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Abstract  

Consumer behaviour towards different forms of energy varies over time. The 

variance can be so large that the quality of the estimation functional relationship 

between the response variable and its associated explanatory variables is seriously 

affected. To attenuate this, kernel smoothing a nonparametric regression approach 

is proposed. This approach offers a powerful tool in modelling and adapts to 

various types of designs. The aim of this study is to produce a reasonable model 

that defines the structural change of a stationary time series which exhibits 

volatility over time. The explanatory variable used is the lagged values of the 

series. To study the effects at the tails, the quantiles are proposed. This model is 

functional in examining the characteristics of peak hour electricity consumption in 

Kenya.  It is found that the mean peak consumption is a decreasing function of the 

lagged time and that the more extreme the peak consumption, the higher the 

volatility. This model provides insights on routine shift time energy consumption 

modelling. 

Key words and phrases: conditional quantiles, electricity consumption, kernel 

estimator,   nonparametric methods 

1. Introduction 

The statistical properties of regression smoothers have been mainly 

analyzed in the frame-work of an independent and identically 

distributed observation structure. The assumption that the pairs 

  𝑋𝑖 , 𝑌𝑖 , 𝑖 = 1, … , 𝑛   are an independent sample from an unknown 

distribution can often be justified in practice and simplifies technical 

matters. However, there are many practical situations in which it is 

not appropriate to assume that the observations  𝑋𝑖 , 𝑌𝑖 𝑖=1
𝑛  or the 

errors 𝑌𝑖 − 𝑚 𝑋𝑖  are independent, it is very likely that the objects 

response will depend on its previous response. 

When data means and variance are non-constant, typically skewed or 

contains some outliers, it is understood that the observations come 
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from different distributions over time. Standard asymptotic distri-

bution theory often does not apply to regression involving variables 

of this nature since inferences may be misleading. In such data, 

median regression a special case of quantile regression is more 

explicable and robust than the mean regression. More especially 

when the data pattern shows heteroscedasticity and asymmetries.  

We discuss our methodologies and theory under the framework of 

nonparametric time series setting. We concentrate on the scenario, 

where there is a stationary sequence of random variables   𝑋𝑖 , 𝑌𝑖 , 𝑖 ≥
1,𝑋∈ℜ𝑑,𝑌∈ℜ observed. The observations may be dependent via the 

time index 𝑖 = 1,2, …   and it is desired to estimate a functional of the 

conditional distribution 𝐿 𝑌 𝑋   like the mean function or the median 

function 𝑚(𝑥). That is,  

            𝑚 𝑥 = 𝐸 𝑌 𝑋 = 𝑥                                                               [1] 

The second scenario is of a nonlinear autoregressive time series 

            𝑌𝑡 = 𝑚 𝑌𝑡−1, … , 𝑌𝑡−𝑑 + 𝑒𝑡 ,    𝑡 = 1,2, …                              [2] 

with independent innovation shocks 𝑒𝑡 = 𝑠𝑡 . 𝜉𝑡 . One is interested in 

predicting new observations and in estimating the nonparametric 

autoregressive function 𝑚 or the conditional variance function    

             𝑣𝑡 = 𝑠𝑡
2 = 𝑉𝑎𝑟  𝜀𝑡  𝑌𝑡−1, … , 𝑌𝑡−𝑑 = 𝑥                               [3] 

2. Nonparametric Regression for Time Series 

Let us assume a more general time series dependence, which is 

commonly used in the literature, described as follows. 

2.1 Stationarity 

A process is said to be strictly stationary if the statistical behaviour 

of 𝑋1, 𝑋2, … , 𝑋𝑘  is identical to that of the shifted set  

𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑘  evaluated at the same set of points  𝑥1, 𝑥2, … , 𝑥𝑘  , 

for all 𝑡 and for all 𝑘. A process is said to be weak stationary if 

𝐸 𝑋𝑡 = 𝜇   and  𝑉 𝑋𝑡 = 𝜍2and   

𝐶𝑜𝑣 𝑋𝑡 , 𝑋𝑡+𝑘 = 𝐶𝑜𝑣 𝑋𝑡+1, 𝑋𝑡+1+𝑘 = 𝐶𝑜𝑣 𝑋𝑡+2, 𝑋𝑡+2+𝑘 = ⋯  is a 

function of the time lag 𝑘 only and does not depend on time 𝑡. 

Let   𝑋𝑡  be a strictly stationary time series for   𝑛 ≥ 1. The stationary 

process is called strongly mixing (Rosenblatt, 1956b) if 

      sup𝐴𝜖ℱ1
𝑛 ,𝐵𝜖ℱ𝑛+𝑘

∞  𝑃 𝐴 ∩ 𝐵 − 𝑃 𝐴 𝑃 𝐵  ≤ 𝛼𝑘                             [4] 
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Where 𝛼𝑘 → 0 and ℱ𝑖
𝑗
 is the 𝛼-field generated by 𝑥𝑖 , … , 𝑥𝑗 . The 

random variable 𝑋 here may also stand for the pair  𝑋, 𝑌  so that the 

𝜍- fields are defined appropriately for the regression problem. Mixing 

dependence is commonly used to characterize the dependent structure 

and it is often referred to as short range dependence or weak 

dependence. This means that as the distance between two 

observations go farther and farther, the dependence becomes weaker 

and weaker very faster. The short term dependence does not have 

much effect on the local smoothing method since for any two given 

random variables 𝑋𝑖  and 𝑋𝑗  and a point 𝑥, the random variables 

 𝐾𝑕 𝑋𝑖 − 𝑥  and 𝐾𝑕 𝑋𝑗 − 𝑥  are nearly uncorrelated as 𝑕 → 0.  

𝐾𝑕 ∙ = 𝐾 ∙ 𝑕  𝑕 . 𝐾, being a kernel function assigning weights to 

each datum point and is supported on  −1,1 . 𝐾, determines the 

shape of the weights and satisfies the moment 

conditions,  𝐾 𝑢 𝑑𝑢
1

−1
= 1 ,  𝑢𝐾 𝑢 𝑑𝑢

1

−1
= 0,  𝑢2𝐾 𝑢 𝑑𝑢

1

−1
≠ 0 

and   𝐾 𝑢 2𝑑𝑢
1

−1
< ∞. The parameter  is the smoothing parameter 

which determines the size of the weights. 

The dependent random variables can be approximated by a sequence 

of independent random variables having the same marginal 

distribution. This can be seen by taking 𝑉𝑗 = 𝑒𝑥𝑝 𝑖𝑡𝑗𝑋𝑗   in the 

following lemma by Volkonskii and Rozanov (1959): 

Lemma 1   Let 𝑉1, … , 𝑉𝐿 be random variables measurable with respect 

to the  𝜍-algebras ℱ𝑖1
𝑗𝑖

, … , ℱ𝑖𝐿
𝑗𝑙

 respectively with 𝑖𝑙+1 − 𝑗𝑙 ≥ 𝑤 ≥ 1 

and  𝑉𝑗  ≤ 1 for 𝑗 = 1, … , 𝐿. then 

 𝐸  𝑉𝑗

𝐿

𝑗 =1

−  𝐸 𝑉𝑗  

𝐿

𝑗 =1

 ≤ 16 𝐿 − 1 𝛼 𝑤  

This lemma becomes a statement about the characteristic function of 

the random variables.  

2.2 Local Polynomial Fitting 

Consider observations  𝑋1, 𝑌1 , … ,  𝑋𝑛 , 𝑌𝑛  that can be thought as a 

realization from a stationary process. Estimating  𝑚 𝑥  in [1] and its 
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derivatives 𝑚 𝑗   𝑥 , can be done by fitting locally a polynomial by a 

weighted least squares regression problem. That is minimize 

                 𝑌𝑖 −  𝛽𝑗  𝑋𝑖 − 𝑥0 
𝑗𝑝

𝑗 =0  
2
𝐾𝑕 𝑋𝑖 − 𝑥0 

𝑛
𝑖=1                   [5] 

Under certain mixing conditions for local polynomial estimators 

lemma 1 holds. Let 𝑓 𝑥  be the density of 𝑋1 and 𝜍2 𝑥 =
𝑉𝑎𝑟 𝑌1 𝑋1 = 𝑥 . Let 𝑆, 𝑆∗ and 𝑐𝑝 denote some Moment matrices and 

vector as in Fan and Gijbels (1996) then we have the following 

results proved by Masry and Fan (1993) 

Theorem 1: If 𝑕𝑛 = 𝑂 𝑛1  2𝑝+3   , then as 𝑛 → ∞, 
 

 𝑛𝑕𝑛  𝑑𝑖𝑎𝑔 1, … , 𝑕𝑛
𝑝  𝛽  𝑥 − 𝛽 𝑥  −

𝑕𝑛
𝑝+1

𝑚  𝑝+1  𝑥 

 𝑝+1 !
𝑆−1𝑐𝑝 

𝐷
→ 𝑁 0, 𝜍2 𝑥 𝑆−1𝑆∗𝑆−1 𝑓 𝑥   [6]  

 

at 𝑥, a continuity point of 𝜍2𝑓, whenever 𝑓 𝑥 > 0. An immediate 

consequence of theorem (1) is that derivative estimator 𝑚 𝑣 𝑥  based 

on the local polynomial fitting is asymptotically normal; 
 

 𝑛𝑕𝑛
2𝑣+1  𝑚 𝑣 𝑥 − 𝑚 𝑣  𝑥  𝑡𝑝+1𝐾𝑣

∗𝑑𝑡
𝑣!𝑚  𝑝+1  𝑥 

 𝑝+1 !
𝑕𝑛

𝑝+1−𝑣
 

𝐷
→ 𝑁  0,

 𝑣! 2𝜍2 𝑥  𝐾𝑣
∗2

 𝑡 𝑑𝑡

𝑓 𝑥 
  [7] 

 

where 𝐾𝑣
∗ is the equivalent kernel. When 𝑣 = 0, [7] gives the 

asymptotic normality of 𝑚  𝑥  

2.3 Asymptotic Properties  

We consider a simple case where  𝑝 = 1 and the Nadaraya Watson 

estimate, then; 
 

   𝑚 𝑛𝑤  𝑥 =
1

𝑛
 𝑚 𝑋𝑡 𝐾𝑕 𝑋𝑡 − 𝑥 /𝑓𝑛 𝑥 𝑛

𝑡=1                     
𝐼1

+  𝑊𝑡𝜀𝑡
𝑛
𝑡=1       

𝐼2

            [8] 

𝐼1, contributes only to the bias and 𝐼2  gives the asymptotic 

normality. First we derive the asymptotic bias for the interior 

boundary points. By the Taylors expansion, when 𝑋𝑡  is in 𝑥 − 𝑕, 𝑥 +
𝑕, we have  

𝑚 𝑋𝑡 = 𝑚 𝑥 + 𝑚′ 𝑥  𝑋𝑡 − 𝑥 +
1

2
𝑚′′ 𝑥𝑡  𝑋𝑡 − 𝑥 2 

where, 𝑥𝑡 = 𝑥 + 𝜃 𝑋𝑡 − 𝑥  with  −1 < 𝜃 < 1.  𝐼1 =
1

𝑛
 𝑚 𝑋𝑡 𝐾𝑕 𝑋𝑡 − 𝑥 𝑛

𝑡=1  is 

regarded as the asymptotic bias, denoted by 𝐵𝑛𝑤  ∙ . If  𝑝 > 1 

(multivariate case), 𝐵𝑛𝑤  𝑥  becomes 
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    𝐵𝑛𝑤  𝑥 =
𝑕2

2
𝑡𝑟 𝜇2 𝐾  𝑚′′ 𝑥 + 2𝑓 ′ 𝑥 𝑚′ 𝑥 𝑇/𝑓 𝑥               [9] 

where 𝜇2 𝐾 =  𝑢𝑢𝑇𝐾 𝑢 𝑑𝑢. Under some regularity conditions it 

can be shown that for 𝑥  being an interior grid point, 

                       𝑛𝑕𝑝𝑉𝑎𝑟  𝐼2 → 𝑉0 𝐾 𝜍𝜀
2 𝑥 𝑓 𝑥  = 𝜍𝜀

2 𝑥        [10] 

where  𝜍𝜀
2 𝑥 = 𝑉𝑎𝑟 𝜀𝑡 𝑋𝑡 = 𝑥 . Further we can establish the 

asymptotic normality 

 𝑛𝑕𝑝 𝑚 𝑛𝑤  𝑥 − 𝑚 𝑥 − 𝐵𝑛𝑤  𝑥 + 𝑜𝑝 𝑕2  → 𝑁 0, 𝜍𝑚
2  𝑥        [11] 

2.4 Model with exogenous variable 

Let  𝑌𝑡 , 𝑋𝑡 , 𝑍𝑡 𝑡=−∞
∞  be jointly stationary process, where 𝑋𝑡  and 𝑍𝑡  

take values in ℜ𝑝  and ℜ𝑞  with 𝑝, 𝑞 ≥ 0 respectively. The regression 

surface is defined by 

    𝑚 𝑥, 𝑧 = 𝐸 𝑌𝑡 𝑋𝑡 = 𝑥, 𝑍𝑡 = 𝑧                                                  [12] 

Here 𝑌𝑡  is measurable on the real line and it is assumed that 𝐸 𝑌𝑡 <
∞. The regression function 𝑚 ∙,∙  defined in [12] can be decomposed 

as the sum 

           𝑚 𝑥, 𝑧 = 𝜇 + 𝑔1 𝑥 + 𝑔2 𝑧                                              [13] 

Such decomposition hold for nonlinear additive autoregressive model 

with exogenous variables, such that 

𝑍𝑡 = 𝜇 + 𝑔1 𝑋𝑡−𝑗1, … , 𝑋𝑡−𝑗𝑝  + 𝑔2 𝑍𝑡−𝑖1, … , 𝑍𝑡−𝑖𝑞 + 𝜂𝑡  

𝑋𝑡−𝑗𝑖 = 𝑔3 𝑋𝑡−𝑗2, … , 𝑋𝑡−𝑗𝑝  + 𝜀𝑡  

If we assume that 𝐸 𝑔1 𝑋𝑡  = 0 and 𝐸 𝑔2 𝑍𝑡  = 0, then the 

projection of 𝑚 𝑥, 𝑧  on the 𝑔1 𝑥  direction is defined by 

𝐸 𝑚 𝑥, 𝑍𝑡  = 𝜇 + 𝑔1 𝑥 + 𝐸 𝑔2 𝑍𝑡  = 𝜇 + 𝑔1 𝑥            [14] 

To get the estimate of 𝑔2 ∙ , we use a small bandwidth 𝑕𝑠 so that the 

bias can be asymptotically negligible. Let the additional components 

have continuous second partial derivatives so that 𝑚 𝑢, 𝑣  can be 

locally approximated by a linear term in a neighbourhood                

of  𝑥, 𝑧  namely, 𝑚 𝑢, 𝑣 ≈ 𝛽0 + 𝛽1
𝑇 𝑢 − 𝑥 + 𝛽2

𝑇 𝑣 − 𝑧 , with  𝛽𝑗   

depending on 𝑥 and 𝑧, where 𝛽1
𝑇  denotes the transpose of 𝛽1. Let 

𝐾0 ∙  and 𝐾1 ∙  be symmetrical kernel functions in  ℜ𝑝  and ℜ𝑞  and 

𝑕0 𝑛 > 0 and 𝑕𝑠 = 𝑕𝑠 𝑛 > 0 be the bandwidths. Let 𝛽𝑗  be the 

minimiser of the following locally weighted least squares 
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  𝑌𝑡 − 𝛽0 − 𝛽1
𝑇 𝑋𝑡 − 𝑥 − 𝛽2

𝑇 𝑍𝑡 − 𝑧  2𝐾𝑕0
 𝑋𝑡 − 𝑥 𝐾𝑕𝑠

 𝑍𝑡 − 𝑧 

𝑛

𝑡=1

 

where 𝐾𝑕0
 ∙ = 𝐾 ∙  𝑕 𝑕𝑝  and 𝐾𝑕1

 ∙ = 𝐾 ∙  𝑕 𝑕𝑞  then the local 

linear estimator of the regression surface 𝑚 𝑥, 𝑧  is 𝑚  𝑥, 𝑧 = 𝛽 0. 

Using [14] and computing the sample average of 𝑚  ∙,∙  the 

estimators of 𝑔1 ∙  and 𝑔2 ∙  becomes 

𝑔 1 𝑥 =
1

𝑛
 𝑚  𝑥, 𝑍𝑡 − 𝜇 

𝑛

𝑡=1

    𝑎𝑛𝑑  𝑔 2 𝑧 =
1

𝑛
 𝑚  𝑋𝑡 , 𝑧 − 𝜇 

𝑛

𝑡=1

   

where  𝜇 = 𝑛−1  𝑌𝑡
𝑛
𝑡=1 . Then using the partial residuals  𝑌𝑡

∗ = 𝑌𝑡 −
𝜇 − 𝑔 2 𝑍𝑡  we apply the local linear regression technique to the 

regression model 𝑌𝑡
∗ = 𝑔1 𝑋𝑡 + 𝜀𝑡

∗. To estimate 𝑔1 ∙  we solve the 

weighted least squares problem 

                             𝑌𝑡
∗ − 𝛽1 − 𝛽2

𝑇 𝑋𝑡 − 𝑥  2𝐽𝑕2
 𝑋𝑡 − 𝑥 𝑛

𝑡=1          [15]                                           

  𝐽 ∙ , is the kernel function in ℜ𝑝  and 𝑕2 = 𝑕2 𝑛 > 0 is the 

bandwidth at the second stage. Maximising [15] with respect to 𝛽1 

and 𝛽2 gives the estimate of 𝑔1 𝑥  denoted by 𝑔 1 𝑥 = 𝛽 1. 

3.  Nonparametric Quantile Regression   

Let us assume that   𝑌𝑡 , 𝑋𝑡 𝑡=−∞
∞  is a stationary sequence as described 

in section 2. Denote, 𝐹 𝑌 𝑋 , the conditional distribution of 𝑌 given 

𝑋 = 𝑥 where 𝑋𝑡 =  𝑋𝑡1, … , 𝑋𝑡𝑑 ′ is the associated covariate vector in 

ℜ𝑑  with 𝑑 ≥ 1  and might be a function of exogenous (covariate) 

variables or some lagged (endogenous) variables or a function of 

time 𝑡. Let 𝑋 1 ≤ 𝑋 2 ≤ ⋯ ≤ 𝑋 𝑛   denote the order statistics of  

 𝑋𝑡 𝑡=1
𝑛  . Define the inverse of 𝐹 𝑥  as  

                                  𝐹−1 𝜃 = 𝑖𝑛𝑓 𝑥𝜖ℜ; 𝐹 𝑥 ≥ 𝜃                     [16] 

where ℜ is the real line. Our motivation is a convenient method of 

detecting conditional heteroscedasticity. So we define the quantile 

estimate as 

                    𝑞𝜃 𝑥 = 𝑖𝑛𝑓 𝑦 ∈ ℜ: 𝐹 𝑦 𝑥  = 𝐹−1 𝜃 𝑥                  [17] 

According to Koenker and Bassett (1978), any 𝜃 − 𝑡𝑕 quantile of a 

scalar random variable 𝑌 can be viewed as a solution to the problem  

   𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈ℜ𝐸 𝑝𝜃 𝑌𝑡 − 𝑎  𝑋𝑡 = 𝑥 = 𝑞𝜃 𝑥                            [18] 
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To this end we assume that 𝑌𝑡  is related to 𝑋𝑡  through the model 

 𝑌𝑡 = 𝜇𝜃 𝑋𝑡 + 𝜍𝜃 𝑋𝑡 𝑍𝑡                                                             [19] 

where 𝜇𝜃 ∙  is the mean function, 𝜍𝜃 ∙  is the variance function and 

where 𝑋𝑡  and  𝑍𝑡  are independent. The conditional quantile of 𝑌𝑡  

given 𝑋𝑡  is therefore 

           𝑞𝜃 𝑋𝑡 = 𝜇𝜃 𝑋𝑡 + 𝜍𝜃 𝑋𝑡 𝐹𝜀𝑡
−1 𝜃                                       [20] 

where 𝐹𝜀𝑡
 ∙  is the distribution of 𝜀𝑡 . 

The kernel estimate of the mean function 𝜇𝜃 𝑋𝑡  at point 𝑥 based on a 

sample  𝑌𝑡 , 𝑋𝑡 , 𝑡 = 1, … , 𝑛 from model [19] is obtained by 

estimating the conditional distribution function 

          𝐹𝑋 𝑦 = 𝑃 𝑌𝑡 ≤ 𝑦 𝑋𝑡 = 𝑥 = 𝐸 𝐼 𝑌𝑡≤𝑦  𝑋𝑡 = 𝑥                  [21] 

where the conditional expectation of 𝐼 𝑌𝑡≤𝑦  may be estimated by the 

weighted version of Nadaraya-Watson kernel estimate of section 2.3. 

The weighted version is design adaptive and has high minimax 

efficiency (Cai, 2002). Thus we have 

 𝐹 𝑋 𝑦 =
𝑝𝑡 𝑥 𝐾𝑕  𝑥−𝑋𝑡 𝐼 𝑌𝑡≤𝑦 

 𝑝𝑡 𝑥 𝐾𝑕  𝑥−𝑋𝑡 
𝑛
𝑡=1

                                         [22] 

Here 𝑝𝑡 𝑥  is the weight function at point 𝑥 chosen such that  

   𝑙𝑜𝑔 𝑝𝑡 𝑥  𝑛
𝑡=1  is minimized subject to the constraints 

          𝑝𝑡 𝑥 > 0,  𝑝𝑡 𝑥 = 1𝑛
𝑡=1   𝑎𝑛𝑑   𝑝𝑡 𝑥  𝑥 − 𝑋𝑡 𝐾𝑕 𝑥 − 𝑋𝑡 = 0𝑛

𝑡=1 .       [23]           

Through the Lagrange multiplier rule, then 

𝑝𝑡 𝑥 = 𝑛−1 1 + 𝜆 𝑥 − 𝑋𝑡 𝐾𝑕 𝑥 − 𝑋𝑡  
−1 

4.  Bandwidth Selection 

To attenuate the structure of time series data and the over-fitting or 

under-fitting tendency we opt for a nonparametric version of the 

Akaike Information Criterion 𝐴𝐼𝐶  proposed by (Cai, 2002). That is 

select   by minimizing 

                                       𝐴𝐼𝐶 𝑕 = 𝑙𝑜𝑔 𝜍  + 𝜓 𝑡𝑟 𝑆𝑕 , 𝑛            [24] 

Where  𝜍 2 =  𝑀𝐴𝑆𝐸 𝑕 =  
1

𝑛
  𝑦𝑖 − 𝑚 𝑕 𝑥𝑖  

2𝑛
𝑖=1 ,  𝑚 𝑕  is the fit 

(smoother) for 𝑛 pairs of measurements and 𝑚 𝑕
 −𝑖 

 is the fit 

calculated by leaving out the 𝑖 − 𝑡𝑕 data point.  𝑆𝑕 𝑖𝑖  is the 𝑖 − 𝑡𝑕 

diagonal element of the smoother matrix 𝑆𝑕 , an 𝑛 × 𝑛 hat matrix 

depending on the 𝑋 variate and bandwidth . 𝜓 ∙  is a penalty 

function designed to decrease with increasing smoothness of 𝑚 𝑕  and   
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𝜓 𝑡𝑟 𝑆𝑕 , 𝑛  is chosen particularly to be the form of the bias-

corrected version of the  𝐴𝐼𝐶 , due to Hurvich et.al. (1998) and  

    𝑡𝑟 𝑆𝑕 , 𝑛 =  𝑡𝑟 𝑆𝑕  + 1/𝑛  1 −  𝑡𝑟 𝑆𝑕 + 2 /𝑛                 [25] 

 𝑡𝑟 𝑆𝑕  is the trace of the smoothing matrix 𝑆𝑕  regarded as the 

nonparametric version of degrees of freedom, called the effective 

number of parameters.  

For fixed 𝑋, a nonparametric fit estimator is defined by setting the 

value 𝑎  in [18] that minimize 

        𝜌𝜃 𝑌𝑖 − 𝑎 2𝐾  
𝑥−𝑋𝑖

𝑕
 𝑛

𝑖=1                                                        [26] 

with a loss function 𝜌𝜃 𝑢 = 𝜃𝐼 𝑢≥0  𝑢 . 𝑢 +  𝜃 − 1 𝐼 𝑢<0  𝑢 . 𝑢. 

For the minimiser [24] to fit in the quantile regression estimation, we 

use  
1

𝑛
 𝜌𝜃 𝑦𝑖 − 𝑞 𝜃 𝑥𝑖  

𝑛
𝑖=1  instead of 𝜍 . The second modification 

concerns approximating the smoother matrix 𝑆𝑕  by the iteratively 

reweighted least squares fit of the model. Thus we choose the 

bandwidth to the minimiser of  

                     2𝑙𝑜𝑔  
1

𝑛
 𝜌𝜃 𝑦𝑖 − 𝑞 𝜃 𝑥𝑖  

𝑛
𝑖=1  + 𝜓 𝑆𝑕 .                 [27] 

Where, ψ (.) is the 𝐴𝐼𝐶  penalizing function and  𝑆𝑕  is the 

approximate smoother matrix, as the suitable smoothing parameter 

for the nonparametric quantile regression. 

5. Empirical Results. 

We consider the daily hourly peak electricity consumption data 

 𝐷𝑡 , 𝑡 = 1, … ,2250  of Kenya Power and Lighting Company (hourly 

totals (in mega watts) from January 1
st
 2005 to 28

th
 February 2011. 

To eliminate trend and seasonality, we consider transformations. We 

first use logarithmic transformation since   𝐷𝑡   is a series whose 

standard deviation increases linearly with the mean. The transformed 

series becomes   𝑇𝑡 = 𝑙𝑜𝑔 𝐷𝑡  as shown in figure 1(a). To introduce 

stationarity in the series we apply the analysis of Brockwell and 

Davis (1991), by using the difference operator  1 − 𝐵  1 − 𝐵7 . We 

obtain a new series 𝑌𝑡 =  1 − 𝐵  1 − 𝐵7 𝑇𝑡   which does not display 

any apparent deviations from stationarity. (See figure 1 (b)) 
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Figure 1 (a) Time series plot for log transformed electricity 

consumption data. (b) Time series plot of twice-differenced log-

transformed data. 

We consider a simple model  𝑌𝑡 = 𝜇 𝑌𝑡−1 𝑑𝑡 + 𝜍 𝑌𝑡−1 𝑑𝑤𝑡 , 

where 𝑌𝑡 , is a stationary transformed consumption data, 𝜇 ∙  and 𝜍 ∙  

are smooth functions of 𝑌𝑡−1 and 𝑤𝑡  is the standard Brownian 

motion. Our interest is to identify 𝜇 ∙  and 𝜍 ∙ . Since the time   

series sequence is observed at equally spaced time points,               

we use the infinitesimal generator, the first order approximation       

of moments of 𝑌𝑡−1, a discretized version of the Ito‟s process 𝜕𝑌𝑡 =

𝜇 𝑌𝑡−1 𝜕 + 𝜍 𝑌𝑡−1 𝜖 𝜕.   For simplicity we use  𝑌𝑡  as a proxy 

of volatility. 

Figure 2(a) shows a local smooth estimate of 𝜇 𝑌𝑡−1 .The estimate is 

essentially zero. However to better understand the estimate, figure 

2(b) shows this estimate on a finer scale. This estimate suggest that 

when 𝜇 𝑌𝑡−1  is positive 𝑌𝑡−1 is negative and when 𝜇 𝑌𝑡−1  is 

negative, 𝑌𝑡−1 is positive. Thus we infer that the conditional mean is 

a decreasing function. Figure 3(a) shows an estimate of 𝜍  𝑌𝑡−1 . The 

plot shows that the lower the demand the higher the volatility and the 

higher the demand the higher the volatility. Figure 3(b) shows the 

estimate 𝜍  𝑌𝑡−1  on a finer scale. It confirms that the extreme the 

demand the higher the volatility. 
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Figure 2 (a) The smooth estimate of 𝜇 𝑌𝑡−1 . (b) The estimate 

𝜇  𝑌𝑡−1  on a finer scale 

If we consider a time series model where gasoil price is the response 

variable and electricity peak hour consumption is an exogenous 

variable that is  𝑃𝑡 = 𝜇 𝑃𝑡−1, 𝐷𝑡−1 + 𝜀  where, 𝑃𝑡  is the stationary 

gasoil price at time 𝑡 (data from Kenya National Oil Corporation) 

and 𝐷𝑡  is the corresponding stationary electricity consumption. We 

see from figure 4(a) that consumption decreases from -0.4 to -0.2 

then increases wiggly to 0.0 followed by a sharp decrease to 0.15 

then a sharp increase. Figure 4(b) shows a residual plot of this model 

where electricity consumption is an exogenous variable. The residual 

plot shows no deviation from normality. To try to answer the 

question if the estimated quantile regression relationships confirm to 

the location shift hypothesis that assumes that all the conditional 

quantile functions have the same slope parameters we estimate the 

quantile fits. Figure 5(a) shows the estimated conditional quantile at 

some extreme quantiles; quantile 0.1 and quantile 0.9 respectively. In 

figure 5(b), two density estimates are presented, one for relatively 

lower consumption  (𝜃 = 0.1) and the other one for relatively higher 

consumption (𝜃 = 0.9).  
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Figure 3 (a) The estimate of volatility 𝜍  𝑌𝑡−1 . (b) The estimate of 

volatility on a finer scale 
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Figure 4 (a) The smooth estimate of 𝐷𝑡−1 in a model where 

consumption is an exogenous variable. (b) The residual plot of the 

model with electricity consumption as an exogenous variable 
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Figure 5 (a) The estimated conditional quantile of electricity consumption at two 

extremes (0.9 quantile)  and (0.1 quantile) respectively. (b) The probability density 

for lower demand and higher demand (0.1 and 0.9) respectively. 
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We also find that of all competing seasonal first differenced 

parametric models, 𝐴𝑅𝐼𝑀𝐴  1,1,2 ×  1,1,1 7 is the most parsi-

monious model with the smallest  (𝐴𝐼𝐶). On the other hand  

𝐺𝐴𝑅𝐶𝐻 1,1  fits well the residuals, with the diagnostic tests 

revealing no deviations from normality. The 0.9 ,0.5 and 0.1 

quantiles for the residuals plots are shown in figure 6. From these 

plots it is clear that the extreme quantiles; 0.1 and  0.9 are more 

volatile than the 0.5 quantile. These plots are in agreement with the 

results given in figure 3 which shows that volatility increases as you 

move towards the extremes. 

Conclusion 

We conclude that nonparametric kernel estimators possess some 

appealing properties when displaying the mean and volatility 

functions. Also we have shown that quantile regression provide a 

more complete picture on how the distribution of the response 

variable is conditioned on the previous outcomes. Also for nonlinear 

interactive covariates, nonparametric estimators are flexible enough 

to capture the underlying complex dependence structure.  This model 

can be used to generate routine short time forecast and also as an 

analytical tool to avoid incorrect inferences.  

Acknowledgement 

We would like to thank The Kenya Power and Lighting Company and 

the Kenya National Oil Corporation for helping us obtain the data 

for this study. We would also like to thank the National Council for 

Science and Technology for their grant support towards this 

research. Finally we wish to thank the reviewers and the editors for 

their comments and suggestion. 

 

 

 

 



 

Rwanda Journal, Volume 23 Series C, 2011: Mathematical Sciences, Engineering and Technology 

 
19 

0 500 1000 1500 2000

-0
.6

-0
.2

0
.2

(a)

Time

Y
t

 

0 500 1000 1500 2000

-0
.6

-0
.2

0
.2

(b)

Time

Y
t

 

0 500 1000 1500 2000

-0
.6

-0
.2

0
.2

(c)

Time

Y
t

 

Figure 6 (a) Residuals  0.1 quantiles for the electricity consumption 

data. (b) Residuals 0.5 quantile estimate and (c) The Residuals 0.9 

quantile estimate. 
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