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Abstract 

We examined the evolution of extragalactic radio sources using the observed core-
hotspot distance and hotspot size. Analysis indicates a fairly strong positive correlation 
in the ratio of core-hotspot distance to hotspot size between that of the approaching 
arm and the receding arm with a correlation coefficient of ݎ	~	0.7. Simple kinematic 
consideration enabled us to obtain an expression to constrain the advance speed of 
hotspots. In general, the average projected hotspot advance speed estimated for our 
sample ranges from  0.13	  〈ߚ〉  0.40  
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1 INTRODUCTION 

Active Galactic Nucleus (AGN) describes the nucleus of extragalactic 
radio sources (EGRSs) with very high luminosities believed to be 
produced through accretion of matter onto a central object possibly a 
super massive black hole. The activity of the central engine is often 
accompanied by highly-relativistic collimated jets/beams (e.g. Begelman 
et al. 1984) of plasma material formed and accelerated in the vicinity of 
the black hole (Blandford & Konigl 1979), which transport some of the 
accretion power to the lobes of EGRSs where they are thermalized in the 
hotspots (Scheuer 1974). A long debated issue is the speed ሺߚሻ which 
these hotspots advance away from the AGN core, where ߚ is the bulk 
advance speed of the hotspot in units of ܿ, the speed of light. 

Observational evidence in support of the jets in AGN being relativistic 
include (i) one-sided jet morphology, (ii) high brightness temperature of 
the AGN core determined with interferometers and from flux density 
variations (e.g. Kellermann & Pauliny-Toth, 1968; Kellermann & 
Pauliny-Toth, 1981; Kellermann et al. 2004; Lähteenmäki & Valtaoja 
(1999); Cohen et al. 2007), (iii) the asymmetry of the polarization of the 
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jet at the two opposite sides (the so-called Laing-Garrington effect, 
Garrington et al. 1988; Laing, 1988) and (iv) the observed apparent 
superluminal motion (e.g. Whitney 1971; Cohen et al. 1977; Jorstad et 
al. 2001; Kellermann et al. 2004; Piner et al. 2007).  

In most high luminosity radio sources with one-sided kiloparsec scale 
jets, the observed parsec jets always points in the same direction as the 
kiloparsec jets (Pearson & Readhead, 1988; Wardle & Aaron, 1997), 
implying the persistence of relativistic motions in kiloparsec region of 
EGRS. Hardcastle et al. (1999) reported that relativistic beaming is 
needed to explain the observed relationship between core and jet 
prominence in their sample. 

The advance speed of the hotspots/lobes for asymmetric radio sources 
can be estimated using the asymmetry parameters such as the arm-length 
ratio and apparent flux density ratio (e.g. Banhatti (1980); Best et al. 
1995; Scheuer 1995, Ryś 2000), but this depends highly on the degree of 
asymmetry and the assumption that the observed asymmetry is entirely 
due to relativistic beaming. However, environmental and other intrinsic 
factors have been shown to be important in interpreting observed 
asymmetries in EGRSs (e.g. McCarthy et al. 1991; Wardle & Aaron 
1997; Jeyakumar & Saikia, 2000; Jeyakumar et al. 2005; Onuchukwu & 
Ubachukwu, 2013). Another method for estimating hotspot advance 
speed is the synchrotron age estimates (Liu et al. 1992; Parma et al. 
1999; Murgia et al. 1999; Schoenmakers et al. 2000; Jamrozy et al. 
2005), but the uncertainty is large. The major source of uncertainty in 
estimating hotspot advance speed using synchrotron age estimates lies in 
the assumption of minimum-energy field in the estimation of the 
magnetic field (ܤ), since synchrotron age (ݐ௦௬) estimate depends more 
on magnetic field than the radio spectrum break frequency ߥ as (ݐ௦௬ ∝
ߥ	ଵ.ହିܤ

ି.ହ (see Longair (1981); De Young (2002)) uncertainty in the 
value of magnetic field makes it difficult to derive the source age. 

In this article, we wish to estimate the projected advance speed of 
hotspot using the observed core-hotspot distance and hotspot size. In this 
method we will assume constant advance speed of hotspot from the core 
and constant aspect ratio. The use of core-hotspot distance rather than 
core-lobe distance is due to the fact that hotspots are more compact and 
brighter thus angular extension should be more clearly defined. Gopal-
Krisna & Wiita (2004) noted that the main thrust of the collimated 
energy supply from the galactic nucleus is focused through the jets into 
the hot-spots, thus any relativistic motion is more likely to be associated 
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with them (Longair et al. 1973; Blandford & Rees, 1974; Scheuer, 
1974), and not with the extended lobes.  

In Section 2, we obtain an analytical expression that relates the hotspot 
expansion to hotspot size and core-hotspot distance, in Section 3, we 
carry out the analysis and conclude in Section in 4. 

 

2 THEORY OF RELATIONSHIP 

According to the standard beam model of radio-loud AGNs, it is 
believed that a fraction of accretion material forms an outflow (beam of 
relativistic plasma) along the rotational axis of the black hole (Blandford 
& Znajek, 1976; Mundell et al. 2003). These beams transport the bulk 
kinetic energy from the central engine to kiloparsec regions ~100 െ
 away from the central engine where they terminate and are ܿ݇	1000
thermalized at the hotspots (Blandford & Rees, 1974). Scheuer (1974) 
noted that the shocked relativistic plasma should expand sideways due to 
the interactions between the ambient intra cluster medium and the AGN 
jet. Assuming twin ejection of materials on the opposite sides of the 
central engine of AGN, and a simple kinematic model, then, in the frame 
of the source, the distance of the plasma element from the core (ܦ) can 
be described by 

ܦ ൌ           (1)ݐܿߚ

where ߚ is the bulk advance speed of the jets in units of ܿ, the speed of 
light, ݐ is the time taken for the plasma element to traverse the distance 
 ,Putting into consideration time delay effects and orientation effect .(ܦ)
the observed time in the AGN rest frame is related to time in the 
observer’s frame by, for the approaching arm (see Gopal-Krishna & 
Wiita, 2004) 
ݐ ൌ ሺ1ߛ െ ߚ cos  ,      (2)ݐሻߠ

and for the receding arm, 

ݐ ൌ ሺ1ߛ  ߚ cos  ,      (3)ݐሻߠ

where ߠ is the angle to the line of sight of a distant observer, ߛ is the 

Lorentz factor related to the bulk speed by  ߛ ൌ
ଵ

ඥଵିఉమ	
. Thus, the time 

ሺݐሻ taken to traverse a given distance in the frame of the plasma element 
in terms of the observed distances, for the approaching arm (ܦ) can be 
written as 
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ݐ ൌ
ೌ

ఉ ௦ ఏ
ሺ1ߛ െ ߚ ݏܿ ሻሺ1ߠ  	ሻݖ 	 	 	

	 ሺ4ሻ	

and for the receding arm ܦ we have 

ݐ ൌ
ೝ

ఉ ௦ ఏ
ሺ1ߛ  ߚ ݏܿ ሻሺ1ߠ  		ሻݖ    (5) 

Here ܦ is the projected core-hotspot distance, the subscripts ܽ and ݎ 
represent approaching and receding arm respectively. We have defined 
ܦ 	ൌ ܦ	 sin  the factor (1 + z) is needed to ;(see Ubachukwu, 1998) ߠ
transform the observed time to the time in the frame of our galaxy (see 
Blandford & Konigl,1979; Homan et al. 2009). Thus, the ratio of the 
time to reach an observed distance can be written as 
௧ೝ
௧ೌ
ൌ

ೝሺଵାఉ ୡ୭ୱఏሻ

ೌሺଵିఉ ୡ୭ୱఏሻ
        (6) 

When the plasma is thermalized, they expand sideways. Following 
Körding & Falcke (2004), the expansion speed will depend on the speed 
of sound (ߚ௦) in the plasma. Now let ܴ be the observed size of the 
approaching side hotspot and ܴ the observed size of the receding side 
hotspot. The time (ݐோ) to reach an observed size for the approaching arm 
may be written (assuming an isotropic medium) as 

ோݐ ൌ
ோೌ
ఉೞ

          

   (7) 

and for the receding arm we have 

ோݐ ൌ
ோೝ
ఉೞ

        (8) 

Assuming that the time to reach an observed size (ݐோ) is related to the 
time (ݐ) to reach an observed core-hotspot distance by ݐோ 	∝ 	  ௬ withݐ
	ݕ ൌ 	1 for simplicity (other values of ݕ are possible), then, from the 
above equations, we have 
ೝோೌ
ೌோೝ

ൌ 	
ሺଵାఉ ୡ୭ୱఏሻ

ሺଵିఉ ୡ୭ୱఏሻ
ൌ

ଵିఉഥ

ଵାఉഥ
      (9) 

where ̅ߚ ൌ ߚ cos  is the projected advance speed of the hotspot on the ߠ
plane of the sky. Kawakatu et al. (2008), had shown that there is a 
correlation between hotspot size and core-hotspot distance. 

We note that the assumption for y = 1, may not be entirely true for 
different regimes of core-hotspot distance and expansion mode due to 



 

73 
Rwanda Journal, Series D, Volume 1, 2016, Life and Natural Sciences: Special issue I 

different modes of interactions expected between the jet plasma and the 
ambient medium in the host galaxy (e.g. Saikia et al. 1995; O’Dea 1998; 
Dallacasa et al. 2002). For sources with core-hotspot distance less than 1 
kpc and for those with core-hotspot distance greater than 1 kpc, 
Kawakatu et al. (2008) obtained different slopes to the linear fits of the 
core-hotspot distance/hotspot size relation. Furthermore, the power-law 
index for the evolution of the hotspot size may change at transition 
between interstellar medium and intergalactic medium (e.g. Jeyakumar 
& Saikia 2000; Perucho & Marti, 2002). But for constant jet advance 
speed and constant aspect ratio usually assumed in self-similar model 
treatment of extragalactic radio sources (Begelman & Cioffi, 1989; 
Loken et al. 1992; Cioffi & Blondin, 1992), the assumption that the time 
 to reach a given hotspot size correlates with the time (t) to reach a (ோݐ)
given core-hotspot distance with y = 1 seems reasonable. Equation (8) 
can be inverted to give 

ߚ̅ ൌ
ଵି

ଵା
        (10) 

where ܾ ൌ
ೝோೌ
ೌோೝ

 and gives us an expression to constrain the projected 

advance speed of hotspots for sources with observed core-hotspot 
distance and hotspot size. In general, a linear regression fit to equation 
(8) in the form 

log ቀ
ೝ
ோೝ
ቁ ൌ log ቀ

ೌ
ோೌ
ቁ  log ቀ

ଵିఉഥ

ଵାఉഥ
ቁ      (11) 

will enable us estimate the average projected bulk expansion speed ̅ߚ. 

Also, the log ቀ
ೝ
ோೝ
ቁ െ log ቀ

ೌ
ோೌ
ቁ plot is theoretically expected to yield a 

slope of 1. This can be tested using a well-defined source sample. The 
logarithmic form of the relationship was chosen due to the expected 
wide spread in the observed core-hotspot distance and hotspot size 

 

3 DATA ANALYSIS/RESULT 

The analyses were based on a sample of extragalactic radio sources 
obtained from Kawakatu et al. (2008) which they culled from literature. 
According to Kawakatu et al. (2008), to minimize the difference in 
estimation of physical quantities between approaching hotspot and 
counter hotspot, they selected mainly sources with relatively symmetric 
lobes. For our analysis, we selected sources with observed information 
on jet and counter jet core-hotspot distance and hotspot size. We 
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excluded 3 sources (1005+070, 0255+460 and 1314+453) with core-
hotspot distance and hotspot size exactly the same for both arms, these 
sources will give a ratio of 1, and thus not suitable for our expression in 
estimating projected hotspot advance speed. The final sample consists of 
98 FR II sources. These sources depending on the projected linear size 
may be further classified as Compact Symmetric Objects (CSO), 
Medium-size Symmetric Objects (MSO), and Compact Steep Spectrum 
Sources (CSS). In Kawakatu et al. (2008), there was no identification of 
the approaching arm and the receding arm. Assuming simple relativistic 
beaming scenario (e.g. Ryle & Longair 1967; Gopal-Krishna & Wiita 
2004), the longer arm is assumed to be the approaching arm.  

In relativistic beaming scenario and twin beam model of AGN, for 
plasma elements ejected from the core and observed at the same time, 
the receding lobe will be at a shorter distance from the core and smaller 
in size than the approaching lobe. Thus, we expect a positive correlation 
in the ratio of core-hotspot distance to hotspot size between that of the 
approaching arm and receding arm. The correlation coefficient result is 
strong for our sample with 0.7~ݎ with 	 ൌ 	3.4	 ൈ 	10ି (where p is the 
probability of getting the given value of r by chance. Using equation (9), 
the average projected hotspot advance speed estimated for our sample is 
〈ߚ̅〉 	ൌ 	0.3	 േ 0.2, with the distribution plot of the estimated projected 

speed for each source shown in figure 1. Figure 2 shows the log ቀ
ೝ
ோೝ
ቁ െ

log ቀ
ೌ
ோೌ
ቁ plot. 
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Fig 1 Histogram Plot of The Estimate Hotspot Advance Speed ሺߚ cos  ሻ for Eachߠ

Source in The Sample. 
 

If the sources were sub-divided based on core-hotspot distance (see 
Kawakatu et al. 2008) into CSO (with ܦ  	MSO (with 1 ,(ܿ݇	1	 
	ܦ  	ܦ and large size FR II radio sources (with (ܿ݇	10   the ,(ܿ݇	10
average estimated projected hotspot advance speed is 〈̅ߚ〉 	ൌ 	0.3	 േ
0.2, 0.4 േ 0.1and 0.3 േ 0.1 for the large size FR II, MSO and CSO 

sources respectively. A linear regression fit to the log ቀ
ೝ
ோೝ
ቁ െ

log ቀ
ೌ
ோೌ
ቁ	plot (equation (11) gives: log ቀ

ೝ
ோೝ
ቁ ൌ ሺ0.9 േ 0.2ሻ log ቀ

ೌ
ோೌ
ቁ െ

ሺ0.11 േ 0.03ሻ this gives a mean projected advance speed of 〈̅ߚ〉 	ൌ
	0.13	 േ 0.03. The slope of the regression fit to equation (11) agrees well 
with the theoretical value, indicating that our assumption is plausible. 
 



 

76 
Rwanda Journal, Series D, Volume 1, 2016, Life and Natural Sciences: Special issue I 

 

 
Fig 2.  Plot of log ቀ

ೝ
ோೝ
ቁ	against log ቀ

ೌ
ோೌ
ቁ For The Sources In Our Sample 

 

4 DISCUSSION AND CONCLUSION 

We have investigated a simple consequence of kinematic evolution of 
hotspot size and core-hotspot distance. We also used it to obtain an 
estimate for the projected hotspot advance speed of 0.1	  〈ߚ̅〉  	0.4 for 
a sample of radio sources. There are several sources of uncertainties in 
the estimation of the projected hotspot advance speed using the observed 
hotspot size and core- hotspot distance of radio sources. According to 
Kawakatu et al (2008), these include (i) Hotspots sizes – the sizes of 
larger hotspots may be underestimated due to a lack of sensitivity for 
diffuse emission. (ii) Uncertainties in the angular resolution of the 
angular size of radio source may affect the estimation of the hotspot size. 
The higher the angular size resolution, the finer the details revealed and 
this might lead to underestimation of the hotspot sizes. (iii) Projection 
effect - The estimated size of the hotspot may not be intrinsic, but the 
size projected onto the celestial plane.  

The estimated speed within the limits of error, supports the assumption 
of constant advance speed of hotspots, though there seems to be a mild 
increase at the CSO – MSO phase 	with 〈̅ߚ〉	from 	0.3 െ 	0.4 and mild 
deceleration at the MSO – large size FR II with 〈̅ߚ〉	from 0.4 െ 	0.3 
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phase. The CSO - MSO phase seemly acceleration is expected for a 
power-law ambient density profile that scales approximately as King 

(1972) profile with ߩ~ߩ ቀ


బ
ቁ
ିఢ
,   is the central densityߩ hereݓ

distribution of the source environment, and here	ܦ is the assumed inner 
radius and ߳ index of decline. Thus, for ܦ    there will be lessܦ
interaction with environment and less obstruction to advance motion 
away from the core, leading to higher speeds. From the observed values 
of advance speed shown in Kawakatu et al. (2008), the average advance 
speed in CSO - MSO – large size FR II phases are ߚ	0.13~; 	0.15 and 
0.05 respectively for CSOs, MSOs and large size FR IIs. These values 
follow similar trend (though of lower values) to the average projected 
advance speed we estimated. The assumption of simple relation between 
the time for hotspot growth and distance away from the core may have 
been responsible for the discrepancies in the two results. Our results may 
be considered the upper limit to the expansion speed while Kawakatu et 
al. (2008) result may reflect the lower limit. 

Observations of the synchrotron radiation spectrum of extragalactic 
radio sources (assuming equipartition magnetic field) have led to the 
estimation of the advance speed of the hotspots for most powerful 
extragalactic radio sources as 0.2~ߚ െ 	0.3 (Myers & Spangler 1985; 
Liu et al. 1992). Using the prevalence of long lobe of radio sources, 
Longair & Riley (1979) estimated that the expansion speed of the lobes 
in general cannot be more than ~ߚ	0.25.	Furthermore, Best et al. (1995) 
showed that a hotspot speed in the range 0.2~ߚ െ 	0.3 would be 
required to reproduce the arm-length ratio distribution for the 3CRR 
sample. More recently, Stanghellini et al. (2009) in their study of three 
compact radio sources obtained hotspot speed which lies in the range 
0.2~ߚ െ 	0.4. Orienti & Dallacasa (2010) reported a mean apparent 
expansion speed in intrinsically compact radio sources ofߚ~ሺ039	 േ
0.18ሻ which is in agreement with the values obtained by Polatidis & 
Conway (2003) who studied a dozen of the most compact radio sources. 
These results are in general, consistent with the values obtained in this 
paper. 

On the other hand, Scheuer (1995) obtained a somewhat lower valueߚ 
0.15, with most probable speed value of 0.03~ߚ െ 	0.02 which may be 
taken as the lobe speed (a rapid backflow is expected if the jet material 
is much less dense than the ambient plasma); such strong backflows are 
clearly observed in many numerical simulations of jet propagation (see 
Norman 1996; Hooda & Witt 1998). Furthermore, Arshakain & Longair 
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(2000) using the jet-sidedness ratio for a large sample of quasars and 
galaxies, obtained similar small values of hotspot advance speed of 
0.11~ߚ േ 0.01. However, in their analysis, they pointed out that 
intrinsic/and environmental effects also contribute to the observed 
asymmetries. 

In conclusion, using the observed core-hotspot distance, hotspot size and 
assumption of constant hotspot advance sped/aspect ratio, we obtained 
an expression that helped us constrained projected hotspot advance 
speed of extragalactic radio sources. 
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