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ABSTRACT 

This paper presents a numerical simulation of the complex interactions between two competing fish 

populations with bifurcation. Our first result shows that the co-existence steady-state solution will be 

stable when the birth rate of each fish population outweighs its death rate. Our second result shows 

that the stability of the co-existence steady-state solution of the interacting fish populations is lost 

when the birth and death rates are not changing. Our third result shows that the co-existence steady-

state solution will be unstable when the death rate of the fish populations outweighs its birth rate. It is 

our expectation that these results will provide short-term and a relatively long-term insights in marine 

ecology. 

 
INTRODUCTION 

The interaction between two fish populations 

can be described by using a system of nonlinear 

first order ordinary differential equations (Loisel 

and Cartigny, 2009). In the context of modelling 

fish populations, an important model has been 

formulated by Dubey, Chandra and Sinha 

(2003) which tackles the problem of describing 

fishery resource within a reserve area. The 

implication of these modelling results for a 

fisheries management tool and planning has 

interesting insights in the work of Lauck et al. 

(1998), Houde (2002), Boncoeur et al. (2002) 

and Kar (2009). 

Several types of sophisticated 

mathematical models under some distinct 

simplifying assumptions have also been 

implemented theoretically and analytically to 

describe the scientific problem of understanding 

the dynamics of interacting fish populations and 

its implication in the optimal management of 

renewable resources (Clark, 1990). 

 

The rich application of mathematical models in 

theoretical ecology can provide a good 

reflection of their implementation in the 

understanding of the dynamic processes which 

are inherently involved in making practical 

applications (Haque, 2009). Executive bio-

economic modeling of resources like fisheries 

has been conducted [Conrad and Clark 1987, 

Clark 1996, Anderson (2000), Gerber et al. 

2003, Zhang et al. 2007, Das et al. 2009] 

However, according to Khamis, 

Tchuenche, Lukka and Heilio (2011), over-

fishing, the use of destructive fishing methods, 

pollution, and commercial aquaculture do have 

devastating consequences on marine 

biodiversity. In this scenario, sophisticated 

mathematical ecological model otherwise called 

the ecomathematical model has been 

successfully developed and validated to mitigate 

marine biodiversity to enhance marine reserve. 

This model formulation can be used for 

ecotourism   purposes    and   also   for   tackling  
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harvesting problems in prey-predator type of 

fishery (Kar and Chakraborly, 2009). 

Despite these several mathematical 

modelling and mathematical analyses 

contribution in marine ecology, the application 

of important mathematical techniques such as 

the numerical simulation of interacting fish 

populations with bifurcation which is capable of 

providing further insights in fisheries 

management and marine biodiversity remain to 

be an open problem. 

 

In this study, we are interested in using an 

analytical approach to study the interaction 

between two fish populations with bifurcation. 

 

Mathematical Formulation (Loisel and 

Cartigny, 2009) 

Following Loisel and Cartigny (2009), we 

consider the following modified assumptions by 

considering a fish population that lives in a zone 

characterized by a carrying capacity k=1. 

Hence, the following assumptions are made: 

The zone is split into two sub-zones with 

capacity to a   respectively; in the first zone 

with capacity a  and second zone with capacity 

1-, fishing is allowed; there is a proportionate 

change in the varied parameters; the model 

parameters admit sensitivity analysis (Ekaka-a, 

2009). 

Following Loisel and Cartigny (2009), 

we shall consider the following non-autonomous 

system of first order ordinary differential 

equations. 
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x1(0) = x10>0 

x2(0) = x20>0 

 

 

 

 

where 

r1 = 0.4, r2 = 0.05, a = 0.5 

 

Modified Model 
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where k and s are positive constants 

 

Steady State Solution of the Modified 

Model 

For the Modified model, the steady-state 

solutions are (0,0), ( a ,0), (0,1- a ), ( a ,1- a ). 

The first steady-state solution (0,0) is the trivial 

solution. The second unique steady-state 

solution will occur if we assume that x1e  0, 

x2e = 0. The third and fourth unique steady-state 

solution will occur if we assume that x1e = 0, 

x2e  0 as well as x1e  0, x2e 0   

 

Characterization of Steady-State Solution 

of the Modified Model 

In the absence of bifurcation, we have the 

following characterizations of the four unique 

steady-state solutions. (0,0) is unstable because 

1 = k, 2 = r2; ( a ,0) is unstable because 1 =- 

k, 2 = r2; (0,1- a ) is unstable because 1 =- k,            

2 =- r2; ( a , 1- a ) is stable because  1 =- k, 2 

= - r2. 

 

Bifurcation of the Steady State Solution (

a , 1- a ) 

In this study, we are interested to study the 

bifurcation of the only unique positive steady-

state solution which has two negative 

eigenvalues specified by 1=- k, 2 = - r2. The 

changing patterns of the eigenvalues for this 

steady-state solution are displayed in the table 

below: 
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s/n Different Cases 1 = -k 2 = -r2 Comment 

1. 1 <0, 2 <0 k>0 r2>0 stable  

2. 1 <0, 2 =0 k>0 r2=0 sitting on the cusp 

3. 1 =0, 2 <0 K=0 r2>0 sitting on the cusp 

4. 1 =0, 2 =0 K=0 r2=0 stability is lost 

5. 1 >0, 2 =0 K<0 r2=0 sitting on the cusp 

6. 1 =0, 2 >0 K=0 r2<0 sitting on the cusp 

7. 1 >0, 2 <0 K<0 r2>0 unstable 

8. 1 <0, 2 >0 k>0 r2<0 unstable 

9. 1 >0, 2 >0 K<0 r2<0 unstable 

 

 

DISCUSSION OF CORE RESULTS 

Bifurcation result for the steady-state 

solution ( a , 1-a) of the Modified Model 

Case 1: 1 <0, 2 <0 k>0, r2>0, where k and r2 

are called the intrinsic growth rates for the two 

fish populations. In marine ecology, this 

important result clearly shows that the birth rate 

of each fish population will outweigh the death 

rate. 

 

Case 4: 1 <0, 2 <0 k=0, r2=0. In this 

scenario, both the birth and death rates are not 

changing. Hence, the population size is constant. 

 

Case 9: 1 <0, 2 <0 k<0, r2<0. In marine 

ecology, this result shows clearly that the birth 

rate of each fish population will not outweigh 

the death rates. 

 

CONCLUDING REMARKS 

In this study, we have found a few fundamental 

changes in the stability of the positive steady-

state solution. The implications of our three core 

results are expected to provide useful insights to 

environmental marine ecologists working in 

marine ecology functioning and stability. 

A few possible extensions of this 

present numerical stimulation study the 

bifurcation of the other calculated steady-state 

solutions and to carry out a study on the impact 

of other climate change factors such as rising 

sea level. Construction of an appropriate optimal 

controller to stabilize the three unstable steady-

state solutions which we have calculated in this 

study. The capability of stabilization of these 

unstable steady-state solution will drive the fish 

populations from going into extinction which is 

detrimental and counter-sustainable 

development. Hence, the rigorous stabilization 

process will have substantial benefits in 

restoring marine bio-diversity and sustain local 

means of livelihoods within the Niger Delta 

fishing industry. This proposed idea will be one 

of our next analysis of interdisciplinary research 

subject to adequate funding. 

Finally, the deterministic system of fish 

population model equations can be reformulated 

as a system of stochastic differential equations. 

The rigorous analysis of this extension is 

proposed as a further research topic which we 

could not tackled in this single study because of 

the difficulty inherent in analyzing complex 

stochastic models. 
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