 Simply-Supported Boundary  Aw=Bn=Cn=A=B=C,=0  (28)

Conditions. with the frequency equation

The deflection and bending moment at  sinA, =sin4 =0 (29)

x=0 and x=L vanish for a non-uniform  which implies that

Rayleigh beam having simple supports at A, =mrand A, =Kz . (30)

both ends. ) , Substituting, equations (25) to (30) into

Z(O,t):O:Z(L,t),a g)gg’t)zoz 0 é('z—t) (25)  equation (24), one obtains
X

m?z? L y El, ( m*z*
Z|:(Il + I17 + rOT(Il + |17 _a I33j}(m(t) +{_0[T[10I1 +5'17 _6|49 B Ies]

n=1 4,
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3_4 2 _4
+mL—f[—24|81+30|33+6|97]+mL—f[—24|49 1151, —9I65]]+£I1}Ym(t)

0

+ g[{ll + ZZcosnT”[xo +ct+ %atZJIm}Y}n (t)+@{ls + ZZCOSHT”[XO +ct+ %atzjlm}\(‘m t)

n=1 n=1
1
(c+at)?m?z? - n;r(xo +ct+2at2j Mg . kz 1
- +2) cos Ly V. (t) :—sin—(xo+ct+—at2j—[Ga(t)—Gb(t)+
L & L u L 2

G, (t)= Gy (t)+ G, (t) + G, (1) - G, (t)G, (1)~ G, (t)+ G, (1) + G (1) + G, (t) - G, (1) - G, (1) -G, (1)
G, (t)+G,(t)+ G, (t)+ G,(t)+ G (t)] =0 (31)

where the integrals ( I,,......... l,55) when solved gives
0 fork #m
l, = (32)
— fork =m
‘ka ~, if k=m=odd
ﬂim -k )
s = (33)
0, if k+m=even
Ak i k+m=odd
A= (kP E-(m kY]
I17 = (34)
0, if kK+m=even

— 2K+ m? - K?]

z[l—(m+k)211—(m—k)2]’ if k+m =odd
;= (35)
0, if K+m=even
-mk if k+m=2
4
lo = (36)

0, if ktm=2
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—12mkl if k+m = odd
z[9 (m—k 19 m+k)J
les = (37)
0, if k+tm=-even
&, if mtk=2
4
|81: (38)
0, if mtk =2
~ 2o+ m’ k] . if k+modd
29— (m+kF Jo—(m—k¥]
ly; = (39)
0, if k+m even
L L
liis = — —— (40)
s 4 n+m=k or n=k—m 4 n—m=k or n=k-+m
- e —2kL[n? +m? k ] @)

[n —(m+k ln (m- k)J
Consequently,
< nz 1 ., . Nr 1 ). mzx 1,
2y c0s——| X, +ct+=at® I, =2Lsin—| X, +ct+>at? [sin——| x, +ct+=at’ | (42)
Rt 2 L 2 L 2

In view of equations (32) to (42)Simplifying and rearranging equation (31) yields

iag(m,k)\'fm +0!1 (m k)Y +5[Q1 t)Y +Q2(t)Ym(t)+Q3(t)Ym(t)]

:Tl—?ska(xo+ct+2atJ [6,(1)- Gy 1)+ . (1)- G, () + G.(0)+ G, ()~ G, 1)+ G, (1) -G, )
+G,(t)+G,(t)+ G, (t)~ G, (t) - G,(t) - G, (t) + G, (t) + G, (t)+ G, (t)+ G, (t)+ G (t)| = 0(43)
where ay(mk) = (Il +1,+ rog(ll +1, —% ISSD (44)
af(m,k)_illo{ L* [5L BmLzz[l (m _k60iT1]L m+k J 7[[9 (m 1k2mli;L k)z]]
R ,,[9_15$5<i;1“9_‘(!n3k>zrﬁb_ﬁfﬁi(i;]l_zﬁfkﬂ]
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Lz m’z* 6mlL — - 60mkI N 108mki .
L* al-(m-kfp—(m+k)| z9—(m—-k)|o—(m+k)]
2_2
+&+ Nm’z (45)
20y 24l
Q,(k,m,t) = %[M 4y sin kTﬂ(xo +ct +%at2jsin m—Lﬁ(xO +ct +%at2D (46)
. 2§(n2+m2—k2)cosnf(x0+ct+;at2j
k,m,n,t) =—4(c +at)mk + T . 47
e )=—Aera) m? —k? an? —(m—k) |n? —(m+k)? | “n
(c+at)’m®~z?
and Q,(k,m,t) = L—Ql(k 1) (48)
At this juncture, it is pertinent to obtain the M 1l kz 1
particular functions g;(x) that ensure zeros P fin == L x0+ct+2at
of the right hand sides of the boundary Gp(t): M ° g 1 o
conditions for simply supported beam. thus, +L2[N2 +ZZC05L(X0 +ct+2at2jNﬁj(f3(t)— fl(t))
X L x* 1 o Ho "
gl(x):]'_t’ gz(x)_—§X+T—a ’ (54)
2(c+at)ym . kr 1 ( : )
gg(X)=E and g4(x)=—%x (49) G,(t)= ” smL(x oAl j f,(t)-1,(t) 55)

As stated in the[7-10], it is only necessary to
compute those of the g;(x) for which the

corresponding  f,(t) do not vanish. Thus,
we need only g,(x) and g,(x) for our
boundary displacement functions f, (t)and
f,(t) defined in [7-10]

In view equatlons (49).
G,(t)= ()()do G,(t)=G(t)=G,(t)=0
and G,(t)= G,(t)=G;(t)=G,(t)=G,(t)=G{t)=G:(t) =0
(50)
while,

6.(0)= HON, +(£O- RO} N, 6D
6, (1)=F,ON, +(F,0)- FLOIN, 62

Go)="Ns (1,0)-1,00)  (53)

—_ I/

0] 2 LN (10 10|

0 Ho
Solving the evolving integrals (N, Ng)in

equations (51) to (56) thus:

2L . .

N =l if (k+1)is even 57)
0, if (k+1)isodd
I—2 K+1

N, =-—(-1) (58)
kz
[0, if k+1

N, = 59

O (9)

12
[0, if (L+k)even

Ne=| K" qek)oad OO
RSO




241

Ajibola S. O.: Flexural Motions Under Moving Loads of Structurally Prestressed Non- Uniform Simply Supported Beam...

0, if (1+k)even

, 1+k)odd
ﬂikz—li )O

_|2

(61)

N, - akz—)[k— P s e (2

if k=n

substltutlng (49 to 62) into (43), simplified an arranged gives:

+al(m k)Y

o .k, 0

Hy
Where

FO=(R 0+ o)

T

k?) z2@-k?)
F,(t)= f,(t)sin kTﬂ(xo +ct +%at2j
0= (1,0 f )L

+<9[Ql t)Y

)+ Qu (1), (00Q: O, ()]

=M kT(Xo e+ ;at j [F )+ R, (0)+ Ry (O)+ R (O] - LR (0)+ R (0)+ F () + R 0)] (63)

(64)
(65)

(66)

(67)

(68)

(69)

£ )= (7,0 F.O {(k all) MR CCL) S0 }cosnT”[xo cete atzj 70

F )= (1,0)- fl(t))z(czat)sink%(xo ot +%at2j 1)

Equation (63) represents the transformed
equation of the non-uniform Rayleigh beam
simply-supported at both ends and having
boundary and initial conditions which are
time dependent.

In order to solve equation (63), two cases
are involved, namely: Moving Force [18]
and Moving Mass which is being focused in
this paper.

SIMPLY SUPPORTED NON-UNIFORM
RAYLEIGH BEAM TRAVERSED BY
MOVING MASS

In this case, the moving load has mass
commensurable with that of the beam.
Consequently, & = 0. As mentioned earlier
in the previous chapter there is no exact
analytical solution to this problem. Thus, we
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resort to the modified Struble’s asymptotic technique already alluded to in this thesis. In

order to solve equation (63), it is rearranged to take the form

n| o N eQz(t) . N
E[Ym(” la:<m,k>+eel<t>JYm“)}

alx(m, k)k € Qs(t)
i o0

A J{gsm ke [x +ct+;atj 3 (t)+on(t)+F3°(t)+F4°(t)+F5(t)+F6(t)+F7(t)+F8(t)}(72)

“lasmicQl)
Where
R = L0+ C0] B0, B0
0 _L () M, 2R°K 4LK o 3
0= 800 (0.0 - 4 2 0009
and R (t),F,(t)F (t)and F,(t) are as PO (74)
defined in equations (68-71) 1+¢

As in the previous section, the
homogeneous part of equation (72) is first
considered as a modified frequency
corresponding to the frequency of the free
system due to the presence of the moving
mass is sought. An equivalent free system
operator defined by the modified frequency
then replaces equation (72). To do this,
consider a parameter A <1for any arbitrary
mass ratio ¢ defined as.

1

It can be shown that

= AP+0(2)+0(8)+.eeeoeenn] (75)

All the various time dependent coefficients
of the differential operator which acts on
Y_(t) in equation (72) can be written in
terms of A when one considers that to
0(4).

e=A1 (76)

Thus,

m=1

{a;(m, k)+ /IIZ'(1+ 4y sin kf(xo +ct +;at2j5in rT:_ﬂ(xo +ct +;at2jﬂ

1 1 .Mz 1, )
a;(m,k)zll_ o k) [1 4Zsm [x0+ct+2at j3|nL(x0+ct+2at jj+0(/1 | I— ] (77)

where

*;}LL 1+4Zsm (x +ct+1at jsmm—(x +ct+1at j
a;(mk) 2 L 2 L 2

Now, using (76) and (77) in (72), one obtains.

<1 (78)
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0[0 (m’ k) mf

_ a*?n:’k) {gsm kr [x +ct+;atj (Flo(t)+F2°(t)+F3°(t)+F4°(t)+Fs(t)+Fe(t)—F7(t)—F8(t))} (79)

Therefore, when the effect of the mass of the particle is considered, the first approximation to
the homogenous system is

il:Ym(t)_ ARV Ym(t)+7rif[1— A [Ql(t)—Qi(t)DYm(t)]

Ym (t) = ¢(m’t)COS[7/mt - \Pm] (80)
B [ (c+at)m’z? 1
where Vo = ;/m{l /{—L}/;f +L —4055 (m,k) (81)

is called the modified natural frequency representing the frequency of the free system due to
the presence of the moving mass. Thus, the homogeneous part of (79) can be written as

Y()+ 7Y, (t)=0 (82)
Hence, the entire equation (72) taking into account (81) takes the form
Y(t)+7aYa(t)

= *?L, " {g sin kf[xo +ct +;at2j— (F2(0)+ FY )+ F0)+ F2 )+ Fu )+ Fo0)- F 1) Fs(t))} (83)

%y

In order to solve the non-homogeneous equation (83).it is first simplified and re arranged to
take the form.

Y(t)+ 2, (t)=T, sin kL (xo +ct+ ;at j+T2*sin Qt+T, e sinQt+T, e cosQt
~T, co kz x0+ct+%at2 —Qt [+T, co{k”( +ct+;at] Qt]
* —ﬁ[ - kﬂ' 1 2 _ﬁ[
+T,e7 sin T x0+ct+§at +Qt [+T, e sin o FCt+— at -t
* —ﬂt kﬂ: l 2 * —,[JT
-T,e” co T x0+ct+§at -Qt [+T, e co L Xo +Ct+— at +
L
7Z'

x . (n 1 n
—Tge‘ﬁtsm(T” x0+ct+§at2 +Qt [+ T, e sin| — x0+ct+ L QtJ

—Tg*e‘/”tsin(k{ x0+ct+%at2 +Qt =T, eﬂtsm(k” X, +Ct+= atzj Qtj

. n 1 « n
~T,e ™" CO{TE[XO+Ct+Eat2 +Qt |+ T, CO{TH X, +Ct+= at Qt]

~T,.e” sin(n—”(xO +ct+ 1atzj + QtJ +T,.67” co{n—”(xo +ct+ 1atzj — Qt} (97)
L 2 L 2
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where T, =g,z, = kTﬁ(c +at)and.z,= nT”(c +at) (98)
o[ L@ L@t L 4, Q% 2R% 4Lk Q*(-1)
T, = - +—- A - |+
kzm 2m m om o { z{l-k?) 7,2(1_k2) kz
(99)
AV a9 G A e (B -7 2R% ALK )
S kzm mz m k (L-«?) (1 K )2
2 2 k+1
-9 J (100)
kz
T 2Luy PO(-1)" 24, 80(-1)" 2R’ 4Lk 259 ( I (101)
kzm m (1 k (1 k? )Z
T. =Q?/2,T, =(c+at)Q/LT, =(c+at)s/ |_, (102)
- (B2 -02)&] (k=n)=1)" + (K + n)-1)"
T = (8 103
0= Z[ A7) (103)

T (SIS RS 04

e, (B Sa (105

2 = 7r(k2 -n?

Equation (97) is solved using Laplace transformation and convolution theory, after
simplifications and rearrangements one obtains

1
_ *1l *pl *1l *1l *1l 11 *pl 11 *1l 151 *1l 151
__[Tl |1 _T1|2+T2|3_T2|4+T3Is_T3|6+T4|7_T4|8_T5|9+T5|10+T5 |11_T5|12

m

171 171 1y1 171 191 191 1y1 111 191
T6|13 _T6|14+T6|15 _T6|16_T7I17+T7I18+T7I19_T7|20_T6|21+T |22

151 151 151 11 *11 151 *01 171 *11 171 171
_Te |23 +T6 |24 _Tg |25 +T9 Ize +T9 |27 _T9 |28+T10|29 _T10|3o +T10|31_T10|32 _T11|33 +T11|34

+ T AL +csiny t] (106)

Y, ()

m

where the evolving integrals (Ill.to.|§4) are evaluated and substituted into (106) simplifying
and rearranging, one obtains

Y, (t) = Agsin z,t + Ay sin y,t + A, sinQt+ A, cosy, t + Ae ™ cosQt
+ A P sinQt + A cos(z, — Q)+ Az, +Q)t + Ae ” cosy, t+Aye P siny, t
+ A sin(z, —Qt+ Ae Psin(z, + Q) +Ae P codz, + Q)+ A sin(z, + Q)
+ Ay sin(z, —Q)t+ Ay,e ? cos(z, + Q)+ Age *sin(z, + Q)t + A e cos(z, — Q)
+ A8 sin(z, — Q) + Ay, Sin(z, + Q) + Ay, sin(z, — Q) (107)
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Where
Ro= 7 s A ymLzT—lZz‘%* e o Ol 0 ) Tl 1 4 0)

_T{(Zom)( s 2B -ar -12)

Q
_7ﬂ(<ﬂ2+y;+<zo+e>2)_ww;(zomf)] +T{ 240 | 2,-0 J
Q, Q 72 +(z,+QF 72 -(z,-Q)

_T{@m)(ﬁz+<zl+a>2—y;>_<zl—sz>( 2+<z1—a>2—7;)]

QS QA
+Twﬁ((ﬂ2+y;+<z1+sz>2)+(ﬂ2+y;+<zl—a>2)J
Q Q,

Zl+Q (Zl_Q) oj
+T, 5 >~ >+C
(ym_(zo+Q) ym_(zl_Q) :l
1 2,2 2 1 1 ,+Q 7,-Q
&o—[ao(zmu—(ﬂ 472 Q))+T(y2 ey R m)j zm{ T Q J

+T7((ﬂz+y;—(zo—g)2)_( +7m z+Q ] 2Tﬂ(z +Q z—QJ

Q Q Q
+T10[(ﬂ2+7m Z+Q) (/8+7m ﬂ
Q
Aso=é(T3+T4(ﬂ2+2—ym %), Ay, = Q 2 -?)-2p0T,)
T, T, T
A s N R A

z+Q Z — z+Q z,-Q
26 ° 9 1
%{mﬁq QZJM(QS Q;lﬂ

AL [(Z+Q)(ﬂ +(z, +QF m)_(zO—Q)(ﬁ2+(zo+Q)2—y;)J

an 1 Q;
+T(<zo+sz>( 4 (@ +0F -12)_(z,-0 2+(zl+n>2—y;)j
’ Q Q
_2fT,(z,-Q) _—2fT(z,+9Q)
A92 Q;ZL 1 A)S Qll '
_T6 _ _Te
S Py A R PR
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(ﬂ+7m (z,-Q ) (82 + 72 ~(z,+QF)
Q Q
A = Tlo(ﬁ2 +72 (2, +QZ))’ Ay = ~2p(z, + @’
Q; Qs
Age = TlO(,BZ +7ri T(Zl _Qz»’ Aggr = _ZIB(Zl TQZ
Q. Q.
T T
92 = > 11 > and 93=% 108
My T M) Y
Where
Q=B +7a+Q" + 2|22 + O - 120
Q =+ +(z, +Q4+2[ﬂ2 24 Bz, +Q)2—27/§1(20+Q)2_
= B+ 7h+ (2, - Q) + 2|82 + Bz, - OF —212(2, - OF |
Q=p 4yt +Qf + 22+ B (z +Qf -2/2(z,+QF
Q= p +74+(z - Q) +2|8%2 + Bz, - QF 272 (2, - Q)] (109)

Therefore,
ZY

Consequently, in view of the inverse of
equation (110),the solution becomes

sm — (110)

t

U(t)= 2060+ 1,0, )

1=1

=Z(x,t)+sin Qt + (e*ﬁt —1)(%_)sin Qt (111)

Equation (111) is the dynamic response of a
non-uniform Rayleigh beam to Moving
Mass whose two simply supported edges
undergo displacements which vary with
time.

DISCUSSION OF THE ANALYTICAL
SOLUTION

If the undamped system such as this is
studied, it is desirable to examine the
response amplitude of the dynamical system
which may grow without bound. This is
termed resonance when it occurs. Equation

(81) clearly shows that the simply supported
elastic Rayleigh beams transverse by a
moving force will be in state of resonance
whenever
_ mau
ymf - L
While equation (80) shows that the same
beam under the action of moving mass
experiences resonance effect when
_ mau

(112)

7/m - (113)
From equation (81),
2 2
D P (c+at)m L *1
Lj/mf 46xO (m’ k)
This implies, y2 =4 (m.k) (114)

From equations (112) and (113), we
deduced for the same natural frequency, the
critical speed for the system of a simply
supported elastic beam on an elastic
foundation and traversed by a moving force
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is greater than that traversed by moving
mass. Thus, resonance is reached earlier in
the moving mass system than in the moving
force system.

4.1.1 Numerical Calculation and
Discussion of the Results for Non-Uniform
Simply Supported Beam.

In order to illustrate the analytical results in
dynamics of structures and Engineering
designs for example considered, the non-
uniform Rayleigh beam is taken to be of
length L=12.192m, the load velocity u =
8.123 and E =2109*10°kg/m .The values

of the foundation moduli K varied between
0 and 400000 ,axial force NA varied
between 0 and 40000 and for fixed values of
rotatory inertia R=1.The traverse deflections
of the non-uniform Rayleigh beam are
calculated and plotted against time for
values of rotatory inertia, axial force and
foundation stiffness K. Fig. 1 shows
response of simply supported moving mass
of a non-uniform Rayleigh beam for fixed
value of rotatory inertia , fixed value of
axial force NA=400000 and various values
of foundation moduli K = 0 to K = 4000000.
From the graph it shows that the response

1.8 4

16+

K=0

— - - — K=40000
1.4

— — — K=400000

1.2 4000000
V(L/2,)m

14

0.8

0.6

0.4 1

0.2

0

-0.2

Time(t)sec

Figure 1: Deflection profile of a simply surported non-uniform Rayleigh beam under the action of
moving mass for various values of foundation modulus K and for fixed values of axial force
N=20000 and rotatory inertia R=1
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0.4
03 N=0

— - - — N=200000000 N By
------ N=2000000000 :

0.2 4

0.1
V(L/2,)m

0 T

-0.1 1

-0.2 1

-0.3 1

-0.4

Time(t)sec

Figure 2: Deflection Profile of a simply surported Rayleigh beam under the actions of moving
mass for various values of axial force N and for fixed values of Rotatory inertia R=1 and
foundation modulus K=40000

amplitude decreases as the values of the foundation moduli K increases the deflection profile decreases. However, fig.3, exhibits
increases. While, fig. 2,shows the deflection profile of simply  deflection profile of simply supported moving mass of Non-
supported Non-Uniform Rayleigh beam under the action of moving Uniform Rayleigh beam for various values of rotatory inertial R=0
mass for various values of axial force N=0 to 2000000 and fixed  to 3 and for fixed value of axial force N=20000 and for fixed value
value of Rotatory inertia R=3 and fixed value of foundation of foundation modulus K=40000. From the graph it shows
modulus K= 20000. The graph reads that as the axial force
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0.1 4

V(LI2,t)n

-0.1

-0.2 7

-0.3 ]

-0.4
Time(t)sec

Figure 3: Deflection profile for simply supported non-uniform Raylegih beam under the action of
moving mass for various values of rotatory inertia and for fixed values of axial force N=20000
and foundation modulus K=40000

3.00E+02

—&— Moving Force
—#— Moving Mass

2.00E+02 -
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0.00E+00 #

-1.00E+02 +

-2.00E+02

-3.00E+02
Time(t)

Figure 4: Comparison of the Moving force and Moving mass cases for simply supported non-
uniform Rayleigh beam for fixed value of foundation modulli K=40000 and rotatory inertia R=1

that the response amplitude decreases as the supported Non-uniform Rayleigh beams for
values of Rotatory inertial R increases  fixed value of foundation moduli K= 40000,
.However, fig.4: shows the comparison of  fixed value of axial force NA=40000 and
the moving force and moving mass simply  rotatory inertia R=1, respectively.
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