Main Article Content

On finite Sylow tower and σ-tower groups


Jinzhuan Cai
Inna N. Safonova
Alexander N. Skiba
Zhigang Wang

Abstract

In this paper, G is a finite group and σ a partition of the set of all primes ℙ, that is, σ = {σii ∈ I}, where ℙ = ⋃i∈I σi and σi ∩ σj = ∅ for all i = j; σ (G) = {σi| σi ∩ π(G) = ∅}.


We say that G is a σ-tower group if either G = 1 or G has a normal series 1 = G0 < G1 < · · · < Gt−1 < GtG such that Gk/Gk−1 is a σi-group, σi ∈ σ(G), and G/Gk and Gk−1 are σi-groups for all k = 1, . . . , t.


Now we associate with each group G = 1 a directed graph Γ = ΓH σ (G) as follows: Let σ(G) = {σ1 , σ2 , . . . , σt}. ΓH σ (G) has t vertices σ1 , σ2 , . . . , σt and (σi , σj) is an arc of Γ (directed from σi to σj) if and only if . And we call such a graph the Hawkes σ-graph of G.


In this paper, we study various properties of finite Sylow tower and σ-tower groups. In particular, we prove that G is a σ-tower group if and only if the Hawkes σ-graph of G has no circuits, and we describe the structure of a σ-tower group G by appealing to some other properties of the graph ΓHσ (G).


Journal Identifiers


eISSN: 1727-933X
print ISSN: 1607-3606