
41

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

SQLDefend: AN AUTOMATED DETECTION AND PREVENTION TECHNIQUE FOR

SQL INJECTION VULNERABILITIES IN WEB APPLICATIONS

 E. E. Ogheneovo and P. O. Asagba
Department of Computer Science,

University of Port Harcourt,

Port Harcourt, Nigeria.

edward_ogheneovo@yahoo.com, pasagba@yahoo.com

Received: 16-10-12

Accepted: 07-11-12

ABSTRACT

SQL injection attacks (SQLIAs), one of the most foremost threats to Web applications is an attacking

technique in which specially crafted input string result in illegal queries to a database. An SQL injection

attack target interactive Web applications that employ database services. In this paper, we propose

SQLDefend as a technique to detect and prevent SQLIAs. Our approach provides a full automated model.

This model combines parser and decision tree. It is an algorithm that models string values using Context

Free Grammars (CFGs) and then use decision tree to train the user input. We use parse tree validations

to input strings. First the technique checks if the two queries match syntactically and then use rule-based

decision tree classifier to classify user input. If the result meets the condition defined, then the query will

be considered legitimate and thus accepted otherwise it will be rejected. Our result clearly shows no false

positives and false negatives. The result also shows a lower runtime overhead in execution time and CPU

usage. The technique is thus effective in preventing SQLIAs.

Key words: SQL Injection, Vulnerability, SQLDefend, Web Applications, Attacks

INTRODUCTION

Database-driven web applications have become

widely deployed on the Internet and organizations

use them to provide a broad range of services to

their customers. These databases and their

underlying databases, often contain confidential,

or even sensitive, information, such as customer

and financial records. This information can be

highly valuable and makes web application an

ideal target for attacks. In fact, in recent years

there has been an increase in attacks against these

online databases (Halfond et al., 2005). One of

such attacks is called the SQL Injection Attacks

(SQLIAs). Injection attacks constitute one of the

largest classes of security problems (Bravenbor et

al., 2007).

SQL Injection attacks (SQLIA) is a Web attacking

vector considered to be one of the most common

form of attacks in Web applications. OWASP

(2010) rated SQLIAs as one of the top ten web

application vulnerabilities. SQL injection attacks

are one of the most foremost threats to web

applications. It is an attacking technique which is

used to pass SQL query through a web application

directly to the database by taking advantage of

insecure code’s non-validated input values

(Muthuprasama et al., 2010). SQL injection

attacks pose a serious security threat to web

applications. They allow attackers to obtain

unrestricted access to the databases underlying the

applications and to the potentially sensitive

information these databases contain (Halfond et

mailto:edward_ogheneovo@yahoo.com
mailto:pasagba@yahoo.com

42

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

al., 2006). Web applications that are vulnerable to

SQL injection may allow an attacker to gain

complete control of underlying databases. As a

result, sensitive information about users of such

web applications are exposed leading to malicious

activities such as: password theft, identity theft,

loss of confidential information, stealing of credit

card numbers, denial-of-service attacks, and fraud

(Asagba and Ogheneovo, 2011).

The root cause of SQLIAs is insufficient

input validation. SQLIAs occur when data

provided by a user is not properly validated and

included in an SQL query (Halfond et al., 2005).

In such a vulnerable application, an SQLIA uses

malformed user input that alters the SQL query

issued in order to gain unauthorized access to a

database and extract or modify sensitive

information (Bisht et al., 2010). Usually, web

application is a three-tier architecture: the

application tier at the user side, the middle tier

which converts the user queries into the SQL

format, and the backend database server which

stores the user data as well as the user’s

authentication table (Wei et al., 2006; Ali et al.,

2009). Whenever a user wants to enter into the

web database through application tier, the user

inputs his/her authentication from a login form.

The middle tier server will convert the input

values of username and password from user entry

form into the format shown below.

SELECT * FROM user_account WHERE

username=‘username’ AND passwd=’password’

If the query result is true then the user is

authenticated otherwise it is denied. But there are

some malicious attacks which can deceive the

database server by entering malicious code

through SQL injection which always return true

results of the authenticated query. For example,

the hacker enters the expression in the username

field like “ ‘ OR 1=1- -’ ”. So, the middle tier will

convert it into SQL query format as shown below.

This deceives the authentication server. The query

result will be:

SELECT * FROM user_account WHERE

username= ‘OR 1=1- -’AND passwd=’password’

Analyzing the above query, the result would

always be true. This is because malicious code has

been used in the query. In this query, the mark (’)

tells the SQL parser that the user name string is

finished and like “ ‘ OR 1=1--’ ” statement

appended to the SQL statement would always

evaluate to true. The (--) is comment mark in the

SQL tell the parser that the statement is finished

and the password will not be checked. So, the

result of the whole query will return true and this

authenticate the user without checking password.

The login form is used to get the user name and

password from the user. The user name field can

take some extra values other than alphanumeric

characters. It may support some special characters

like %, $, |, #, etc.

A number of approaches to dealing with

SQLIAs have been proposed, but none has been

completely effective due to some drawbacks.

These approaches either used taint method where

an untrusted user input is tainted and checked for

malicious queries or the query is dynamically

checked at runtime. For one, these approaches

incur high runtime overhead and in situations

where static methods are used only, it means the

programmer will have to manually check the

query each time. Our approach is different from

other techniques in that it uses parser and a

machine learning tool called rule-based decision

tree classifier for its methodology and it assumes

all queries to be malicious until proved otherwise

and that it will reduce runtime overhead and thus

remove the possibilities of false positives and

false negatives.

43

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

MATERIALS AND METHODS

Architecture of SQLDefend

This approach uses three phases: the query

collection phase, the query validation phase. In

the query collection phase, query is collected by

user input validator and stores them in a

repository. In the query validation phase, the

generated query stored at the proxy is sent to the

user input extractor. The query is then analyzed

statically by first scanning the query at the lexical

analysis stage where the query is grouped into

various tokens and keywords. A parse tree is then

generated for the query by the parser. The parse

tree generated is then analyzed dynamically at

runtime by comparing the statically generated

query with the dynamic query. At this stage, the

parse tree of the guest language is compared with

the parse tree of the host language to see if they

agree syntactically and to see if the parse trees

produced by the two languages matches. If they

match each other, it means the query is a benign

(good) query and it is sent to the database.

However, if the parsed queries of the host and the

guest languages do not match, the query is

malicious and will be rejected before it gets to the

database. However, if the query is legitimate

(benign) query, it will be passed to the database

and the result of the query will be returned to the

user. Our approach will be able to track the effects

of string operations while retaining the syntactic

and semantic structure of the input strings. Figure

1 below shows the architecture for the proposed

model.

Fig. 1: Architecture for SQLDefend

Databas

e

Web

Browser

Malicious

Queries

Detected

Queries

Queries Result

QUERY COLLECTION PHASE

Query

Collector

Collected

Queries

User input

Extractor

EVALUATION AND

DETECTION PHASE

PARSE TREE GENERATION

PHASE
 Parse

 Engine
Decisio

n

Engine

Parse tree

Decision Tree

Benign

Queries

Alert DBA

 Alert User

44

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

Generation BNF for SELECT Statements

We generated a Backus-Naur Form (BNF) for

select statements. The general BNF generated was

then used to construct the structure of each select

statement syntactically. The BNF of a select

statement is shown in the figure below.

Input ::= sql [sql] EOF

<Select-stmt> ::= SELECT select_list

from_clause

| SELECT select_list from_clause

where_clause

<select_list> ::= id_list | *

<id_list> ::= id | id, id_list

<from_clause> ::= FROM tbl_list

<tbl_list> ::= id_list

<where_clause> ::= WHERE bool_cond

<cond> :: = bcond OR bterm | bterm

<bterm> ::= bterm AND bfactor | bfactor

<bfactor> ::= NOT cond | cond

<cond> ::= value comp value (“--”)

<value> ::= id | num | str_lit | (select-

stmt)

<str_list> ::= ‘lit’

<comp> ::= = | != | < | > | <= | >=

Fig. 2: A BNF grammar for a select statement

In the figure 2, the Left-Hand-Side (LHS)

represents non-terminal symbols while the Right-

Hand-Side (HRS) represents terminal or non-

terminal symbols of the production process.

Sample Parse Trees for Legitimate and

Malicious Queries

In this section, we design sample parse trees for

both legitimate and malicious queries. Parsing a

statement requires the grammar of the language

(quest language, e.g., MySQL, MS-SQL, etc.) that

the statement was written. By parsing two

statements and dynamically comparing their

structures at runtime, we can determine if the two

queries are structurally identical. When a

malicious user successfully inject SQL query into

a database, the parse trees of the intention query

and the resulting SQL query do not match.

Intended queries are the codes written by the

programmer to query the database. The

programmer supplied portion is the hardcoded

portion of the parse tree, and the user-supplied

portion is represented as empty leaf nodes in the

parse tree. These nodes represent empty literals.

The programmer intends that the user supplied

values to these empty leaves. In figure (a), the

empty leaves are the placeholders represented by

question mark (“?”) which are empty leaves

where the user is expected to supply his username

and password; which are expected to be validated

before they are passed into the database. These

question marks are substituted for and they

represent placeholder meta-character. A

placeholder in an intention statement represents an

expanding point, where each expansion must

conform to the corresponding grammatical rule

intended by the developer. Here, a placeholder is

an intention grammar which helps to regulate the

instantiation of a placeholder dynamically at

runtime. Each intention rule is mapped to an

existing non-terminal symbol (e.g., comp) or

terminal symbol (e.g., identifier) of an SQL

statement.

In our technique, we developed pre-

defined queries and the user input parser using the

syntactic structure of the query. The syntactic

structure of the user queries are compared with the

pre-defined queries generated at runtime in order

to see if they are equal. This is to avoid the

problem of grammar ambiguities so that only one

type of parse tree is generated for a particular type

of query. This we did by embedding the guest

language (MySQL) inside the host language

(Java). This is to ensure that the statement remains

unambiguous. At the parser engine, the parser

generated parse tree structures are compared at

runtime and they are found to be syntactically the

same, the queries are then sent to the decision

engine for further verifications. In the decision

45

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

engine, the query will be further checked to see if

it is legitimate or malicious. If legitimate, it will

be parsed to the database to find the result of the

query. The result once found will be returned to

the web application. However, if the query is

malicious, the decision trees will automatically

classifier the query into the SQL injection attack

type.

For example, the following SQL statement was

used as one of our case studies.

SELECT * FROM user WHERE uname=’?’ AND

password=’?’

As shown in figure (a), the placeholders

are represented with question marks (?) and are

underlined. These are the fields where users are

expected to supply their inputs. We represented

this by question marks (?) because we want to

make the placeholder empty since it is believed

that different users have different username and

passwords. In figure (b), parse tree of the

SELECT statement is then drawn which indicate

the programmer’s intended query. This query is

further checked by the decision engine and

through its leaner’s input data, the query is found

to be legitimate (benign) and it is passed to the

database. When another query is supplied, the

parse tree is suspected to be different and it was

classified as malicious and to further verify the

query, it was passed to the decision engine where

it is classified as malicious and is thus confirmed

to be malicious. But to further know the exact

nature and type of query, the decision engine

classifier is used. The query is shown below.

SELECT * FROM user WHERE uname=’eddy’

AND password=passwd OR 1=1

Subsequently, the query is rejected and blocked

from getting to the database. This parse tree is

shown in figure (c). Similar explanation can also

be giving for figures (d) and (e). In figure(d), user

supplied an SQL SELECT statement.

SELECT * FROM usertable WHERE

username=’eddy’ AND

password=’abc12’

However, when a comment was

introduced into the query, the attacker is able to

gain access into the database and get the

information in the database. This is shown in the

figure (e). As can be seen from figures (d) and (e),

the parse trees are syntactically different. Thus the

second query figure (e) will be blocked from

entering the database.

SELECT * FROM usertable WHERE

username=’eddy’ AND

password=’abc12’- - AND password=’secret’

The parse trees showed below in figures

(a-e) represents sample SELECT statements that

shows how the parser will actually work

whenever a query is injected into the database

through the user input and password fields.

46

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

Fig. 3 (a): A parse tree for a select statement. The username and password are not supplied

Figure 3(a) shows a parse tree for an SQL

statement where the placeholders where the user

is expected to supply his username and password.

The placeholders are represented by question

marks indicating that it is left open since any user

can supply her username and password. The parse

tree is drawn based on the production of the

terminals and non-terminals representing the

production on the SELECT statement by the

Backus-Naur Form (BNF) in figure 3.

? WHERE

SELECT  FROM usertable

WHERE username= ? AND password= ?

 ?

Where-clause

bcond

bterm

bfactor

cond

value

comp

id

str-lit

uname

bterm
bfactor

cond

value

value

 =

lit

AND

value

comp

id

password =

id

47

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

Fig. 3 (b) Benign select stmt

 Fig. 3 (c) Tautology query that is malicious

WHERE passwd

Where_clause

bcond

bterm

bfactor

cond

value

comp

id

Str-lit

uname

bterm
bfactor

cond

value

value

=

lit

AND

value

comp

id

passwd =

id

‘eddy’

SELECT  FROM usertable
WHERE username= ‘eddy’ AND password= passwd

‘eddy’ WHERE
passwd OR 1 = 1

value value

bterm

bfactor

cond

comp

num num

Where_clause

bcond

bterm

bfactor

cond

value

comp

id

str-lit

uname

bterm
bfactor

cond

value

value

=

lit

AND

value

comp

id

password =

id

bcond

SELECT  FROM usertable

WHERE username= ‘eddy’ AND password= passwd OR 1=1

48

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

Fig. 3 (d) Parse tree for benign query

 Fig. 3 (e) Parse tree for malicious query

WHERE ‘abc12’
‘eddy’

SELECT  FROM usertable

WHERE username= ‘eddy’ AND password= passwd

Where-clause

bcond

bterm

bfactor

cond

value

comp

id

str-lit

uname

bterm
bfactor

cond

value

value

=

lit

AND

value

comp

id

 passwd =

id

passwd WHERE

SELECT  FROM usertable

WHERE username= ‘eddy’ AND password= passpasswd

Where-clause

bcond

bterm

bfactor

cond

value

comp

id

str-lit

uname

bterm
bfactor

cond

value

value

=

lit

AND

value

comp

id

 passwd =

id

‘eddy’

comment

AND password =‘secret’

49

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

Decision Tree Classifier

Combating the SQL injection attack, there are a

variety of machine learning tools and techniques

to detect and defend against attacks. These

include: artificial neural network, Bayesian

network, Genetic algorithm, Naïve-Bayes, Rule-

based algorithm, and decision trees. A decision

tree is an effective tool for guiding a decision

process as long as no changes occur in the dataset

used to create the decision tree (Abdelhalim and

Traore, 2009). Decision trees provide unique

insight into the problem of identifying malicious

activities and can assist in the creation of

technology-specific technique to defend against

attacks. The main advantage of decision trees over

many other classification techniques is that they

produce a set of rules that are transparent, easy to

understand, and easily incorporated into real-time

technologies.

There are two ways to apply decision tree

to classifying data. They are: data-based decision

tree (DBDT) and rule-based decision tree

classifier (RBDT). For data-based decision tree

method, once there is a significant change in the

data; restructuring the decision tree becomes a

desirable task. A data-based decision tree

classifier is a procedural approach of knowledge

representation, which imposes an evaluation order

on the set attributes. This poses a lot of

challenges. There is therefore the need to use rule-

based decision tree classifier as an alternative.

Also, generating a decision structure from

decision rules can be done faster than generating it

from training examples because the number of

decision rules per decision class is often much

smaller than the number of training examples per

class. Finally, using rule-based decision tree

methods can be done directly from the declarative

rules themselves (Michalski and Imam, 1992).

Some of the well-known rule-based methods for

building decision tree are: RBDT-1 (Abdelhalim

and Traore, 2009), RBDT-2 (Abdelhalim and

Traore, 2010), and AQDT-1 (Machalski and

Imam, 1992).

In our technique, we use the rule-based

decision tree method for building the decision

tree. Rule-based decision tree methods handle

manipulations in the data through the rules

induced from the data instead of the data itself. A

declarative representation such as a set of decision

rules is much easier to modify and adapt to

different situation than to procedural one. This is

simply due to lack of constraint on the order of

evaluation (Imam and Michalski, 1992). It should

be emphasized here that there is a major

difference between building a decision tree from

examples (data sets) and building it from rules.

When building a decision tree from rules, the

method assigns attributes to the nodes using

criteria based on the properties of the attributes in

the decision rules rather than statistics regarding

their coverage of the data sets (Abdelhalim and

Traore, 2009).

Tree Builder

The Tree Builder takes the rules supplied by the

rule extractor and creates a decision tree from

them. Once created, this tree is stored, and can be

used subsequently without need for re-creation or

modification. In our technique, we build the

decision tree from rules rather than from the data

sets. Our technique is based on RBDT-1, a

method proposed by Abdelhalim and Traore

(2009) and which has also been used to solve a

number of machine learning problems. For

instance, for a login module of a target

application, the fundamental query will be one

that retrieves a single record from the database

representing the user’s sign-in credentials. Let us

consider a SELECT statement for our example.

SELECT user_id, user_category FROM

user_credential_table

50

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

WHERE user_id=”?” AND password=”?”

In building a decision tree for the above SELECT

statement, we selected the attributes that will be

assigned to each node from the current set of rules

attributes. These rule attributes are shown below.

R1 ← stmt_count = 1 (e.g., a single SELECT

statement)

R2 ← stmt_type = plain_select_stmt

R3 ← stmt_expr = select_where_clause

R4 ← stmt_expr_count = 1

R5 ← stmt_expr_data-type = bool

R6 ← value_expr_count = 2

R7 ← value_expr_data-type = condition, condition

R8 ← value_expr_data-type = bool, bool

R9 ← parameter_count = 2

R10 ← parameter_type = string, string

Fig. 4: A set of rules for a typical SELECT

statement

Based on these rule attributes, we use

what we called “rule extractor” to break an SQL

SELECT statement into rules and then extract the

attributes as shown below. However, to generalize

our technique for all types of SQL statements for

existing form of queries available in all database

management system such as Microsoft SQL,

MySQL, Oracle, Sybase, etc., with all their

keywords, we generated the following rule

attributes.

SQL Statement

 Number of distinct statement

 Statement type

Statement Expressions

 Number of distinct expressions

 Expression category

 Expression return data-type

Parameters

 Number of parameters

 Parameter data-type

Expressions

 Number of distinct

 Expression type

 Data type

Value Expression Arguments

 Number of distinct argument

 Type of each argument

51

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

Fig. 5: Rule-based classifications of queries

Experimental Setup

We used real world applications from AMNESIA

testbed (Halfond and Orso, 2005), which has been

previously used by other techniques. We used this

testbed since it allows us to have a common point

of reference with other approaches that have used

it for their evaluation. The AMNESIA testbed

consists of both legitimate and malicious queries.

It is a standard testbed used for evaluating code

injection prevention techniques. It consists of

seven applications: Bookstore, Classifieds,

Portals, Employee Directory, Events, Checkers,

and Office Talk. The AMNESIA testbed provides

a set of subject Web application that are

vulnerable to SQL injection attacks, along with

test inputs that represent legitimate and malicious

queries. They are available at

http://www.gotocode.com and

http://www.cc.gatech/~whalfond/testbed.html.

The purpose of these testbed is to facilitate the

evaluation of SQL injection detection and

prevention techniques. The AMNESIA testbed is

shown in the table 1 below.

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

X

X

X

X

X

X

X

X

X

X

!=1

!=plain_sele

ct

!=select_wher

e

!=1

!=boolean

!=conditio

n

!=2

condition, condition

boolean, boolean !=bool,bool

!=sting, sting

!=2 2

sting, sting

boolean

1

2

select_where clause

1

plain_select_stateme

nt

Benign, login

context query

http://www.gotocode.com/
http://www.cc.gatech/~whalfond/testbed.html

52

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

 Table 1: Information about subject application

Subject LOC DBIs Servelet

Bookstore 16,957 71 28

Portal 16,453 67 28

EmplDir 5,658 23 10

Classfieds 10,949 34 14

Events 7,242 31 13

Checkers 5,421 5 61

Office Talk 4,543 40 64

We also tested our technique by running it with WebGoat (http://www.owasp.org/software/webgoat.html)

set of Web applications. WebGoat is a collection of applications designed to teach secure programming

for Web applications, and has a range of vulnerabilities in it by design. Our application demonstrates

command injection attacks, where user-supplied commands can be executed on the host by tempering

with HTTP parameters. We specifically work on SQL injection attacks as an example of command

injection attacks where supplying a malicious input in an HTML form results in a query being executed

on the host that reveals secret data. Our technique blocked all SQL attacks and reported no false positives

or false negatives. Table 2 below illustrates the list of vulnerabilities as well as injection attacks

exploiting these vulnerabilities.

 Table 2: Different types of attacks used in our evaluation

Attack Type Attack Description Detected or

Undetected

Tautology Injecting one or more conditional statements Yes

Logically incorrect queries Information gathering, extract data Yes

Union queries Return data from a different table Yes

Piggy-backed queries New queries within the original query

without changing the logic of the first one

Yes

Stored procedure Invoking stored procedure Yes

Inference Infer answers from applications response Yes

Alternative encoding Injecting modified control text Yes

These vulnerability and attack types cover the most known SQLIA available in literature (Halfond et al.,

2006). The combination of these attack types can be combined thus making new attacks possible.

However, our technique can detect all forms of attacks irrespective of their nature or combinations.

Generation of Test Inputs

For each application in the testbed, there are two sets of inputs: LEGIT, which consists of legitimate

inputs for the application, and ATTACK, which consists of attempted SQLIAs. This is shown in the table

below.

http://www.owasp.org/software/webgoat.html

53

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

 Table 3: Set of legitimate and attacks used

The result of this attack strings contained 30

unique attacks that had been used against

applications similar to the ones in the testbed.

Effectiveness of SQLDefend

We use a Pentium
®

Dual-core 2.10GHz processor

with 2GB RAM and 64-bit system architecture

running Windows 7. We created sample database

in MySQL server 5.0. The J2EE application

bundled into Netbeans software was used. To

match real world application, JSP (Java Server

Page) was compiled into servlets. The web server,

database server, and client were in same local

machine.

RESULTS

 Table 4: The number of false positives and false negatives detected

Subject Total No.

of Attacks

No. of Legitimate

Accesses

False

Positives

False

Negatives

Bookstore 6,154 607 3 2

Portals 6, 403 1,080 5 3

EmplDir 6, 398 658 3 1

Classifieds 5, 968 574 2 2

Events 6,207 900 3 0

Checkers 4,431 1,357 6 3

Office Talk 5,888 424 1 1

Total 41,449 5,602 23 12

The table shows that out of 5,602 legitimate

accesses, there are 23 false positives representing

0.0041%. Our result also shows 12 false negatives

representing 0.00029%. These are quite high

considering the damage effect they can cause. To

ensure that this situation is brought under control,

we enabled our second tool, which is the decision

tree classifier. We run the application again, this

time we discover no false positives. This shows

that the decision engine was able to testbed

queries accurately as legitimate and malicious.

The table below shows the result of our

experiment when the decision engine was

enabled.

Subject Total No.

of Attacks

Successful

Attack

Legitimate

Attack

Bookstore 6,154 1, 999 607

Portals 6, 403 3, 016 1, 080

EmplDir 6, 398 2, 066 658

Classifieds 5, 968 1, 973 574

Events 6,207 2, 141 900

Checkers 4,431 922 1,359

Office Talk 5,888 499 424

54

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

Table 5: No false positives and false negatives after using SQLDefend

Subject Total No. of

Attacks

No. of Legitimate

Accesses

False

Positives

False

Negatives

Bookstore 6,154 607 0 0

Portals 6, 403 1,080 0 0

EmplDir 6, 398 658 0 0

Classifieds 5, 968 574 0 0

Events 6,207 900 0 0

Checkers 4,431 1,357 0 0

Office Talk 5,888 424 0 0

Total 41,449 5,602 0 0

The result in table clearly shows that there are no

false positives. This is an improvement over

previous techniques that used only parser as the

only tool for detecting and preventing SQL

injection attacks.

Classification Accuracy of Parser and Decision

Tree

Our technique uses parser and decision tree

classifier to detect and prevent SQL injection

attacks without generating false positives and

false negatives. However, there are some penalties

to be paid. First, using parser, it is hard to predict

accurately the structure of intended SQL.

Secondly, there is additional runtime analysis

overhead in terms of execution time which cannot

be avoided due to the sequential nature of the

analysis technique. Also, using decision tree, it is

possible to experience over-fitting especially if the

tree is too large; a situation which could cause

noisy data. As a result, we try to avoid this

problem by using rule-based approach instead of

using data-based approach in building our

decision tree. Also, decision tree is good for very

large volume of data and if the data are too small,

certain information may be lost which could lead

to misclassification of data. Using the rule-based

approach, we were able to correct this problem.

Thus there was no misclassification of data based

on our result since no malicious attacks were

reported after our experiment and the issues of

false positives and false negative were completely

brought under control.

Complexity Analysis and Optimization

In this section, we discuss the time and space

complexities in processing each query. That is, the

time it takes to process each query and the storage

space occupied by e query in the computer

memory. We also discuss the worst case scenario

in which it will take a query to be processed. We

then consider the issue of queries that can be

clustered such as having a SELECT + UPDATE

queries that are concatenated. We discovered that

such queries can have redundant information that

could cause more memory utilization thus slowing

down the machine and thus increasing the

processing time. To eliminate this problem, we

optimize all the 30 distinct set of queries as

identified in AMNESIA testbed. We did this by

further grouping the queries that have the same

query structure. The result is shown in table 6

below.

55

Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41-58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

Table 6 Percentage of reduction after query optimization

Subject No of queries Before optimization No of queries After optimization % of

reduction

Bookstore 320 63 19.6%

Portals 467 77 16.5%

EmplDir 295 36 12.2%

Classifieds 280 27 9.6%

Events 315 23 7.3%

Checkers 436 43 9.9%

Office Talk 214 24 11.2%

Time Complexity

We measured the time it takes a query to from the

time a query is submitted to the time the result is

returned to the user, which is known as the round

trip time processing (RTTP) using (O(n
3
)); where

n is the number of keywords in a query. This time

was measured in millisecond (ms) and we

discover a significant improvement when we

compared our result with previous techniques.

The graph in figure 4.1shows the result of some

other techniques we compared our results. The

result validates the effort put into improving the

performance of our technique.

Space Complexity

We also measured the space complexity of our

technique and found out that there is significant

improvement is our technique when we compared

our results with. This is due to the fact that our

algorithm performs better thus reducing the

overhead incurred by the CPU when compared

with previous techniques. The space complexity is

measured using (O(n
2
)). The graph in figure 4.2

shows the space complexity of SQLDefend when

compared the other well-known techniques.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BookStore Employee Classified Events Portal

Query Response Time (s) of SQLDefend

Compared with Other Tools

SQLDefend

SQLPrevent

SQLCheck

SQLProb

Q
u
er

y
 R

es
p
o
n
se

 T
im

e(
s)

56

Ogheneovo E. E. and Asagba P. O. SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

DISCUSSION

As seen in table 4, when only parser is used as the

only tool for detecting and preventing SQL

injection attack, there are 23 false positives out of

5,602 legitimate accesses representing 0.0041% of

the total accesses. Though this percentage is very

small, it could cause a lot of great trouble to a

database if sensitive information is returned to a

malicious user whose intention is to have access

to sensitive information that could be used for

theft such as credit card numbers. The table also

shows that the number of false negatives is 12

representing 0.00029% indicating that when

parser is used to detect and prevent SQL injection

attacks, it produces false positives and false

negatives.

However, to solve the problem of false positives

where legitimate queries may be classified as

malicious queries thus preventing genuine users

from having access to a web site; and false

negatives where malicious queries are classified

as legitimate queries, we used a machine learning

tool called decision tree classifier to further

classify the queries correctly. The result in table 5

shows the outcome when the program was further

tested. As seen in the table, there are no false

positives and false negatives. This clearly shows

that our technique is very effective in detecting

and preventing SQL injection attacks.

As noted in the introduction of this paper,

injection attacks are one of the largest classes of

security problems till date. Code injection attacks

continue to be a major threat to computer systems.

In this paper, we proposed SQLDefend, a

technique for detecting and preventing SQL

injection attacks with the capabilities of securing

Web applications against intruders and hackers.

SQLDefend dynamically uses user input and

analyze them syntactically by comparing the

resulting parse tree with the dynamically

generated in our system. It further check a query

using decision tree classifier taking into account

the context of every user input. Our approach is

very modular and can be deployed to existing

Web applications without extensive

modifications.

0

1

2

3

4

5

6

7
C

P
U

 U
sa

ge
 (

%
)

CPU Usage of SQLDefend Compared

with Other Tools

SQLDefend

SQLPrevent

SQLCheck

SQLProb

57
Scientia Africana, Vol. 11 (No.2), December 2012. Pp 41- 58

© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

We conducted experiments and measured the

overhead incurred by our technique. The result

showed that our technique provide good

protection against SQL injection attacks. Our

experimental result shows that our approach

provides a complete automated protection against

SQL injection attacks with a minimal amount of

overhead. To ensure that our technique keep the

overhead to a minimum level, we explored a

number of optimization using query reduction and

thus calculating the percentage of query reduction

in each of the subjects in AMNESIA testbed. We

also measured the number of false positives and

false negatives and our result shows that there are

no false positives and false negatives.

REFERENCES

Abdelhalim, A. and Traore, T. (2009). Converting

Declarative Rules into Decision Trees. In

proceedings of the World Congress on

Engineering and Computer Science,

WCECS’09, Vol. 1, October 20-22, 2009,

Sanfrancisco, USA.

Ali, S. Rauf, A. and Javed, H. (2009). SQLIPA:

An Authentication Mechanism Against SQL

Injection. In European Journal of Scientific

Research, ISSN 1450 – 216X, Vol. 38, No.

4, pp. 604 – 611,

http://www.eurojournal.com/ejsr.htm.

Asagba, P. O. and Ogheneovo, E. E. (2011). A

Proposed Architecture for Defending

Against Command Injection Attacks in a

Distributed Network Environment. In

Proceedings of the 10
th
 International

Conference of Nigerian Computer Society

on Information Technology for People-

Centred Development (ITePED 2011), Vol.

22, pp. 99-104.

Batory, D. Lofaso, B. and Smaragdakis, Y.

(1998). JTS: Tools for Implementing

Domain-Specific Languages. Int’l

Conference on Software Reuse (ICSR’98),

IEEE Computer Society, pp. 143-153.

Bisht, P., Madhusudan, P. and Venkatarishnan, V.

N. (2010). CANDID: Dynamic Candidate

Evaluations for Automatic Prevention of

SQL Injection Attacks, ACM Transactions

on Information and System Security, Vol.

13, No. 2, Article 14.

Boyd, S. W. and Keromytis, A. D. (2004).

SQLRand: Preventing SQL Injection

Attacks. In Proceedings of the 2
nd

International Conference of Applied

Cryptography and Network Security

(ACNS’04), Yellow Mountain, China, pp.

292 -302.

Bravenboer, M., Dolstra, E. and Visser, E. (2007).

Preventing Injection Attacks With Syntax

Embeddings. In Proceedings of the 6
th

International Conference on Generative

Programming and Component Engineering,

GPCE’07.

Bravenboer, M. (2008). Exercises in Free Syntax:

Syntax Definition, Parsing, and

Assimilation of Language Conglomerates,

PhD Thesis, Utrecht, University, Utrecht,

The Netherlands, pp. 65, 92.

Buehrer, G. T., Weide, B. W. and Sivilotti, P. A.

G. (2005). SQLGuard: Using Parse Tree

Validation to Prevent SQL Injection

Attacks. In Proceedings of the 5
th

International Workshop on Software

Engineering and Middleware, Lisbon,

Portugal, pp. 106 – 113.

Gould, C., Su, Z. and Devanbu, P. (2004).

http://www.eurojournal.com/ejsr.htm

58

Ogheneovo E. E. and Asagba P. O.; SQLDefend: An Automated Detection And Prevention Technique For SQL Injection…..

Halfond, W. G. J. and Orso, A. (2005).

Combining Static Analysis and Runtime

Monitoring to Counter SQL-Injection

Attacks. In Proceedings of 3rd International

Workshop on Dynamic Analysis

(WODA’05), St. Louis, Missouri, pp. 1-7.

Halfond, W. G. J. and Orso, A. (2005).

AMNESIA: Analysis and Monitoring for

Neutralizing SQL Injection Attacks. In

Proceedings of the 20
th
 IEEE/ACM

International Conference on Automated

Software Engineering, California, USA, pp.

174 – 183.

Halfond, W. G. J., Viegas, J. and Orso, A. (2006).

A Classification of SQL Injection Attacks

and Countermeasures. In Proceedings of

IEEE International Symposium on Secure

Software Engineering.

Halfond , W. G. J., Orso, A. and Manolios, P.

(2006). Using Positive Tainting and Syntax-

Aware Evaluation to Counter SQL Injection

Attacks. In Proceedings of the 14
th
 ACM

SIGSOFT International Symposium on

Foundations of Software Engineering

SIGSOFT’06/FSE-14, Portland, Oregon,

U.S.A., pp. 175 – 185.

Huang, Y.-W., Yu, F, Hand, C., Tsai, C.-H., Lee,

D,-T., and Kuo, S.-Y., 2004). Securing Web

Application Code by Static Analysis and

Runtime Protection. In Proceedings of the

13 International Conference on World Wide

Web, New York, NY, pp. 40 – 52.

Imam, I. F. and Michalski, R. S. (1992). Should

Decision Trees be Learned from Exmaples

or from Decision Rules? In Proceedings of

the 7
th
 Int’l Symposium on Methodologies,

Vol. 689, pp.395-404.

OWASP (2008). Open Web Application-Top-

Ten-Projects.

Su, Z. and Wassermann, G. (2006). The Essence

of Command Injection Attacks in Web

Applications. In Conference Record of the

33
rd

 ACM SIGPLAN—SIGACT

Symposium on Principles of Programming

Language POPL’06, New York, NY, pp.

372 – 382.

Sun, S.-T. and Beznosov (2008). SQLPrevent:

Effective Dynamic detection and Prevention

of SQL Injection Attacks without Access to

the Application Source Code. Laboratory

for Education and Research Secure systems

Engineering, University of British

Columbia, Vancouver, Canada, LERSSE-

TR-2008-01.

Visser, E. (2002). Meta-programming with

Concrete Object Syntax. In Generative

Programming and Component Engineering

(GPCE’02), Vol. 2487 of LNCS,

Pittsburgh, PA, USA, pp. 299-315.

Wei, K., Muthuprasama, M. and Kothari, S.

(2006), Eliminating SQL Injection Attacks

in Stored Procedures. In Proceedings of the

2006 Australian Software Engineering

Conference (ASWEC’06), pp. 191 – 198.

