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Abstract 
This paper presents a tool for analyzing student teachers’ concept images of the definite integral. The tool shows the 
basic concepts that underpin the concept of the definite integral and displays them in terms of process and object 
conceptions within various representations in the context of area under a curve. The use of the tool is exemplified by 
an analysis of three student teachers’ concept images exhibited during an interview that I held with them at the end of 
one-semester first-year calculus course. The tool can enable mathematics educators to analyze student teachers’ 
concept images of the definite integral. The findings also can orient them in revisiting their teaching strategies in 
order to improve student teachers’ concept images developed during a given period. 
_____________________________________________________________________________________ 
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Introduction 
Kigali Institute of Education is a Rwandan Higher Learning Institution that implements mainly Pre-service Teacher 
Education Programmes for teachers of Secondary schools and Teacher Training Colleges. During their Secondary 
Education, the mathematics student teachers are taught the notions of functions, limits, derivatives and integrals. 
However in most of secondary schools, the teaching and learning of mathematics is of the format “definition-theorem-

proof-applications” (Delice & Sevimli, 2010), a format which does not generally favour the conceptual understanding 
but rather the instrumental one. Mathematics Educators and other researchers have undergone various researches 
aiming at finding out how calculus can be taught with understanding. 

Research on Teaching and Learning Calculus 
Four categories of studies deal with the teaching and learning of specific key concepts of calculus. The first category 
contains studies about the concept of a limit and the notion of infinity (Bezuidenhout, 2001; Dubinsky, Weller, 
Mcdonald, & Brown, 2005a, 2005b; Sierpinska, 1987). The second category concerns studies about the concept of 
the derivative (Likwambe & Christiansen, 2008; Ndlovu, Wessels, De Villiers, 2011; Orton, 1983a; Zandieh, 2000). 
The third category regards studies about the concept of the integral. This category can be subdivided into three 
subcategories, namely studies regarding the concept of the definite integral (Burn, 1999; Delice & Sevimli 2010; 
Nguyen & Rebero, 2011; Orton, 1983b; Rasslan & Tall, 2002; Rosken & Rolka, 2007; Sevimli & Delice, 2011), 
studies regarding the concept of the indefinite integral (Koepf & Ben-Israel, 1994), and studies regarding the 
Fundamental Theorem of Calculus (Thompson, 1994). The fourth category comprises studies that deal with the 
whole range of the key concepts of calculus (Artigue, 1991, 1996; Carlson, Oehrtman & Engelke, 2010; Ferrini-
Mundy & Gaudard, 1992; Lam, 2009; Naidoo & Naidoo, 2007; Tall, 1992, 1996).  However, the boundaries of the 
above categories are not firmly fixed since a study of a given concept can touch on any other concept for the sake of 
coherence among the concepts of calculus. Moreover, given that the idea of a function underlies almost all the 
concepts of calculus, it is important to mention here studies that dealt specifically with the concept of a function (e.g., 
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Aspinwal, Shaw, & Presmeg, 1997; Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Vinner & Dreyfus, 1989). All 
these researches focus on difficulties met by students and teachers while learning and teaching calculus topics and 
strive for finding ways and means to overcome them. The current research would like to contribute to this endeavour. 

Theoretical frameworks 
The tool that I am presenting in this paper rests on my own conceptual analysis of the definite integral and on three 
existing theoretical frameworks in mathematics education, namely, the notion of the concept image defined by Tall & 
Vinner (1981), the operational and structural conception described by Sfard (1991), and the Zandieh’ s (2000) 
framework for analyzing students’ understanding of the concept of the derivative. 

Concept image  
According to Tall and Vinner (1981), an individual’s concept image for a given concept is “the total cognitive structure 
that is associated with the concept, which includes all the mental pictures and associated properties and processes” 
(p.152). They added that the individual’s concept image evolves as the individual becomes more experienced. This 
experience can be gained from personal observations, other people or books. They used the expression “evoked 
concept image” to indicate the portion of the concept image that the individual exhibit at a particular time (ibid.). 

Operational and structural conceptions 
According to Sfard (1991), an individual is said to have a structural conception of a mathematical concept when he or 
she conceives the mathematical concept as if it is an abstract object in a static way whereas the individual is said to 
have an operational conception of the same concept when he or she focus the thinking on the processes, algorithms 
and actions contained in the concept. Sfard (as quoted by Zandieh, 2000, p.107) added that an individual is said to 
have a pseudo structural conception when the object conception manifested by that individual does not refer to the 
objects of lower levels and to the processes that led to it.  Zandieh (2000), on her side, uses the term “pseudo-object” 
(p.107) instead of the term pseudostructural object and described it as an object conception which does not refer to 
or not imply the underlying process. Alternatively to the term pseudostructural conceptions, Sfard and Linchevski 
(1994) used the term “semantically debased conceptions” (p. 220) because “the new knowledge remains detached 
from its operational underpinnings and from the previously developed system of concepts” (p. 221).  The meaning of 
the equality symbol as described by Kieran (1981) is of great importance in facilitating the distinction between the two 
conceptions. 

Description of the tool for analysing students’ concept images 
Inspired by the above mentioned theoretical frameworks, a conceptual analysis of the concept of the definite integral 
led me to conceive a three dimensional matrix with process-object layers in rows, and with context and 
representations – where unlike Zandieh, I make a distinction between the two - in columns. In the resulting cells, the 
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various aspects of students’ evoked concept images will be illustrated in diagrams by different symbols that I will 
present in the next section. 
 To determine the layers of the definite integral, I consulted textbooks and mathematicians. We find 
variations of the following definition of the definite integral in textbooks; however, all of them represent the same idea. 
I used the following one in the construction of my tool. 

The definite integral of f  from a to b is  
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for any f defined on [ ]ba,  for which the limit exist and is the same for any choice of evaluation points 

nccc ,......,, 21 . (Smith & Minton, 2002)  

 An analysis of the components of the above formula led me to identify the layers of processes and objects 
of the definite integral. These process-object layers are given in the first column of the mentioned illustrative 
diagrams 1 to 4. The other columns contain the context and the representations. Below, I present each of the 
components of the tools. 

Context 
A context is a ‘text’ that comes before, after or with the ‘text’ expressing the concept at stake. It can be that the 
evoked context is appropriate or inappropriate with regard to the concept, or it can be that no context is evoked to 
accompany the expression of concept. In the case of the concept of the definite integral, there are a variety of 
appropriate contexts. Firstly, there are contexts of a pure mathematical nature: an area under a curve of a function, a 
volume of a solid with a certain base and height, a length of a curve of a function from a point to another point, an 
area between two curves from a point to another, a volume of a solid of revolution, and the like. Secondly, the context 
can be within the probability and statistics domain: the triad probability, probability density function and the random 
variable; the mean of a random variable with a given probability density function on a given interval.  Thirdly, the 
following triads in physics constitute appropriate contexts for the definite integral: distance-velocity-time, velocity-
acceleration-time, Energy-power-time, work-force-distance, and mass-density-length.  
 Other contexts could be population growth at a given rate in time, disintegration or elimination of a 
substance (chemical or biological) at a given rate in time. In summing up, an appropriate context for the definite 
integral involves a triad of a quantity to be determined, a quantity expressing a certain relation between variables, 
and an interval of the independent variable.  An inappropriate context for the definite integral is one which does not fit 
in the above mentioned structure. 
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Representations 
A representation of a concept is a way used by people to express it. In the case of the concept of the definite 
integral, at least four representations are likely to be used. These representations are symbols, graphics/diagrams, 
numbers, and words. 
Symbolical representation is the way people combine letters and other symbols specific to mathematics to express 
the concept at stake. Numbers can also be used in this representation but not for the sake of calculations. These 
symbols form a specific mathematical language to express the definite integral. In the case of the definite integral, the 

symbolical representation is ∑∫
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Graphical/visual representation involves graphics or diagrams to express the mathematical concept at stake. In the 
context of area, the graphical representation of the definite integral is a diagram that represents the area under a 
given curve for a given interval.  

Numerical representation refers to the use of numbers, generally presented in tables after some calculations, to 
express the mathematical concept at stake. 

In the verbal representation, people use words to express the mathematical concept at stake. In this case of the 
definite integral, a verbal representation can be to express the definite integral as the overall impact on an entity of 
the rate at which it changes. Obviously, the verbal representation will also depend on the context, so that in relation 
to distance-velocity-time, it could be the overall distance covered with the changing velocity in the given time interval. 
 However in practice, none of these representations stand alone; students or other mathematicians often 
move through representations to express their ideas, and one could argue that it is in the linking of representations 
that a concept ‘comes alive’ to us. The tool shows which representations are used by students. However, it fails to 
show the hierarchy of the representations, that is, which comes before the other in the students’ evocation of the 
concept. This issue is discussed by Sevimli and Delice (2011) in terms of what representation is preferred by the 
students. 

Process-object layers of the definite integral  
During my conceptual analysis of the definite integral concept, I identified four process-object layers, namely, the 
partition, the product, the sum, and the limit.  Each process aspect and object aspect for each layer can be described 
in each representation.  
 I say that a student demonstrates the process aspect of the evoked concept in a given layer when the 
student evokes the corresponding operations. Those operations are dividing or partitioning for the partition layer, 
multiplying for the product layer, adding for the sum layer, and ‘limiting’ for the limit layer. I understand the process of 
limiting as the operation of repeating the previous calculations in order to better and better approximate values and 
finally seeing the value to which the approximate values tend. Notice the use of the gerund to express process in 
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contrast to the names of the process-object layers. Also, the use of the symbol of equality (Kieran, 1981) between the 
two types of conceptions is an apparent manifestation of the exhibition of both types of conceptions of a given layer. 
 When the student evokes the operation as said above and the result of the operation, I said that the student 
possesses both the process and the object conceptions of the evoked concept in the given layer. For some examples 
in the graphical/visual representation, the objects are subintervals for the partition layer, areas for the product layer, 
total approximate area for the sum layer, and the exact area for the limit layer.  
 The possession of the two conceptions implies a highly developed concept image. In fact, to conclude that 
an individual has a personal concept image in agreement with the formal concept image, the individual has to 
demonstrate the two conceptions. Demonstrating the object conception only leads to the presumption that the 
individual has only a pseudo-object conception. The same observation of partial comprehension of the concept can 
be made for a person that displays only the process conception and appears to have failed to reify that process into 
an object. This person will struggle to proceed in conceptual learning within calculus because he or she will not have 
an object on which to act. Therefore, in order to have all the interrelations that link the underlying elements of the 
concept, the ideal is for the individual to have both process and the object conceptions. 

Diagrams to illustrate student teachers’ conceptions 
Like Zandieh (2000), I will use a three-dimensional matrix in which in the rows of the matrix, I will put the successive 
processes and objects which form the layers of the definite integral, whereas in the columns I will put the contexts 
and the representations. To illustrate the evocation of both the process and the object conceptions I will put a shaded 

circle (• ) in the intersection of the row of the concerned layer and the column of the representation in which the 
evocation is made. When a student teacher mentions only the result of the operation without evoking that operation, 
which means that the students demonstrated a pseudo-object conception of the evoked layer, I will illustrate this 

concept image by an empty circle ( o ) placed in the intersection of the relevant cell. When a student teacher 

evokes only the operational conception, I will use a crossed circle (⊗ ). 

Research question 
The use of the above-described tool helps to answer the following research question: What concept images do 
mathematics student teachers evoke after a one-semester calculus course? 

Research Methodology 
For this research, I prepared and conducted a teaching experiment on a first year calculus course at Kigali Institute of 
Education, Rwanda. Before, during and after the course, I interviewed the eleven student teachers that were 
registered for the course in the Department of Integrated Science Education. These student teachers were an 
opportunistic sample for my research as they were students for whom their first year university coincided with my 
period of collecting data.  
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 I spent 30 hours on teaching and reviewing functions, limits, and derivatives, and 32 hours on teaching 
integrals. At the end of the experiment, I held an interview with the student teachers to identify what concept images 
they would then exhibit at that time. In the interview room, student teachers were given papers, pencils, and a ruler in 
case they would like to write and draw. All the interviews were audio taped. They were conducted and transcribed in 
French. Later on, they were translated into English. This is the reason the students’ scripts are in French. The 
analysis shown in this paper is based on students’ scripts and translation of transcripts. The coding of the transcripts 
is based on the meaning of the evoked words in context rather than simply choice of vocabulary. In the next section, I 
present the findings of this research. At the same time, I exemplify the use of the tool. 

Findings 
To identify the student teachers, I used pseudonyms of alphabetical letters: B, C, D, E, F, G, H, J, K, M and N.  Three 
of student teachers have been selected to exemplify the analysis and the illustrations that I did using the previously 
described tool. The student teacher B has been selected as an average student, the student F as a very good one 
and the student teacher K as the weakest one. The interviewer is identified by the pseudonym FH. In the extracts 
from the interviews I used the following notations [ ], {.}, (....) and (with words) to respectively mean comments or 
words added by the researcher, short pause, irrelevant or empty words skipped by the researcher and words that 
were articulated by the interviewee to explain or to change representation. 

Concept images evoked by the student teacher B 
During the interview that I held at the end of the teaching experiment, student B exhibited the following concept 
image of the definite integral illustrated in diagram 1. 

1. FH:  And if you were a teacher and your pupil asked you 
to explain to him/her what an integral is; what will you 
tell him/her?  

2. B:  I will tell him/her that the integral is defined as the 
area which is under the curve and that area is  
      delimited by the axis x and thus it is the area which 
delimited by the x-axis and the curve. 

3. FH:  And how will you explain him/her that it is the area 
under the curve? 

4. B:  By sketching a diagram [student B sketches the 
following diagram].  
Here I chose a curve that has a form of a parabola that 
passes through the point zero. Then considering the part 
which is shaded, it is that part that I will consider as being 
the area under the curve. 
5. FH: And how will you tell him/her that the integral is the area?  
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6. B: In view of that this part seems not to have any form with regard to geometric figures, I will explain that this part 
can be subdivided into geometric figures for which one can calculate areas. Those figures are rectangles. Then 
calculating area of each rectangle and summing these areas, one obtains the area under the curve. The area being 
the summation of product of heights and bases of these rectangles {.} and from here, I will explain the two types of 
integrals, the indefinite and the definite integral. (…) 
7. FH: and for the definite integral? 
8. B: For the definite integral, one has also the elongated S always with the same function; here we have the 
lower limit and the upper limit.  This will be equal to the limit of the summation of f of xi multiplied by the variation 

when n tends to infinity. [Bernard writes
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]. Here concerning this definite integral, one 

obtains a value because one fixes the limits…the boundaries, the lower limit and the upper limit. In this case the area 
will be delimited by the curve, the x-axis and the two lines which are determined by the boundaries, thus the vertical 
lines that pass by the limits.  
 In line 2, student B mentioned an appropriate context for the definite integral context when he said that the 
integral is the area under the curve and delimited by the x-axis.  
 In line 4, student B sketched a parabola, shaded the area under the parabola and used that shaded part to 
provide explanation in that graphical representation. In line 6, he talked about subdividing this part into geometric 
figures in order to calculate the areas and he continued by saying that those figures are rectangles (“…subdivided 
into geometric figures for which one can calculate areas. Those figures are rectangles”). Therefore I put a shaded 
circle in the cell intersecting the row of partition with the column of graphical representation. 
 In line 6, student B evoked the process of “summing [adding]” and the resulting object (“area under the 
curve”). For that reason I put a shaded circle in the cell intersecting the row of the sum layer and the graphical 
representation, as well as a shaded circle in the cell intersecting the row of the product layer and the column of the 
graphical representation because, in line 6, student B said that “the area being the product of the heights and the 
bases” which evokes the process of multiplying and the resulting object of area. 
 In line 8, student B evoked the formula that expresses the definite integral concept by saying and writing the 

symbols ∑∫
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).(lim)(  and finally said in the same line 8, that “one obtains a value”. Therefore, 

he expressed both the operational and the structural aspects for the layer of limit in symbolical representation. To 

indicate the conceptions expressed by student B, a shaded circle, (• ), is put in the cell intersecting the layer of 
the limit and the column of the symbolical representation.  For the layer of partition student B evoked a pseudo-object 

by writing the variation x∆  without evoking the underpinning operations. Then I put an empty circle (o ) in the 

corresponding cell. In the contrary for the layers of product and sum, Bernard evoked only the operations (“…the 
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summation of f of xi multiplied by the variation…”, line 8). Therefore, I put a crossed circle (⊗ ) in the appropriate 

cells.  

Diagram 1: Concept images of student B evoked after the teaching experiment 
Process – 
Object 
Layers 

Context: Area under a curve  
Representations 

Verbal (oral and 
written words) 

Graphical/Visual 
(geometrical figures) 

Numerical (numerical 
application) 

Symbolical (generalization) 

Partition  •  
 o  

Product  •  
 ⊗  

Sum  ⊗  

 ⊗  
Limit    •  
 
On this diagram, we notice the evocation of layers in the graphical and the symbolical representations as shown on 
the student’s script. 

Concept images evoked by the student F 
1. FH: If you were a teacher and your pupil asks you what integral is, what would you tell him? 
2. F: In explaining the integral I will tell him that the integral is the area; it is a summation of areas    
                  from any limit to another one. 
3. FH: How will you explain that? 

4. F: I could sketch a function, for example x square over two ( 2

2x
) [Ferdinand draws the                                 

                  diagram below].  
5. F: As it is practicable, I will start by subdividing the area, for example, the pupil will ask what integral is, I will    
                   tell him that it is the area delimited by the curve, from the lower limit which is observed on the x-axis until   
                   any upper limit. For example I can point the lower limit as equal to 0 and the upper limit as 4. And then I   
                  delimit and I shade the area and I proceed as we learned. I can do the first subdivision. 
6. FH: You explain to your pupil who is supposed not to know. 
7. F: Yes. Firstly, I will tell him that the integral is area. Secondly I will show him how to calculate this area. (…)   
                   but after having done a subdivision one noticed that we subdivided the interval into 4 subintervals with    
                   length of 1cm each and I will show how one can calculate. This is called part one (I), part Two (II), part | 
                   Three (III), part Four (IV). [Showing the 4 parts on the diagram]. (…) 
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8. F: (…) Thus I will show how to calculate area I. The base is equal to 1, the height will be for example 0.4. 
Then area I is equal to the base 1cm times the height which is equal to 0.4 and it will be equal to 0.4 (

24.04.01 cmcmcmx = ).  Area II. Approximately its height is equal to 1 then area II is equal to 1cm, the base does 

not change, times the height equals to 1cm it will 1 cm ( 
2111 cmcmcmx = ). Area III. If one projects the height, we 

see that it will be equal to almost 1.8 thus the area will be equal to 1cm times 1.8 cm square ( 
28.18.11 cmcmcmx = ). If one projects for the fourth rectangle one will find the image is equal to almost 2.8, thus 

the area IV will be equal to 1cm times the height which is almost 2.8cm which will be equal to 2.8 cm square (
28.28.21 cmcmcmx = ).  

9. F:  And then I will show him that the sum of our rectangles will be the sum of the parts for which I have found 
the area above. It will be equal to the total area for the first subdivision is equal to 

22222 68.28.114.0 cmcmcmcmcm =+++ .  I will do another subdivision.  
10. F: (…) I will explain to him that even if we have calculated this area I will show him that the area is not the 
exact area because we included the parts above the curve. Thus I will tell him that if one makes another subdivision, 
in subdividing each interval into two parts and proceeding in 
the same way of taking heights as the right side, the area will 
decrease. To show him how the area varies I will shade the 
area which has been retrenched (lost), I will show that these 
areas are not included (showing diagram) with respect to the 
first subdivision. At the first subdivision we had four 
rectangles, thus at the second subdivision, we will have eight 
rectangles. To find the area of each rectangle we will take 
4cm divided by the number of rectangles equals 8 and then 
find 0.5 cm which is the base for the 2nd subdivision. Then 
we will proceed in the same ways taking the height of each 
rectangle and calculating area of each rectangle. 
11. F:  The total area for the 2nd subdivision will be equal to sum of areas that we calculated: 

2222222222 7.54.11.19.075.05.035.02.01.05.0 cmcmcmcmcmcmcmcmcmcm =++++++++  

12. Then we will proceed in the same way in subdividing.  
F: I will try to compare the area that I found in the 1st subdivision, and the area found in the 2nd subdivision;  
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13. F:  Then I will try to show him how the area decreases as long as we subdivide. for example as one can see, 
for the 1st subdivision the total area was 6cm2, for the 2nd subdivision the total area was 5.7cm2, thus the area is 
decreasing; because as long as one subdivides, one reduces the supplementary that remains above the curve. 
14. F:  Then I will try to show how one can find a general formula which can be used to calculate areas. For 
example, if one considers the 1st subdivision, one sees 
that one has a curve like this one (see graph on script). 

As we have said cmB 11 = , cmB 5.02 = ,  and 

cmB 25.03 = . One will continue the subdivision at the 
infinity, for example to the subdivision n the base will be

cm
n

Bn
4

=
, then as a general formula to find the base 

at nth subdivision we will have n
xx

B n
n

0−
=

 where n 
is the number of rectangles. 
15. F:   As we saw that the area tends to decrease as 
long as one does subdivision and that it decreases approaching the exact area; thus after having done many 
subdivisions, the pupil will discover that as long as one continues to subdivide the area will tend to the exact area. 
16. F:   Then I will explain the notion of limit. I will show him that the exact area will be reached when the number 
of subdivision will be to the infinity. Then I will introduce the notion of limit. I will tell him that the exact area will be 
equal to the limit when n tends to infinity, thus when the number of subdivision tends to infinity, of the summation of 

height thus the number of rectangles ( Exactarea = 
∑
=

∞→

n

in
Bnhi

1
.lim

). Here also as it is visible, one sees that 
heights hi times base Bn because it is the nth subdivision; as it is visible on the graph, one sees that hi corresponds 
to f of xi.  
17. F: Thus saying that limit when n tends to infinity of the summation of heights times base at the nth 

subdivision i varying from 1 to n ( 
∑
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n
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 ) it is the same like to say that it is the limit as n tends to infinity of 

the summation i varying from 1 to n of f of xi multiplied by the base at the nth subdivision ( 
∑
=
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n
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Bnxif
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).(lim

. Now 
then, it will be the question of calculating the xi. (….).  
18. F: Thus I will show him that except the integral one can calculate area under the curve using the application 
of limits. This is an application of limits. 
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An analysis similar to the one used while analysing the concept images of the student B leads to the 
following diagram 2 illustrating the concept images of student F in this concept images we notice the evocation of 
many layers in various representations. 

Diagram 2: concept images of student F evoked after the teaching experiment 

Process – 
Object 
Layers 

Context: Area under a curve  
Representations 

Verbal (oral and 
written words) 

Graphical/Visual 
(geometrical 
figures) 

Numerical 
(numerical 
application) 

Symbolical (generalization) 

Partition  •  •  •  
Product  •  •  ⊗  

Sum  •  •  ⊗  

Limit  •  ⊗  ⊗  

 
Concept images evoked by student K at the end of teaching experiment 
19. FH: If you were a teacher and your pupil asks to explain to him what integral is, what will    
                                       you tell him? 
20. K: I will tell him that it is the summation of subdivisions of the area. 
21. FH: How is that? 
22. K: For example if I have the area delimited by a line, I will explain to him first of all that there are two types of 
integrals, the definite integral and the indefinite integral. For the definite integral I will tell him that it is an integral that 
possesses limits; a lower limit and an upper limit. Then to find the area, one proceeds to subdivisions to find the 
actual values. Then the sum of those subdivisions to find the area is the integral. 
23. FH: The sum? 
24. K: Yes; or the summation. 

 The student K at the time of the interview did exhibit neither a graphic nor a symbol; I considered that his 
concept image was evoked in the verbal representation. The words of summation in line 2 and the words “one 
proceeds to subdivisions” in line 4 refer to the processes of the layers of sum and of partition. Hence I used a 
crossed circle to illustrate this evoked concept image. Also the context of area he referred to in line 2 was not clearly 
articulated as a context to introduce the concept of the definite integral. Thus in the corresponding cell I put a tree-like 
symbol in the illustrative diagram below. 

 
 



Rwandan Journal of Education Volume 1 Issue 2 

 

49 
 

Diagram 3: Concept images of student teacher K evoked after the teaching experiment 
Process – 
Object Layers Context: Area under a curve  

Representations 
Verbal (oral and 
written words) 

Graphical/Visual 
(geometrical figures) 

Numerical (numerical 
application) 

Symbolical 
(generalization) 

Partition ⊗  
   

Product     
Sum ⊗  

   

Limit     
Synopsis of the concept images evoked by the eleven student teachers 

An analysis similar to the one used above was applied to the interviews of all the eleven student teachers. The 
following diagram illustrates their evoked concept images. The first and the last rows show the pseudonyms of the 
students, the second row shows the context used by the students to explain the definite integral and the remaining 
rows display the representations in which the layers were evoked.  

Diagram 4: Synopsis of 11 student teachers’ evoked concept images at the end of the teaching experiment 
Student teachers B C D E F G H J K M N 

Area under a curve         
 

  

V 
E 
R 
B 
A 
L 

Partition         ⊗
 

  

Product             

Sum          ⊗
 

  

Limit      o  
      

G 
R 
A 
P 
H 
I 
C 

Partition •
 
•

 
•

 
•

 
•  •  •  •  

  •  •  

Product •
 
•

 
•

 

 •  
 •  

    

Sum ⊗
 

 ⊗
 

 •  
 ⊗
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In the next section, I will give the interpretation of the above diagrams 1 to 4. 

Interpretation of the findings 
Considering all the diagrams above, I notice that the student teachers evoked different concept images. This is in 
accordance with the understanding of the concept image as described by Tall and Vinner (1981) where they said that 
the concept image develops as the individual becomes more experienced through personal observations, other 
people or books. Also, the evoked concept image depends also on the prompting conditions and circumstances. It 
can also be noted that all the student teachers evoked the context of area under a curve. This was in fact the context 
that I used during my teaching experiment. Considering the diagram 4, the process and the object of the layer of 
partition has been evoked by 10 out of 11 student teachers in the graphical and the symbolical representations. This 
may mean that the student teachers have started to understand that this layer is fundamental for the explanation of 
the definite integral. 
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 Regarding the layer of limit, 7 out of 11 student teachers evoked the process conception and the object 
conception in the symbolical representation as manifested by the evocation of the symbol of the definition of the 
definite integral as a limit of sum. 
 As said in the introduction of the presentation of findings, student B has been selected as an average 
student teacher. Like most of the student teachers, the student B evoked his concept image in two representations, 
namely, the graphical representation and the symbolical representation as it can be seen from the script he produced 
during the interview. Some words were also used to articulate some layers in these representations but I consider 
that the main ideas were expressed in the other representations and not in words. According to Anderson et al. 
(2001), translating from one representation to another is a cognitive process of the category of understanding in the 
Bloom’s taxonomy.  
 Regarding student H whom I selected as a very good student, I noticed that in addition to using geometrical 
and symbolical representations in his explanation, he is the only one who evoked in numerical representation the 
processes and the objects conceptions of the layers of partition, production, and sum.   
 Concerning student K, at the time of the interview he evoked his concept images in words only; he did not 
use either a graph or a symbol; he used only the verbal representation. In sum, he exhibited an under developed 
concept image compared to the ones exhibited by other student teachers. 
 As noted earlier, all student teachers used words to articulate their conceptions. I considered that their 
verbalisation was for supporting their conceptions in other representations. This is the reason why there is no 
illustration in the verbal representation for most of the student teachers, except the student K and the student F. The 
latter linked the verbal representation to the symbolical representation when he wrote the symbol:  

areaExact  = 
∑
=

∞→

n

in
Bnhi

1
.lim

.   

The issue of which representation is preferred by students has been raised by Sevimli and Delice (2011). 
My tool does not allow judging what the preferred representation is. As said above, the translation from one 
representation to another is considered as an indicator of understanding according to the Bloom’s taxonomy 
(Anderson et al., 2001). However, the issue of mixing representations needs further research to reveal the status of 
such an evoked concept image. 

 Finally, the above-displayed diagrams show many empty cells and many crossed circles in the matrices, this 
means that the student teachers’ evoked concept images need further developments. The teacher researcher should 
take into account this situation to improve his strategies of teaching calculus in order to help new student teachers 
produce more enriched concept images. Among other things the teacher researcher should diversify the contexts of 
learning the definite integral.  
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Conclusion 
In this paper, I described a tool for analysing student teachers’ concept images of the definite integral. I exemplified 
its use by analysing the case of eleven student teachers to identify their concept images after a one-semester 
calculus course. Findings show that the student teachers exhibited different concept images of the definite integral. 
This is in accordance with the fact that the concept image develops as the individual becomes experienced through a 
number of observations and circumstances. As an implication to education, basing on the evoked concept images, 
the teacher researcher may strengthen or reorganise his teaching strategies in order to help the student teachers 
develop more enriched concept images. 
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