Main Article Content
A few points on pointfree pseudocompactness
Abstract
We present several characterizations of completely regular pseudocompact frames. The first is an extension to frames of characterizations of completely regular pseudocompact spaces given by Väänänen [19]. We follow with an embedding type characterization stating that a completely regular frame is pseudocompact if and only if it is a P-quotient of its Stone-Cech compactification. We then give a characterization in terms of ideals in the cozero parts of the frames concerned. This characterization seems to be new and its spatial counterpart does not seem to have been observed before. We also define relatively pseudocompact quotients, and show that a necessary and sufficient condition for a completely regular frame to be pseudocompact is that it be relatively pseudocompact in its Hewitt real compactification. Consequently a proof of a result of Banaschewski and Gilmour [6] that a completely regular frame is pseudocompact if and only if its Hewitt realcompactification is compact, is presented without the invocation of the Boolean ultrafilter theorem.
Quaestiones Mathematicae 30(2007), 451–464
Quaestiones Mathematicae 30(2007), 451–464