Main Article Content

Existence and stability of solutions for linear and nonlinear Stieltjes differential equations


Yu Chen
D. O'Regan
JinRong Wang

Abstract



This paper deals with Cauchy problems and nonlocal problems for non-linear Stieltjes differential equations corresponding to a certain function g. We establish existence and uniqueness results for nonlinear equations with initial value or nonlocal conditions in the space ℬ? g ([0, H], ℝ) using fixed point methods and g-topology theory. We introduce the concepts of Ulam-Hyers (UH) and generalized Ulam-Hyers-Rassias (UHR) stability and present Ulam type stability results for linear and nonlinear equations in the spaces ?? g ([0, H], ℝ) ⊂ ℬ? g ([0, H], ℝ) and ℬ? g ([0, H], ℝ). Finally, numerical examples are given to illustrate our results.






Mathematics Subject Classification (2010): 26A24, 34A12, 34B10, 34D20




Journal Identifiers


eISSN: 1727-933X
print ISSN: 1607-3606