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ABSTRACT 

In this paper, we investigated the process and extent of studying the convergence of the steady-state 

solutions of a mathematical model of two interacting legumes (cowpea and groundnut) growing within 

the same uncontaminated environment. The convergence process was conducted using some standard 

numerical procedures. The result obtained shows that after repeated simulations, the unstable steady-

state solution converged. Using our technique we found that the convergence of the steady-state solution 

(3.2599, 0) is reached when the value of the final time is 750. 
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INTRODUCTION 

Given the data on the growth of legumes ([3]), it 

is a challenging scientific problem to construct a 

mathematical model for the convergence of the 

unstable steady-state solutions of any two 

interacting legumes within an uncontaminated 

environmental setting ([1], [2], [8], [9], [11], 

[13]). In our previous study, we have selected the 

precise values of the deterministic competition 

model between two legumes of cowpea and 

groundnut over a growing season in days ([4], [7], 

[12], [16]). For this system of continuous 

nonlinear first order ordinary differential 

equations, the model parameters are a 0.0225, b 

= 0.006902, c = 0.0005, d = 0.0446,  e = 0.01 and 

f = 0.0133. It is very clear that this system of 

model equations has four steady-state solutions 

namely (0, 0), (0, 3.3534), (3.2599, 0) and 

(3.1908, 0.9543). The trivial steady-state solution 

is unstable because its calculated eigenvalues 

have two positive values of 0.0225 and 0.0446 

whereas the steady-state solution (0, 3.3534) is 

clearly unstable because its eigenvalues are -

0.0446 and 0.0208. The steady-state solution 

(3.2599, 0) is unstable having two eigenvalues of 

−0.0.0225 and 0.0120. The only unique positive 

steady-state solution (3.1908, 0.9543) is stable 

because its eigenvalues are -0.0234 and -0.0113. 
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The numerical challenge at this sophisticated level 

of analysis is to investigate the process and extent 

of convergence of the three unstable steady-state 

solutions as well as attempting to stabilize the 

only stable steady-state solution. The convergence 

method will be defined and discussed next. 

 

METHODOLOGY 

The aim of this paper is to stabilize a nonlinear 

system of first order ordinary differential 

equations of the form 

 

(2.1)  ))(),((
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1 tNtNF

dt

tdN
  
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dt

tdN
  

with the initial conditions N1 = N10 > 0 and N2 = 

N20 > 0. 

The arbitrary steady-state solution (N1e,N2e) is 

unstable, that is, the point (N1,N2) is not 

convergent to (N1e,N2e) when t tends to infinity. 

How do we stabilize the unstable steady-state 

solution? Following [2],[5], [6],[10],[14], [15], 

the process of stabilizing a mathematical model of 

a population system is conducted using three 

standard procedures namely find the linearized 

problem about (N1e,N2e), next find a positive 

definite matrix Pi from the Riccati equation and 

apply the Pi matrix in the nonlinear equation to 

check if (N1,N2) is convergent to (N1e,N2e). The 

next stage in our algorithm is implemented 

following these steps: put the steady-state solution 

(N1e,N2e) which we want to stabilize; choose m = 

0 for the unstable case and m = 1 for the stable 

case; choose different initial values for a different 

steady-state solution if this choice is realistic; 

choose a different final time Tfinal for a different 

steady-state solution; choose a time step k; choose 

the number of loops M = 
k

Tfinal
; construct a  

 

 

feedback control; solve the nonlinear system and 

construct the subplots which will show the 

convergence behaviour of the uncontrolled and 

controlled solution trajectories. 

 

By using this defined algorithm, we have been 

able to stabilize the unstable steady-state solutions 

for this system of model equations. Our 

contributions are presented and discussed in the 

next section of this paper. 

 

DISCUSSION OF RESULTS 

In this section, we will present and discuss the 

convergence of the border steady-state solution 

(3.2599, 0). The full stabilization of this steady-

state solution is a challenging problem. We will 

attempt for the first time to study the extent of 

stabilizing (3.2599, 0) in which the cowpea 

legume will survive at its carrying capacity value 

of 3.2599 while the groundnut legume will be 

driven into extinction. The ecological survival of 

the fittest pattern of this present steady-state 

solution is the opposite of the first border steady-

state solution. The stabilization of this second 

border steady-state solution poses difficult 

challenging issues which we have attempted for 

the first time to successfully stabilize. 

 

For the first case of this simulation, we have 

considered the initial data (4, 4) and the step 

length k = 0.01. Our analysis has revealed that for 

this choice of simulation parameters, the steady-

state solution (3.2599, 0) cannot be stabilized 

when the Tfinal values are 10, 20, 30, 40 and 50. 

For each stabilizing point, the first co-ordinate 

specifies the converging value of the cowpea 

population while the second co-ordinate specifies 

the converging value of the groundnut population. 

For example, when the value of the final time is 

10, the converging point is (0.3440, 0.3538). For  
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other final time values such as 20, 30, 40 and 50, 

the converging points are (0.2837, 0.3612), 

(0.2076, 0.3704), (0.1107, 0.3822) and (−0.0146, 

0.3975). 

For this simulation parameters, our 

contributions show that the chosen steady-state 

solution cannot converge. 

For another initial data such as (10, 4) and 

k = 0.01, when the values of the final time are 10, 

20, 30, 40, 50, 60, 70, 80, 90 and 100, our 

calculated converging points are 

(4.9757,−0.2071), (4.5434,−0.1550),  

 

 

(4.2446,−0.1190), (4.0289,−0.0929),  

(3.8684,−0.0736), (3.7462,−0.0588), 

(3.6515,−0.0473), (3.5770,−0.0383), 

(3.5180,−0.0312) and (3.4707,−0.0255). 

 

In another scenario when the values of the final 

time are 100, 200, 300 and 400 using the initial 

data (10, 10) and the step length of 0.01, the 

steady-state solution (3.2599, 0) starts to indicate 

some evidence of convergence. The convergence 

of this steady-state solution for other variations of 

the final time is displayed in the next table: 

 

Examples Convergence  of (3.2599, 0) 

no Tfinal N1e N2e 

1 500 3.2536 0.0008 

2 510  3.2547 0.0006 

3 520  3.2556  0.0005 

4 530  3.2563  0.0004 

5 540  3.2569  0.0004 

6 550  3.2574  0.0003 

7 560  3.2579  0.0002 

8 570  3.2582  0.0002 

9 580  3.2585  0.0002 

10 590  3.2587  0.0001 

11 600  3.2589  0.0001 

12 610  3.2591  0.0001 

13 620  3.2592  0.0001 

14 630  3.2594  0.0001 

15 640  3.2595  0.0001 

16 650  3.2595  0.0000438 

17 660  3.2596  0.0000358 

18 670  3.2597  0.0000292 

19 680  3.2597  0.0000237 

20 690  3.2597  0.0000192 

21 700  3.2598  0.000015365 

22 710  3.2598  0.000012219 

23 720  3.2598  0.0000096076 

24 730  3.2598  0.00000743910 

25 740  3.2599  0.00000563869 

26  750  3.2599  0.000004143890 

Table 1. Convergence of the steady-state solution (3.2599, 0) 
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CONCLUSION 

In this paper, our major contribution in this 

complex simulation analysis is that the steady-

state solution (3.2599, 0) can be considered as 

fully stabilized after 26 repeated simulation runs. 

For this interaction between two types of legumes 

where the cowpea population will survive at its 

carrying capacity value of 3.2599 as the 

groundnut population tends to extinction, by using 

our technique of feedback control which is one of 

the current numerical techniques of stabilizing a 

mathematical model of a population system, we 

have successfully stabilized the unstable steady-

state solution (3.2599, 0). We would expect our 

present contribution to provide useful insights in 

the ecological functioning and stabilization of two 

interacting legumes which are sources of 

economic livelihood and sustainable 

development. 
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