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ABSTRACT 

 

The effects on the upper critical and lower critical fields of a system with two almost 

degenerate order parameters were considered. Within the first order perturbations, we write 

the two order parameters as linear combinations of the states |0> and |2>. The upper critical 

field is close to Tc = T5 and occurs below a certain temperature T’. It can easily be seen that 

sharp change of HC2 between the two solutions exists in all orders of perturbation because 

there is no finite matrix element between the two states (ƞ, ƞ3) = (|0>, 0) and (ƞ, ƞ3) = (0, 

|0>) in any higher order of perturbation in the coupling term. This is different if the Magnetic 

field is pointing along some arbitrary direction.     

 

INTRODUCTION 

We now consider effects on the upper 

critical and lower critical fields for a system 

with two almost degenerate order 

parameters. Let us first consider the upper 

critical field Hc2. Such an investigation has 

recently been carried out including the order 

parameters of two representations, by Joynt, 

R (1990). Several other groups have also 

considered the problem of a single 

representation whose degeneracy is lifted by 

the presence of a magnetic ordering. We 

have to extend our free-energy expression 

by including the gradient terms.
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The coupling terms can easily be derived by 

the decomposition of a Kronecker product 

1* 54* 4 + c. c (=12 23 

34 45), where 4 is the representation of 

the gradient D=  - 2eA/c. Only one term 

can be found in this example. 

K (Dx)* (Dy3 + Dz2) + (Dy) * (Dz1 + 

Dx3) + (Dz) * (Dx2 + Dy1) + c. c  --- 1.1 

 

As an example, let us consider the critical 

field along one of the main axes, say the 

zaxis. By neglecting Dz and setting H = 

q(Dx + Dy)/2 and  =(i  i2)/2 (q
2
= 

c/2eH, we obtain the linaerized Ginzburg-

Landau equations 

K1 (H+ H- + H- H+) + k(H+
2 

+ H-
2
)3 = -

A1(T)q
2
    1.2 

K2 (H+ H- + H- H+)3 + k(H+
2 

+ H-
2
)= -

A5(T)q
2
3,  

Which are completely decoupled from the 

other two equations for + and -. These 

latter two equations have their solution leads 

to a linear temperature dependence of the 

critical field. 

Hc2
(1)

 (T)=    1. 3 

 

whereC(K1

, K2


, K3


, K4


,) is a constant 

depending on K1

, and is obtained from the 

lowest elgenvalue of an infinite matrix. 

A more interesting problem is connected 

with the  – 3 equation system, where the  

 

coupling term also enters. These equations, 

moreover, lead to the problem of finding the 

lowest elgenvalue in an infinite dimensional 

system. However, a goal insight into the 

properties of the solution can be obtained if 

we treat the problem in a perturbative way, 

assuming that the coupling term is very 

small (k … K1

, K2


) Joynt, R(1990).   

Starting with the zeroth order, we find two 

solutions (let us assume T5 T1), which 

correspond to  =|0 and 1 =|0, 

respectively. These leads to the occupation 

number representation. 

Hc2
(0)

 (T)= -     1. 4 

  

Hc2
(0)

 (T)= -     1. 5 

 

Where Hc2
(0)

 represents the upper critical 

field (the lowest eigenvalue) immediately 

below T5. If K1 K2, there is a crossing 

point of the Hc2
(0) 

and Hc2
(0)

 line at same T

 

defined by A1(T
1
)K2

1
= A5(T

1
)K1. Below T


, 

Hc2
(0)

 is the critical field. 

 

Going to first-order parameter, we write the 

two order parameters as linear combinations 

of the states  and 2. Diagonalizing the 

matrix in this subspace, we obtain 

corrections to our former solutions [(, 3) 

=(a0, b22) and (, 3)= (a2, |2, bo |0 

respectively], 

cA5(T) 

eC(K1

, K2


, K3


, K4


,) 

c A5 (T) 

      2e K2
1
 

cA1 (T) 

      2e K1 

  -1
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Hc2
(1)

 =      A1 A5 {(5k1A5 – K2A1)
2
 + 

8kA1A5}   - 5k1A5 – K2A1    Hc2
(0)

,   

 

Hc2
(1)

 =   A1 A5 {(k1A5 – 5K2A1)
2
 +  

 

8kA1A5}   - k1A5 – 5K2A1
-1
Hc2

(0)
,       1.6 

 

where Hc2
(1)

 is the upper critical field close 

to Tc = T5 and Hc2
(1) 

occurs below a certain 

temperature T
1
. It can easily be seen that 

sharp change of slope of Hc2 between the 

two solutions exists in all orders of 

perturbation, because there is no finite 

matrix element between the two states (, 

3) =(, 0) and (, 3) = (0  in any 

higher order of perturbation in the coupling 

term. This is different if the magnetic field  

 

 

is pointing along some arbitrary direction. 

Then all four components of the order 

parameter (, 1, 2, 3,) coupled. In such a 

case a slope change in the critical field is 

mostly smooth. 

We have three typical situations 

(a) K2C(K1, K2 , K3, K4). The critical 

field goes linear with the possibility of 

a change to Hc2
1 

as in (equation 1.5). 

if K1 C (fig 1a); otherwise, see (fig 

1b). 

(b) K2C(K1, K2 , K3, K4), K1, the 

critical field Hc2 as in (equation 1. 5) 

without any Kink (fig. 1b). 

(c)  K1 K2 C (K1, K2 , K3, K4), the 

critical field has a kink, as discussed 

above (fig. 1a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a & b: Possible behaviours of the upper critical field H in a superconductor with two 

almost degenerate order parameters situation (a) a crossing of the lowest Landau levels 

leads to a kink and a change of the high-field superconducting state, situation (b) no crossing 

occurs. 
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We assume for our discussion that the form 

5 order parameter is not charged for 

any temperature. For T5>T1 we would 

expect that immediately below T5 5 

state would appear with  

   

|η|
2
 =  

 

However, this is prohibited by the θ3 term, 

which leads to an admixture of the σ1 order 

parameter even if T1 is very small compared 

with T5. So we find for T close to T5. 

 

 |η| =  

 

With the relative phase 

 

  

 Ǿ - Ø =  

 

 

1 component increases proportionally 

in |T – T5|
½
, that is a “driven” order 

parameter. This combined representation 

(CR) state conserves time –reversal 

symmetry and its fourfold degenerate [D3d 

1)]. 

 

According to the conditions for an 

admixture of another representation 

5 state can 

3 representation, since it has 

the symmetry D3d 1), comparable with 

1. The combined representation (CR) state 

maintains the symmetry of the originally 

classified state (Monien et al, 1986a, 1986b, 

Wojtanowski and Wolfle, 1986). 

 

For lower temperatures an additional 

second-order phase transition can appear. 

The only symmetry that can be broken in 

our restricted free energy is time reversal 

symmetry, by a charge of the relative phase 

Ǿ - Ø. Obviously, this is favourable only if 

θ2> 0, since both Ǿ - 

minimize the θ2 term for θ2> 0. 

 

Differentiating the free energy with respect 

to the relative phase, we obtain the 

extremum condition. 

Sin (Ǿ - Ø)[4θ2]η[cos(Ǿ - Ø) + θ3] |η|] = 0 

 

The expression in brackets gives a 

temperature – dependent solution for Ǿ - Ø 

only if |θ3| η| 4θ2|η||≤|.  

 

Thus a continuous transition from a state 

with Ǿ - place at the 

temperature To with |θ3|η(To)| = 4θ2[η(To)]. 

 

Obviously, for θ2> 0 no such transition is 

possible.   

 

Finally, we mention the possibility of a 

phase transition with decreasing field when 

the fourth order terms in the free energy 

become important and favour a state with  

         - A5 (T) 

  6(β1 + β2) + 2β3 

1 1 1 

θ3 

  2A1 (T)  

|η|
3
, 

0, θ3< 0, 

, θ3< 0, 
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other symmetry than that induced by the 

magnetic field. This would, for example be 

the case if we assumed situation (a) and the 

coefficient 1, with the condition (42 3, 

3 0). At high fields a state appears with 

two finite components of the 3 order 

parameter (time- reversal-breaking), 

whereas for low fields a one component 

state and, depending on the temperature and 

field, a finite , order parameter component 

is more favourable. 

 

We turn now to the lower critical field Hc1, 

which is more closely related to the zero-

field behaviour of the system. The effect of 

an additional phase transition on this 

quantity is of special interest, since it allows 

a direct observation of an additional phase 

transition, as we shall show here, and will 

be compared with experimental data. 

Kumar, P, and Wolfle, (1987), Langner, A. 

D, et al (1988), Hess, D, W., et al (1989), 

Sigrist, M, et al (1989). 

 

RESULTS AND DISCUSSION 

The limit of a London penetration depth is 

very large compared with the coherence 

length of the order-parameter, the main 

contribution to the line energy of a vortex 

comes from the magnetic field and the 

kinetic energy stored in the circulating super 

current.  

 

Abrikosov, A.A, et al (1963). However, it is 

essential to take into account that the 

London penetration depth is not a scalar, but 

a tensor quantity in an unconventional 

superconductor. Thus the London equation 

has the general form 

x [ 
2
 ( x H)] + H =0, 1. 7 

where the tensor 
2
 is defined as 

2
 =c

2
 p

 - 

1
/8e

2
 with p as the superfluid tensor 

defined by the expression for the 

diamagnetic current (Jdia = 2e
2
pA/c

2
). The 

equation for the field around a vortex is 

obtained from (equation 1. 6) by replacing 

the right-hard zero by on (n x r) (where n 

is the direction of the external field and o is 

a flux quantum). If the applied field (n) is 

parallel to one of the main axes of 
2
, the 

vortex line will also be parallel to n. For an 

arbitrary n, however, these directions need 

not coincide, as discussed in detail by 

Balatzkii, A, V, et al (1986). 

For this phase the tensor p has the rather 

simple form 

 P= k1(x x + y y + z z) ||
2
 + [k1


 x x 

+ k2

 (y y + z z)] |1|

2
   1. 8 

with j denoting the tensor element p j. For 

this example the crystal axis is the main axis 

of the tensor, because there are no coupling 

terms between the order-parameters 

components. 

 

^ 

^ 

^ 

^ ^ ^ ^ ^ ^ ̂  ^ ^ 

^ ^ 

^ ^ 

^ ^ 

^ ^ 
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We choose n parallel to such as axix. Then 

the field calculated from the modified 

(equation 1.7) is  

 H = n              Ko(xo
2
/o

2
 + x

2
/

2
) 1. 9 

 

where xo() denote the directions 

perpendicular to n having the corresponding 

London penetration depths o (). (Ko is a 

modified Bessel function). 

This form becomes very simple if we 

choose n parallel to the x axis, because 

 

o
2
 - 

2
 =

2
 =             

1.10 

 

leads to a completely axial vortex. The line 

energy is obtained in general from 

 

 =       dxodx [H
2
 + ( x H) 

2
 ( x H)], 

1. 11 

where the integration is restricted to the 

region (xo/o)
2
 + (x/)

2
 1. Evaluating 

this integral in the usual way (see, for 

example, De Gennes, P. G, (1966), we find 

(n || x) 

 Hc1 =              =                 Ink     1.12 

 

with the Ginzurg-Landau Parameter  K= / 

(for this case  also is constant in the y – z 

direction). 

 

 

Now let us consider the change of Hc1 at the 

transition from the high temperature phase 

D4h(4) to the lower temperature phase 

D4h(1 4), using the equation for 
2
 and 

k, we obtain a sharp change in the slope of 

Hc1, since  decreasing due to the additional 

contribution of the 1 order parameter to the 

super fluid density. The Ginzburg-Landau 

parameter drops rapidly from a constant 

value in the high temperature phase down to 

a lower, almost constant value Sigrist, M, et 

al (1989).     

 

Comparing the two slopes Hc1
1
=(dHc1/dT), 

above and below the second transition at  

T1

, we find 

 

           =  1–   + 

1  1. 13 

 

where
1
 =d/dT and  is an infinitesimal 

numbers. This ratio is larger than 1 in the 

large K limit where Ink 1 (k taken at T1), 

if the London penetration depth is 

decreasing faster below the additional 

transition as T1 than above Hess, D, W., et 

al  (1989).  Comparing the ratio (T1- ) / 

(T1 + ) with the one of the specific heat 

C(T1 - )/ C(T1 + ) we find that this 

condition is usually satisfied if the 

discontinuity of the specific heat C is  

o 

2o

p 

    c
2
 

8e
2
k1 

            1 

||
2
 + k2

1
 |1|

2
 

 1 

8 

  4 

o 

o 

8
2
 

Hc1 (T1
1
- ) 

Hc1 (T1
1
+ ) 

 


1
 (T1

1
- ) 


1
 (T1

1
+ ) 

 

  1 

Ink 

  1 

Ink 
  1 

Ink 
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positive provided that all coefficients k in 

the tensor p are of the same order of 

magnitude. This qualitative behaviour is in 

agreement with experimental results. 
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