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ABSTRACT 

Multicollinearity often causes a huge interpretative problem in linear regression analysis. The ridge 

estimator is not generally accepted as a vital alternative to the ordinary least squares (OLS) estimator 

because it depends on unknown parameters. In any specific application of ridges regression, there is 

no guarantee that the sample estimate is a member of the class of more accurate estimates. This paper 

therefore reveals the importance of ridge trace to boost ridge regression estimate in the presence of 

multicollinearity.  We observed from our sample analysis that the use of ridge trace produced a model 

close to the principal component regression which was used as a check model in solution to an ill-

conditioned regression. 
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INTRODUCTION 

The problem of multicollinearity is being able to 

separate the effects of two (or more) variables on 

a response variable. If two variables are 

significantly related, it becomes impossible to 

determine which of the variables accounts for 

variance in the dependent variable. High 

interpredictor correlations will lead to less stable 

estimate of regression weights. The relationship 

can be problematic if the regression weights 

variability obscures some functional relationship 

of interest to a researcher. It becomes very 

difficult to identify the separate effects of the 

variables involved precisely.  

  The ridge regression was originally 

suggested by Hoerl (1962) as a procedure for 

investigating the sentivity of least-squares 

estimates based on data exhibiting near-extreme 

multicollinearity, where small perturbations in 

the data may produce large changes in the 

magnitude of the estimated coefficients. 

Unfortunately, the ridge estimator is not 

generally accepted as a vital alternative to the 

ordinary least squares (OLS) estimator because 

it depends on unknown parameters. In any 

specific application of ridges regression, there is 

no guarantee that the sample estimate is a 

member of the class of more accurate estimates. 

The efficacy of ridge estimation often depends 

upon the estimate of prior information the 

researcher has regarding the population model. 

In this our work, we mainly deal on the use of 

ridge trace to capture the approximate shrinkage 

parameter in a ridge regression model. In section 

2, we introduced the concept of ridge regression. 

We briefly describe how the shrinkage 

parameter of a ridge regression works. In section 

3, we present an example using data from CBN 

bulletin which showed the presence of 

multicolinearity using VIF, condition index and 

variance proportion. Then we report how to 

obtain an efficient ridge trace.  We also 

compared the result of the ridge estimates with 

that of ordinary least squares and the principal 

component which was used as a check model in 

section 4. 
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Ridge Regression 

Consider the centered and scaled multiple 

regression model. 

          Let N

X

j

n

i

ij

X


 1   j = 1,……….,k 

and let  

         kii ........,.........1,   be the eigenalues of 

XX 1
. 

The ridge regression estimate of the coefficients 
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where 0 is a constant, often called the 

shrinkage or biasing parameter and usually 

assumes values between 0 and 1. When 0 , 

the ridge regression estimates reduce to the usual 

least squares estimates. In order to make ridge 

regression operational a value for  must be 

selected. Further, the corresponding  

least squares estimates of coefficient in the 

multiple regression model are                                                    

and
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                                j= 1,…….,k 

The expected value of )(ˆ  is given by  
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The mean square error of the ridge regression  
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Computational Result 

For a typical numerical example we use a time 

series data from Central Bank of Nigeria (CBN) 

statistical bulletin ranging from 1970 - 2010 

with one regressand and five regressors. The 

existence of multicollinearity in the OLS model 

is dictated by considering various diagonistics: 

Variance Inflation Factor (VIF), Variable 

Proportion and Condition Index. This is shown 

in the variance proportion table of table 1. From 

the table, it can be found that the VIF for X1, X2 ,  

and X5  exceeded 10 which shows a collinearity 

problem. Also the table reveals that condition 

numbers 1000/ minmax   , i.e. 

4.575/0.002996 = 1527.04. Therefore, the effect 

of multicollinearity should be considered from 

both the condition number and variance 

proportion. 

 

 

 

Table 1:  Collinearity diagnostic 

 

 

 

 

   Variance Proportions   

Number VIF Eigenvalue Condition 

Index 

Intercept X1 X2 X3 X4 X5 

1 - 4.575 1.00 0.00 0.00 0.00 0.01 0.00 0.00 

2 70.612 1.117 2.024 0.04 0.04 0.00 0.08 0.00 0.00 

3 75.102 0.199 4.793 0.25 0.00 0.00 0.00 0.00 0.00 

4 1.719 0.09579 6.911 0.43 0.00 0.00 0.10 0.23 0.00 

5 6.261 0.009505 21.940 0.02 0.59 0.53 0.20 0.01 0.00 

6 156.178 0.002996 39.078 0.26 0.40 0.46 0.01 0.74 1.00 
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To overcome the collinearity problem, we have 

applied the ridge regression to the data using 

Statgraphics 5.1 software. As earlier stated, the 

aim is to determine the efficient shrinkage 

parameter using the ridge trace. The 

standardized regression coefficients for the data 

and the corresponding ridge trace are shown in 

table 2 and 3 respectively. 

Table 2: Standardized regression coefficients 

 

Ridge 

Parameter 

Exchange  

Rate 

GDP Inflation 

Rate 

Interest 

Rate 

Private 

Foreign Inv. 

0.0 -2.75363 3.70997 -0.180514 0.0939964 -1.53871 

0.005 -2.14057 2.41685 -0.269849 -0.000557 -0.77382 

0.01 -1.72627 1.80086 -0.315118 -0.021205 -0.544243 

0.015 -1.45020 1.42972 -0.342141 -0.028806 -0.434884 

0.02 -1.25532 1.18002 -0.359695 -0.032720 -0.371198 

0.025 -1.11088 1.00014 -0.371693 -0.035117 -0.329608 

0.030 -0.99968 0.86426 -0.380155 -0.036887 -0.300348 

0.035 -0.91147 0.75795 -0.386233 -0.038358 -0.278658 

0.04 -0.83979 0.67248 -0.390631 -0.039673 -0.261941 

0.045 -0.78039 0.60226 -0.393804 -0.040902 -0.248666 

0.05 -0.73036 0.54355 -0.396061 -0.042079 -0.23787 

0.055 -0.68764 0.49372 -0.397614 -0.043221 -0.228917 

0.06 -0.65073 0.45091 -0.398619 -0.044337 -0.221371 

0.065 -0.61852 0.41373 -0.399191 -0.045432 -0.214925 

0.07 -0.59015 0.34114 -0.399414 -0.046508 -0.209354 

0.075 -0.56497 0.35234 -0.399356 -0.047566 -0.204489 

0.08 -0.54247 0.32671 -0.399067 -0.048607 -0.200204 

0.085 -0.52223 0.30374 -0.398587 -0.049630 -0.196400 

0.090 -0.50393 0.28306 -0.397951 -0.050636 -0.19300 

0.095 -0.48731 0.26433 -0.397182 -0.051625 -0.189941 

0.10 -0.47213 0.24729 -0.396304 -0.052596 -0.187174 
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Table 3: The variance inflation factors for the ridge regression 

Ridge 

Parameter 

Exchange 

Rate 

GDP Inflation 

Rate 

Interest 

Rate 

Private 

Foreign Inv. 

0.0 70.7783 75.5347 1.72408 6.2102 155 

0.005 27.8143 27.9891 1.51895 2.68902 34.8 

0.01 15.6637 15.4602 1.42732 2.07208 15.0 

0.015 10.1791 9.9526 1.37151 1.84096 8.34 

0.02 7.19287 6.99325 1.33111 1.71853 5.32 

0.025 5.3782 5.20902 1.29862 1.63887 3.70 

0.030 4.19035 4.0472 1.27072 1.57973 2.73 

0.035 3.36936 3.24723 1.24577 1.53189 2.11 

0.04 2.77774 2.67241 1.22286 1.49096 1.68 

0.045 2.33701 2.24521 1.20146 1.45459 1.38 

0.05 1.99969 1.91886 1.18123 1.42145 1.15 

0.055 1.73562 1.66382 1.16196 1.39075 0.98 

0.06 1.52492 1.46062 1.14349 1.36195 0.85 

0.065 1.35401 1.29603 1.12573 1.33470 0.75 

0.07 1.21341 1.16079 1.10858 1.30876 0.66 

0.075 1.09628 1.04826 1.09198 1.28395 0.59 

0.08 0.99762 0.95358 1.07590 1.26014 0.53 

0.085 0.91370 0.87314 1.06029 1.23722 0.49 

0.090 0.84167 0.84168 1.04511 1.21511 0.45 

0.095 0.77937 0.77937 1.03034 1.19374 0.41 

0.10 0.75087 0.6927 1.01596 1.17307 0.38 

 

The variance inflation factor in table 3, measures 

how much the variance of the estimated 

coefficients is inflated relative to the case when 

all the independent variables are uncorrelated. A 

good value for ridge parameter from both tables 

is the smallest value after which the estimates 

change slowly. Thus from the tables above, we 

observe that the ridge parameter which stabilizes 

the ridge trace should be 0.030. This result is 

confirmed in figure 1a and 1b. 

 

 
Fig.1a: Ridge Trace of estimate coefficient  

 



 

46 
 

Scientia Africana, Vol. 10 (No. 2), December, 2011.pp 42 - 47 

© Faculty of Science, University of Port Harcourt. Printed in Nigeria                                                  ISSN 1118 - 1931 

 

 

 

 

 

 
Fig.1b: Ridge Trace of VIF  

 

The regression coefficients when 030.0  are intercept 179490  , 92.18751  , 

053897.02  , 321.8263   and 314.2064  , and 53942.15  . Therefore, the ridge 

regression equation becomes 

54321 53942.1314.206321.826053897.092.187517949ˆ xxxxxy   

 

The ridge regression model is then compared to principal component regression which serves as a 

check model. 

 

Summary of the Regression Results: 

Comparing the results from Ordinary Least Square (OLS), Ridge Regression (RR) and Principal 

Component Regression (PCR), we have 

Ordinary Least Square (OLS) 

PFIINTINFGDPEXRBOP 38001.794.6219081.413200878.099.461327.7704   

Ridge Regression (RR) 

PFIINTINFGDPEXRBOP 53942.131.206321.826053897.092.187517949 

 

 

Principal Component Regression (PCR) 

PFIINTINFGDPEXRBOP 82186.1291.208319.87008353.0701.18809.17037   

Table 3 illustrates the models of the multicollinearity problem 

 

Table 3: OLS, RR and PCR Models 

 

 
0  1  

2  
3  4  

5  (%)2R  yxS  

OLS 7704.27 -4613.99 0.2009 -413.908 621.94 -7.38001 81.7 29069.4 

RR -17949.0 -1875.92 0.0539 -826.321 -206.31 -1.5394 63.2 25982.8 

PCR -17037.9 -1880.7 0.0835 -870.319 -208.291 -1.8219 54.4 32191.4 
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CONCLUSION 

High interpredictor correlations will lead to less 

stable estimate of regression weights. The 

relationship can be problematic if the regression 

weights variability obscures some functional 

relationship of interest to a researcher. This 

study revealed the importance of ridge trace in 

obtaining an efficient value of the shrinkage 

parameter. The ridge regression and the 

Variance Inflation Factor plots (Fig.1a and 1b), 

clearly indicate the impact of multicollinearity in 

all the five predictor variables. From the result 

obtained, it was found that the value of the 

estimates from ridge regression using the ridge 

trace is close to that obtained using the principal 

component regression and both methods 

maintained the same signs. We therefore 

conclude that the use of ridge trace can boost the 

ridge regression method as a vital alternative to 

an ordinary least squares (OLS) estimator in 

solving the multicollinearity problem.  
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