Main Article Content

Spectral properties of generalized eigenparameter dependent discrete Sturm-Liouville type equation


Turhan Koprubasi
R.N. Mohapatra

Abstract

Let L denote the non-selfadjoint difference operator of second order with boundary condition generated in ℓ2 (ℕ) by

an-1yn-1 + bnyn + anyn+1 = λyn ; n ∈ ℕ;   (0.1)
pΣk=0 (y1γk + y0βk) λk = 0;                    (0.2)

where {an} n∈ℕ and {bnn∈ℕ are complex sequences, γi; βi ∈ ℂ; i = 0; 1; 2; ...; p and
λ is a eigenparameter. Discussing the spectral properties of L, we investigate the
Jost function, spectrum, the spectral singularities, and the properties of the principal
vectors corresponding to the spectral singularities of L, if

Σn=1  n(∣1 - an∣ + ∣bnl) < ∞

Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75.

Key words: Discrete equations, eigenparameter, spectral analysis, eigenvalues, spectral
singularities, principal functions.


Journal Identifiers


eISSN: 1727-933X
print ISSN: 1607-3606