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ABSTRACT 

A fourth-order virial equation of state was combined with isotropic model potentials to 

predict accurate volumetric and caloric thermodynamic properties of propane in the gas 

phase. The parameters in the model were determined in a fit to speed-of-sound data alone; no 

other data were used. The approximation employed for the fourth virial coefficient included 

interaction graphsthat contained at most one triplet potential. Predicted ordinary second and 

third virial coefficients are in good agreement with the experimental data of Thomas and 

Harrison (1982). Predicted compressibility factors deviated from experimental data by less 

than 0.05 % up to densities of 2 mol./dm
3
, or0.4c. Predicted isobaric heat capacity were in 

agreement with experimental data to within uncertainties of 0.4 % at pressures up to 12 bar. 

As examples of results obtained, at 333.15 K the following properties at saturation were 

obtained: pressure, 21.162 bar; density, 1.1227 mol./dm
3
; compressibility factor, 0.68051; 

Cp/R = 14.8304, Joule-Thomson coefficient, 1.9265 K/bar and the speed of sound, 193.858 

m/s. 

 

Key Words: Propane, equation of state, model potential functions, virial coefficients, speed 

of sound. 

 

INTRODUCTION 

The virial equation of state (EOS) belongs 

to the class of methods that are based on 

rigorous theory.It can be derived from both 

the canonical (Temperley, 1979) and the 

grand canonicalensemble (Uhlenbeck and 

Ford, 1962), although the latter is the more 

elegant, using the method of cluster 

expansion. Its merits are that: 

(a) few parameters, usually no more than 5, 

are required to apply the method to pure 

fluids and these can be given physical 

meanings. 

(b) The method can predict, as opposed to 

correlate, all interesting thermodynamic 

properties to their experimental 

uncertainties. 

(c) The resulting intermolecular potential 

functions, which are by-products of the 

method, can find use in computer 

simulation methods and in the prediction 

of transport properties of fluids. 

(d) There is a clear theoretical guide as to 

how the method may be extended to 

mixtures. 
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On the other hand, the virial equation of 

state is defective in some respects and these 

include: 

(a) The method is capable of very high 

accuracy only at a limited range of the 

sub-critical and supercritical states. 

Nevertheless it is now known that it can 

give useful results in the supercritical 

states even at c(Wiebke et al, 2011). 

(b) It is not valid at liquid-like densities and 

so it is not, by itself, useful for vapour-

liquid equilibrium calculations. 

(c) The more useful implementations of the 

method require the investment of 

considerable computer resources 

(Monago and Otobrise, 2016). 

 

In a previous paper, the second and third 

virial coefficients and their first two 

temperature derivatives were related to 

model intermolecular potential functions 

and the parameters in the potential functions 

were determined from experimental acoustic 

data for propane (Monago, 2006). The 

method predicted the thermodynamic 

properties of propane over a wide range of 

temperatures only when the density is not 

greater than one-fifth of the critical value. In 

this paper, we extend the method by 

incorporating the 4th virial coefficient in the 

procedure, in the hope of extending the 

density region in which the method is 

capable of high accuracy. 

A more recent development is the use of 

Monte Carlo simulation techniques to 

calculate volumetric virial coefficients of 

real non-spherical molecules. Benjamin et al 

(2009) and Shaul et al (2011) have 

calculated volumetric virial coefficients up 

to the fifth order. However, the accuracy of 

calculated volumetric virial coefficients 

higher than the third cannot be verified 

because no experimental data on the higher 

volumetric virials exist. There is some 

evidence to suppose that higher virials 

calculated by simulation are as yet not 

sufficiently accurate. For example, second 

and third virial coefficients calculated by 

Kim et al (2013) for mixtures of methane 

and ethane disagreed with experiment by 

between 5 – 10 and 20 – 30 percent, 

respectively. Also, the pressures of water 

calculated by Benjamin et al (2009) using a 

fifth-order virial EOS were deemed accurate 

only up to c/2! 

 

Today, the virial EOS has found use in the 

gas-phase fiscal metering, or custody 

transfer, of natural gas in pipelines. Gas 

pipelines are characterised by high 

volumetric flowrates, which means that in a 

day an enormous amount of gas passes from 

the custody of one party to another. Current 

best practice requires custody transfer to be 

based on the actual amount of gas that is 

transferred; an even more stringent, but 

related, condition sometimes used is based 

on the grosscalorific value of the fuel. In 

general, custody transfer flowmeters are 

either of the mass or volumetric type; 

however, irrespective of the type, in 

addition to temperature, pressure and 

composition, density is required in order to 

determine the amount of gas that is 

transferred. Gas density can either be 

measured with a gas densitometer or 

calculated from an EOS. However, whether 

measured or calculated, the accuracy of 

density is crucial as even a small error can 

add up fast, leading to financial exposure for 

one party, or the other, in the custody 

transfer transactions. 

 

One of the joint venture partners in the 

Nigerian liquefied natural gas (NLNG) 

venture supplies a total of 1.2 billion 

standard cubic foot (BSCF) of gas per day 

to the NLNG plant from both on-shore and 
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off-shore gas facilities (NLNG, 2014). 

Assuming an accuracy of 0.1 percent in 

measurement, this level of uncertainty 

translates to a loss of some 1.2 MMSCF of 

gas per day and at current price of $3.3 per 

1000 cubic foot set by the Federal 

Government, the 0.1 percent inaccuracy 

translates to a potential financial loss of 

about 1.42 million (US) dollar per year to 

the partner or NLNG. The virial EOS 

enables the density of natural gas to be 

calculated with an accuracy of better than 

0.05 % within the so-called custody transfer 

region; namely, T/[K] = 300  30 and 

P/[MPa]  12 (Monago, 2012). 

 

In this work, parameters in the equation of 

state model were determined by a fit to 

speed-of-sound data.  The Choice of 

acoustic data makessense because, perhaps 

more than any other thermodynamic 

property, speed-of-sound values can be 

determined with exceptionally high 

accuracy over wide ranges of temperature 

and density, including the difficult low 

temperature states where conventional PVT 

measurements encounter the difficulty of 

gas adsorption. However, any 

thermodynamic property that is accessible 

with high accuracy can be made this basis of 

the procedure. 

 

THEORY 

The basic definition that relates equilibrium 

speed of sound to other thermodynamic 

properties is 

 

    
  

 
 
  

  
 
 
 

(1) 

  

Where, w is the sound-speed, Vis molar 

volume, s is entropy and M is the molar 

mass. Using standard thermodynamics, the 

above definitional equation may be 

transformed into a computational one, 

namely (Monago, 2005) 

 

    
   

 
 
  

  
 
 
 

(2) 

  

in which  = Cp/Cv is the ratio of the two 

principal heat capacity functions  and T is 

the thermodynamic temperature. 

Introducing the truncated virial equation of 

state, 
321 VDVCVBZ                (3) 

 

Where, B, C, D are, respectively, the 

second, third and fourth volumetric, or 

ordinary, virial coefficients; they are 

functions only of temperature. In terms of 

Eq. (3), one derives the following 

prescriptions: 
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Finally, 

 

r
2  MRTw                          (8) 

 

In Eq. (3) to (5), Z is the compressibility 

factor, r is dimensionless coefficient of 

isothermal compressibility and R is the 

molar gas constant.The other derived 

derivative properties required in the above 

expressions are determined from equations 

(3) and (4); the results are 
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Where, 

DCVBVVd 432 23    
In Eq. (6) and (9),B is the first temperature 

derivative of B and B is the second 

temperature derivative also of B;C and C, 

and D and D are similarly defined.  

The virial coefficients, which are functions 

only of temperature, are related to the 

potentials of interaction by integral 

expressions; in the language of linear graph 

(Monago, 2005; 2013): 

 

 
 

The equation for D is exact only at the level 

of graphs that contain at most one triplet 

potential; higher graphs have been 

neglected.For the pair-potential, we use that 

proposed by Maitland and Smith (1973), 

namely 
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It has four parameters; , the magnitude of 

the potential at its minimum; rm, the radial 

distance where  - and two shape 

parameters m and , which determine the 

repulsive exponent according to the linear 

equation 

 
  1 mrrmn                              (18) 

The shape parameters act also to simulate 

the contributions of multipoles that are 

higher than the dipole-dipole termof the 

attractive part of the pair-potential. Non-

additive three-body forces are modeled by 

the Axilrod-Teller triple dipole term; hence, 

 

 

   32313123211233 coscoscos31 rrr  (19) 

 

Equation (19) adds the fifth parameter to the 

model namely, 123, the three-body strength 

coefficient. 

 

NUMERICAL METHODS 

Parameters in the model potential functions 

were determined by solving the nonlinear 

least square problem 
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 RR
T2                               (20) 

 

Where, 

 

pii,expti,cali /)()( NNswwR x
 (21) 

 

Here, x is the parameter vector, wi,expt is the 

i-th experimental speed of sound value, wi,cal 

is the calculated value for the speed of 

sound at the i-th data point, N is the total 

number of acoustic data points, Np is the 

number of adjustable parameters in the 

model and si is the estimated standard 

deviation of wi,expt. 

Each wcal(Ti, Pi) was calculated in the 

following way. First, the virial coefficients 

B, C and D together with their first two 

temperature derivatives were calculated 

along the 7 experimental isotherms from the 

integral expressions that relate them to (rij) 

and 3. Next, at each experimental 

temperature and pressure of the data points, 

the following equation was solved for Z 

 

    0
3
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2234

 RTPDZRTPCZRTBPZZ    (22) 

 

Thereafter, V was calculated from Eq. (4), 

followed by Cv and Cp, respectively, from 

Eq. (6) and (7). Finally, wcal(Ti, Pi) was 

calculated from Eq. (8). 

The dimensionless statistic, 2
 was 

minimized using a method described by 

Fletcher (1987), which is a Newton-like 

method that incorporates a restricted step 

algorithm. The method requires values of 

the first partial derivatives of wcal(Ti, Pi) 

with respect to each adjustable parameters; 

these were calculated numerically using a 

first-order forward-difference formula. 

The virial coefficients and their temperature 

derivatives were calculated numerically by a 

method that combined the composite 

Simpson’s rule and a multi-panel Gaussian 

quadrature. The former was employed in the 

regions where the integrand is rapidly 

varying, while the latter was used in those 

sections where the integrand varied slowly. 

 

The Fit to the Speed of Sound 

The experimental speeds of sound data of 

Trusler and Zarari (1996) were given on 

seven isotherms in the region 

0.61T/Tc1.01 and c/12 and were 

estimated to posses a uniform standard 

deviation of 0.002ms
-1

. In a previous work 

Monago (2006), the best fit for propane was 

obtained when, one of the shape 

parameters in the pair-potential, assumed 

the value 12. Consequently, only four model 

parameters were allowed to vary in the 

present fit,was assigned a fixed value of 

12.
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Fig. 1: Fractional uncertainties,w/wexpt, in experimental speed-of-sound of propane from the fit. w = 

wexpt–wcal. 

 

The final parameter values obtained were as 

follows 
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The maximum absolute deviation was 0.006 

and 
2
=1.6. The deviations of the 

experimental speeds of sound from those 

given by the final model are displayed in 

fig. 1. 

 

COMPARISON WITH OTHER 

EXPERIMENTAL DATA 

All residual thermodynamic properties of 

gaseous propane may be calculated from the 

present truncated virial equation of state; 

however, to calculate caloric properties, one 

needs values for the perfect-gas heat 

capacity at each temperature of interest as 

an independent specification. As mentioned 

previously, the perfect-gas heat capacity 

required for parameter optimisation were 

obtained from Trusler and Zarari (1996), 

who derived their values from a low-density 

analyses of their acoustic data. 

Trusler(1997) has parameterised these heat 

capacity values for use in the temperature 

range 225T/K375. We have used 

Trusler’s expression in calculating pg
pC  for 

use in the calculation of all caloric 

properties presented in this paper. 

 

Experimental volumetric data for propane 

are available from the work of Thomas and 

0 0.3 0.6 0.9

P/[MPa]

-30

-15

0

15

30

1
0

6


w
/w

                         Isotherms
225K
250K

275K
300K

325K
350K

375K



97 
  

 

Scientia Africana, Vol. 15 (No. 2), December 2016. Pp 91-103 

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

 

Harrison (1982); their data extended in 

temperature between 258.15T/K623.15 

for the density range n 0.8mol dm
-3

. The 

fractional uncertainties in the experimental 

compressibility factor were quoted to vary 

between (0.3-3) x 10
-3

, which depended on 

temperature and density. The greatest 

density along any given isotherm employed 

in this work in the parameter optimization 

was not greater than c/12; consequently, 

the minimum density of the data of Thomas 

and Harrison(1982)is more than twice the 

maximum density along any of the 7 

isotherms used for parameter optimization. 

Accordingly, comparison of the predictions 

of the equation of state with the data of 

Thomas and Harrison provides a severe test 

on the ability of the model to extrapolate not 

only in density, but also in temperature. Fig 

2 shows deviations, Z, in compressibility 

factors along four isochores from Thomas 

and Harrison; namely, n/[mol dm
-3

] = 0.8, 

1.0, 1.5, and 2.0. This figure suggests that 

compressibility factors calculated with the 

 

 
Fig.2: Deviations in compressibility factors of propane predicted by Eq. (23) along four 

isochores. 

 

present equation of state is not in error by 

more than 0.03 percent in the whole of the  

supercritical temperature region at densities 

of 2 mol dm
-3

 (0.4c) or less. Indeed, the 

maximum density at which the equation of 

state may predict Z that falls within the 

experimental uncertainties is c/2 for T/K 

400; this is shown in fig 3. 

350 450 550 650

T/[K]

-0.0005

0

0.0005

Z

  Isochore(mol/l)
0.8
1
1.5
2



98 
 

 

Monago K. O.: Thermodynamic Properties of Gaseous Propane from Model Intermolecular Potential Functions. 
 

 
Fig.3: Deviations in compressibility factors of propane predicted by Eq. (23) from 

experimental values in the temperature range 369. 85 – 623.15 K.. 

 

 

Furthermore, calculated values of Z are not 

in error by more than 2 percent at c for T/K 

450. One may, therefore, conclude that the 

virial equation of state is convergent in the 

supercritical temperature region up to at 

least c. 

 

In the sub-critical region, Thomas and 

Harrison(1982) reported vapour pressures 

P of propane at temperatures T/K258.15 

and orthobaric vapour densities for T/K 

323.15. From these data, we have 

calculated compressibility factors for the 

saturated vapour, Z,exp, with which we 

compared those predicted by the present 

model. The fractional error in Z at 323.15K 

was 0.0008; at 333.15K the error was 0.002. 

These results are in apparent contradiction 

of those obtained in the supercritical 

temperature region and those obtained 

previously with a virial equation of state 

that was truncated after the 3rd coefficient 

(Monago, 2006). In the latter case, the errors 

in Z are 0.0002 and 0.0006 at 323.15K and 

333.15K, respectively. It appears, therefore, 

that the present virial equation of state, 

truncated after the 4th coefficient, is less 

accurate at sub-critical temperature states 

than one that is truncated after the 3rd 

coefficient. 

 

Experimental isobaric heat capacity data at 

four sub-critical isotherms in the 

temperature range 293.15T/K 353.15 are 

available from the work of Ernst and 

Büsser(1970); these data have a claimed 

uncertainties of 0.1 percent. The 

experimental Cp data are compared with 

those predicted from our model in Fig 4. 
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Fig 4: Fractional errors in isobaric heat capacity of propane predicted from Eq. (23) with 

respect to the data of Ernst and Busser (1970) in the temperature range 293 – 353 K. 

 

These results, like those calculated with a 

three-term virial equation (Monago, 2006), 

generally, agree with the experimental data 

of Ernst and Young(1970) to within 0.2 

percent. 

 

The Virial Coefficients of Propane 

Thomas and Harrison(1982) determined the 

second virial coefficients of propane in the 

temperature range 323.15T/K 623.15, the 

third coefficients in the range 343.15T/K 

623.15 and the fourth coefficients in the 

range 373.15T/K 623.15 from the 

analyses of their volumetric data. 

 

0 3 6 9 12

P/[bar]

-0.4

-0.2

0

0.2

0.4

1
0

0


C
P
/C

P

     Isotherm
293.15K
313.15K
333.15K
353.15K



100 
 

 

Monago K. O.: Thermodynamic Properties of Gaseous Propane from Model Intermolecular Potential Functions. 
 

 
Fig 5: Deviations in experimental ordinary second virial coefficients of propane with 

respect to values predicted by Eq. (23).  

 

Fig 5 is a deviation plot, B = Bexp-Bcal; 

where, Bexp are values from Thomas and 

Harrison(1982) and Bcal are those calculated 

from the present model. The estimated 

absolute errors inB,B, vary between 

0.75cm
3
 for T/K  450 and 0.2cm

3
 mol

-1
 for 

T/K> 450. When these values for B are 

compared with analogous values for a three-

term virial equation of state, they represent 

an increase in the uncertainties for Bcal of 

about 50 percent in the first temperature 

range and a decrease of some 20 percent in 

the second range. 

 

The values for C predicted by the present 

model are compared with those of Thomas 

and Harrison in fig6; the corresponding 

deviation plot is displayed as fig7. The 

estimated absolute errors in Ccal are 

1500cm
6
 mol

-2
 in the range T/K  420 and 

300cm
6
 mol

-2
 in the range T/K> 420. 

 

These errors correspond to an increase of 

about 50 percent at T/K  420 and a 

decrease of some 40 percent at T/K> 420 

when they are compared with analogous 

results obtained with a three-term virial 

equation model. 
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Fig 6: Experimental and predicted ordinary third virial coefficient of propane as a 

function of temperature. —————, this work; ●, Thomas and Harrison (1982). 

 

The values for the fourth virial coefficient 

obtained from the present equation of state 

are compared with the data of Thomas and 

Harison(1982) in fig8. In interpreting this 

diagram it may be useful to recall that non-

additive interactions account for  30 percent 

of the values of C near the critical point of 

argon; therefore, it is possible that inclusion 

of the neglected graphs in D will improve 

agreement between experiment and theory.

 

 
Fig 7: Experimental and predicted ordinary fourth virial coefficient of propane as a 

function of temperature. —————, this work; ●, Thomas and Harrison (1982). 

250 350 450 550 650

T/[K]

-0.015

0

0.015

0.03

C
/[d

m
6 m

ol
-2

]

280 380 480 580

T/[K]

-20

0

20

10
4 D

/[d
m

9 m
ol

-3
]



102 
 

 

Monago K. O.: Thermodynamic Properties of Gaseous Propane from Model Intermolecular Potential Functions. 
 

At present we cannot calculate the 4th virial 

coefficient with exactness and it is 

reasonable to substitute a linear 

approximation in three-body non-additive 

forces to D for the unknown value. 

However, does this approach necessarily 

lead to a more useful theory? 

When a linear approximation to D is 

employed, the resulting equation of state for 

propane is less accurate at sub-critical 

temperatures than if D is neglected 

altogether. This is demonstrated by the 

calculated values for B and C which 

exhibited greater discrepancies with 

experimental values; also, the resulting 

equation of state predicted experimental 

orthobaric vapour density only at T/K 

<323.15, whereas the three-coefficient 

analogue agreed with experiment up to T/K 

<333.15.  

 

Conversely, the equation of state for 

propane constructed with the linear 

approximation performed better at 

supercritical temperatures. The calculated 

values ofB and C for this temperature range 

are in closer agreement with those 

determined from volumetric data than 

comparable virial coefficients from a three-

coefficient equation of state. Furthermore, 

the maximum density at which the equation 

of state agree with experimental volumetric 

data increased to 2mol/dm
3
, or 2c/5; this 

may be compared with the three-coefficient 

equation of state that predicted experimental 

volumetric data up to c/5. 
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