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Abstract

When charged particles are placed on an uncharged metallic body, the charged
particles redistribute themselves along the surface of the body until they reach a
point or a configuration that no net tangential force is experienced on each
particle. That point is referred to as electrostatic equilibrium configuration or
simply as static equilibrium configuration. One of the properties which a metallic
body possesses at static equilibrium configuration is among others that the
distribution of charges is such that the potential energy is minimized. In this paper
we developed a simple numerical scheme to determine the static equilibrium
configuration of charged metallic bodies by minimizing the potential energy
function. The method developed has some advantages; it combines the general
theory and the physical meanings nested in the mathematical model and this has a
positive implication on the computational aspect. For numerical simulations we
considered the case of ellipsoids. Numerical solutions were produced, presented
and discussed.

Key words: Static equilibrium, charged metallic body, potential energy, projected
gradient method.

1. Introduction
The society of today relies on electromagnetic devices and systems:
television, radio, internet, microwave ovens, mobile telephones, satellite
communication  systems, radar systems, electrical motors, electrical
generators, computers, microwave filters, lasers, industrial heating devices,
medical imaging systems, electrical power networks, transformers and
many more (Bondeson et al., 2005). Each of these examples is used in a
broad range of situations. As an example, take radar. It is employed for fire
control, weather detection, airport traffic control, missile tracking, missile
guidance, speed control, traffic safety, etc. Undoubtedly, electromagnetic
phenomena have a very profound impact on contemporary society
(Bondeson et al., 2005). Therefore more studies for the understanding of
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electromagnetic phenomena is highly needed. This paper studied one of
these phenomena, the static equilibrium configurations of charged metallic
bodies.

The mathematical model of the problem that we investigate in this paper
can be formulated in the following terms. Consider a metallic body with
surface S. On the surface S of the body, one has put N charged particles.
Denote the particles by jp , Nj 1 , and assume that their charges and

positions are 0jq and Sr j 


, Nj 1 , respectively. Since all
charges are positive, all electrostatic forces are repulsive, and hence the
charges will try to become as well separated as possible. The charges
consider themselves well separated if their energy is low as possible
(Wayne, 2002). For this particular problem, we want to choose the positions
of the charges so that the potential energy
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is minimized. In the formula (1), |.| stands for the Euclidean norm and all
quantities are expressed in CGS electrostatic units. In CGS system, the units
of length, mass and time are the centimeter, the gram, and the second,
respectively. The formula (1) is a general expression for the potential
energy of an arbitrary system of many point charges. It plays a central role
in this paper, and hereafter, we give a brief description of how it can be
obtained. More details can be found in (Baldassare, 1991) or in (Ohanian,
2006).

Suppose that we have a collection of N point charges, with charges jq ,

Nj 1 , at positions jr . What is the potential energy of this charge
distribution? That is, how much work must you do to bring all these charges
to their positions, starting with all of them infinitely separated? To calculate
this amount of work, let us imagine that you bring the charges to their
positions in succession: first, you bring q1 to 1r


(from infinity), then you

bring q2 to 2r


, and so on. When you bring the charge qj to join the 1j
preceding charges, the potential produced by the latter is




 


1

1 ||
)(

j

k k

k

rr
qrV 


. (2)

The increase in potential energy that occurs when you bring in charge qj to
jr is therefore
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The total increase in potential energy that occurs when you bring all the
charges to their positions is then
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This expression is simply the sum of all the mutual potential energies for all
possible pairs of charges qi and qj . Observing that each term of the
summation in equation (4) occurs twice in the summation in equation (1),
equation (1) and (4) are equivalent.

2. Method
It is clear that the problem at hand belongs to a broad class of optimization
problems. More specifically it is a non linear constrained optimization
problem. For more about optimization problems see (Nash & Sofer, 2009)
or (Wenyu & Ya-Xiang, 2006). In general, a big issue to handle non linear
problems is the lack of methods that can be used to get analytical solutions
and thus most of the time numerical methods are used instead. Most of
algorithms for optimization problems seek a local minimizer (Iusem, 2003),
that is, a point that is only locally minimal, which means that it minimizes
the objective function among feasible points that are near it. The projected
gradient method is also of that kind. However it has been proved in (Iusem,
2003) that for the case in which the objective function is convex, which is
the case for our problem, under the only assumption of existence of
solutions they are global minimizers. In this paper we develop a numerical
scheme, a variant of the projected gradient method, that intends to solve the
problem at hand for at least a convex metallic body. Actually, we combine
the general theory and the physical meanings nested in the mathematical
model. The gradients of the objective function (the potential energy) in our
model has a physical meaning; multiplying them by the negative sign we
get a matrix F of electrostatic forces that particles exert on each other, see
(Griffths, 1999) or (Ohanian, 2006). To make calculations easier in
computing these forces, we denote ],,[ jjjj zyxr  . Then, the formula
(1) can be rewritten as
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The force felt by a particle pk is given by

Fk 

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Where
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and then we get a matrix of forces F = [Fk]1kN . Since Fk is a 31 matrix, F
is an 3N matrix.

The strategy to solve the problem at hand relies on the fact that the
displacement of the particles must be made within the surface S. So, the
tangential component of the force felt by each particle is of great interest.
The following is the mathematical framework to get these tangential
components. Let S, the surface of the body, be given in Cartesian
coordinates in the form (x, y, z) = constant. Recall that the direction of  , the
gradient of  , is always perpendicular to the surface (x, y, z) = constant
(Manfredo, 1976). Then, the tangential components FkT are given by FkT =
Fk (Fk nk)nk , where nk is the outward unit vector normal to the surface S at
the position kr


and derived from n =  1|| .

Suppose that the particle pk is at the position )0(
kr


. Other particles exert a
repulsive force F(0)

kon it. Since the displacement must be made within the
surface, we are interested in the tangential component of this force, F(0)

kT .
Then the conceptual next position of the particle would be )0(' kk rr 

 + 
F(0)

kT, where is some positive number (with suitable units). But unfortunately this
point is outside of the surface. We must therefore project the position 'kr



to the surface and get the position )1(
kr


. At the position )1(
kr


will happen

the same scenario as that happened at )0(
kr


and we get the position )2(
kr


,
and so on. Now we need a recursive formula to enable us obtaining the
position )1( n

kr


from the position )(n
kr


.
Suppose that the origin of coordinates is inside the body, if it is not the
case a translation can do the job. Now choose a projection parallel to the
vector 'kr


. In this case, the position )1(

kr


is such that the line joining the

origin of coordinates to the position 'kr


passes through the position )1(
kr


.

Therefore, it may be possible to scale the vector 'kr


and get the desired
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position )1(
kr


. Then we repeat the process until the convergence criterion
is achieved.

3. Illustration on ellipsoidal metallic bodies
For example suppose that the surface S of the body is an ellipsoid of

equation 12
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get nk , the unit vector normal to the
ellipsoid, at the position kr
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. This normal vector is used to determine FkT .

Moreover, the scaling of the vector 'kr


to get the position )1(
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possible by computing a scaling factor kt ,0 using the formula
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Where kk xr )1(' , kk yr )2(' and kk zr )3(' . Hence the position is )1(
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
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The formula (11) is generalized to give the recursive formula
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with )(
, ( n

kkn rt 
 + F(n)

kT). It is the recursive formula (12) that enable us to

obtain the position )1( n
kr


from the position )(n
kr
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.

4. Numerical simulations
Numerical simulations was done with a Matlab code implementing the
formula (12). The stopping criterion we used is a non significant decrease in
computed potential energy of order of 810 .  In numerical experiments
we considered bodies whose surfaces are ellipsoids and that have the same
volume as the unit sphere. For those bodies the static equilibrium
configuration has been determined. The corresponding potential energies
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have been also computed. We considered, first, the particular case of a unit
sphere with an increasing number of charges N, where each charge gets
smaller and smaller, in such a way that the total charge is fixed and equal to
Q=1esu. The discretization parameter being q=Q/N. Secondly, similar
experiments were done considering the case of ellipsoids that have the same
volume as the unit sphere. For example Figure 1 (left) shows the initial
configurations of 1000 particles. The potential energy corresponding to this
configurations is U=0.50752833155242erg. The static equilibrium
configuration we get after running the code is shown in Figure 1 (right) and
the corresponding potential energy is U=0.48554272830599erg. For an
ellipsoid of parameters b=c=0.8 and a=1/b², Figure 2 (left) shows the initial
configurations of 640 particles whereas Figure 2 (right) shows the
corresponding static equilibrium configuration. The potential energies are
respectively U=0.536633803810296erg and U=0.459029324535688erg. For
an ellipsoid of parameters b=c=0.5 and a=1/b², Figure 3 (left) shows the
initial configurations of 1280 particles. The potential energy corresponding
to this configuration is 0.743301809793660erg. The obtained SEC is shown
in Figure 3 (right) and the corresponding potential energy is
0.335945382140601erg. Figure 3 (right) also shows an interesting physical
feature; the particles are more concentrated on both tops of the ellipsoid
than on the middle part as was expected.

Figure 1: Initial configuration (left) and static equilibrium configuration
(right) of 1000 particles on a unit sphere.
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Figure 2: Initial configuration (left) and static equilibrium configuration
(right) of 640 particles on an ellipsoid with parameters b = c = 0.8 and a = 1/b2.

Figure 3: Initial configuration (left) and static equilibrium configuration (right) of
1280 particles on an ellipsoid with parameters b = c = 0.5 and a = 1/b2 .

Figure 4: Plot of errors.
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Figure 5: Comparison of potential energies according to eccentricity.

For the case of a sphere, the numerical results for the potential energy have
been compared to the theoretical potential energy obtained using analytical
methods. The potential energy (versus infinity) for a charged sphere with
total charge Q=1esu and radius R=1cm, is given by the formula U=Q²/(2R)
(Baldassare, 1991), so that Uref = 0.5erg. It was observed that as the number
of charges increases the potential energy at the static equilibrium
approaches the theoretical potential energy. This is illustrated by Table 1
and proves that the techniques developed work as well. The errors are
obtained by comparing the computed potential energies and the reference
potential energy of 0.5 erg. Figure 4 is a plot of those errors, it shows that
errors vary linearly. Therefore those techniques can be used where the
analytical methods are hardly applicable or even where they fail. The case
of ellipsoids is an example. For the case of ellipsoids we compared the
computed values of the potential energies of ellipsoids that have the same
volume as the unit sphere, increasing the eccentricity. We have remarked
that the potential energy decreases as the eccentricity increases. This is
illustrated by Table 2 and by Figure 5.
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Table 1: Comparison of the computed potential energies of a unit
sphere and the reference potential energy.

Number of  Particles
N

Computed potential energy
Ucomp

Error
|Uref –Ucomp|

10
20
40
80
160
320
640
1280

0.32717989915199
0.37722534459517
0.41297999662619
0.43842174377579
0.45643832882977
0.46923577181013
0.47825122480485
0.48463003137926

0.17282010084801
0.12277465540483
0.08702000337381
0.06157825622421
0.04356167117023
0.03076422818987
0.02174877519515
0.01536996862074

Table 2: Comparison of potential energies according to eccentricity
Number of
Particles
N

Potential
Energy

b=c=1
a = 1/b2
U (erg)

Potential
Energy

b=c=0.8
a = 1/b2
U (erg)

Potential
Energy

b=c=0.5
a = 1/b2
U (erg)

10
20
40
80
160
320
640
1280

0.32717989915199
0.37722534459517
0.41297999662619
0.43842174377579
0.45643832882977
0.46923577181013
0.47825122480485
0.48463003137926

0.308764296082707
0.359218046973656
0.394877519494373
0.419974849814247
0.437683351948815
0.450196835564463
0.459029324535688
0.465287827998423

0.191201181093551
0.240564688842096
0.273914551023869
0.296539450269219
0.312131235348220
0.322961835021825
0.330600873801046
0.335945382140601

5. Concluding remarks
This paper studied one of the problems related to electromagnetic
phenomena, the static equilibrium configurations of charged metallic
bodies. Whereas, in general, analytical methods fail to solve problems that
are related to those electromagnetic phenomena especially for those that
are directly applicable to real-world applications, we proposed a simple
numerical method, easy to program, that can determine the static
equilibrium configuration of a charged metallic body that is at least
convex. The proposed method has some advantages; it combines the
general theory and the physical meanings nested in the mathematical
model. Most of methods for constrained nonlinear optimization problems
accept only single column vectors as input variables. To apply them to the
problem at hand, we need to reshape the matrices of positions and forces
to suitable column vectors, a step which is not needed for the proposed
method. This has a positive implication on the computational aspect as the
number of charges gets more and more large. From simulation on a unit
sphere, our results are in a well agreement with exact results obtained
using analytical method.
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