Main Article Content

On non-surjective coarse isometries between Banach spaces


Lixin Cheng
Quanqing Fang
Sijie Luo
Longfa Sun

Abstract

Assume that X; Y are real Banach spaces, Y has uniform convexity of type p (≥ 1), and f : X → Y is a standard coarse isometry. In this paper, we show that if

∫ ∞      εf(S) 1/P             

        __________ ds < ∞,

    1      S1 + 1/p

then there is a linear isometry U : X → Y so that

‖ f (x) - U x ‖ = o (x ‖), as ‖ x ‖ → ∞,

where εf : ℝ+ → ℝ+ is defined by

εf(t) = sup {l ‖ f (x) - f (y) ‖ - l : x,y ∈ X x - y ‖ ≤ t }.

Representation properties of coarse isometries in free ultrafilter limits on ℕ are also discussed.

Mathematics Subject Classification (2010): Primary 46B04, 46B20, 47A58; Secondary 46A20.

Keywords: Coarse isometry, stability, uniform convexity, Banach space


Journal Identifiers


eISSN: 1727-933X
print ISSN: 1607-3606