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Introduction
Exposure to environmental factors such as nutritional 
abnormalities, stress, and toxicants can lead to 
phenotypic variations (Waterland, 2009; Nilsson et al., 
2018). Environmental toxicants have become a serious 
public health issue (Chen, 2021). They disrupt a variety 
of metabolic processes and harm biological systems in 
humans and animals (Humblet et al., 2008). Alterations 
in appetite, dietary efficacy, and metabolism of lipids, 
protein, and carbohydrates may occur as a result of this 
interference. 
Environmental toxicant exposure during the phase of 
germ cells, intrauterine, postnatal, and early lives has a 
significant impact on the phenotypes and vulnerability 
to diseases later in life (Skinner et al., 2010, 2013; 
Al-Gubory, 2014; Al-Griw et al., 2017). Endogenous 
hormonal control is disrupted by synthetic endocrine 
disruptors such as bisphenol A (BPA) (Elobeid and 
Allison, 2008). For many years, BPA has been widely 
utilized in the manufacturing of epoxy resins and plastic 

products (Willhite et al., 2008; Camarca et al., 2016; 
Jalal et al., 2018). At all ages, people are inadvertently 
subjected to BPA in everyday life due to its widespread 
use in the fabrication of plastic food beverage containers 
and the coating of food cans (Gassman, 2017; Gear and 
Belcher, 2017). BPA has been found in the environment, 
in food, and even in the physiological fluids of humans 
(Mouneimne et al., 2017). 
According to epidemiological statistics, more than 
90% of people had detectable levels of BPA (Trasande 
et al., 2013), whereas those exposed to BPA at work 
had 70 times greater than the general population (Hines 
et al., 2017). These findings suggest that people are 
susceptible to BPA, which may be inevitable, as it is 
hard to find a chemical replacement that is both safe 
and economical (Warner and Flaws, 2018). BPA can 
be found in the air at 2–208  ng/m3, in food samples 
at amounts of 0.2–106  ng/g, and in thermal paper at 
54–79  g/cm2. In human blood, BPA concentrations 
can range from 0.5 to 10  g/l, with 4.8  g/l in the 
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association between BPA and circulating vitamin D (VitD) levels were documented. 
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placenta and 59.7  g/l in the urine (Kim and Hong, 
2017). The widespread use of BPA and its hazardous 
potential raises worries about its negative effects on 
several biological systems (Kim and Hong, 2017). In 
many investigations, BPA functions as an estrogenic 
substance (Korkmaz et al., 2010). According to many 
investigations, certain tissues/organs are particularly 
prone to the harmful effects of BPA, which can result 
in diseases (Fenichel et al., 2013; Rochester, 2013; Al-
Griw et al., 2021b). BPA impacts the health of humans, 
therefore, has gotten a lot of attention in public health. 
Impacts of BPA on the kidneys, lungs, heart, and liver 
have been demonstrated (Tyl et al., 2008; Al-Griw et 
al., 2022a). Recent research exhibited that BPA has 
detrimental effects on testicular cytoarchitecture and 
male reproductive performance (Al-Griw et al., 2021a, 
2022b). 
The active form of vitamin D (VitD) is essential for 
human metabolism (Walentowicz-Sadłecka et al., 
2013). With anti-apoptotic and anti-inflammatory 
properties, VitD therapy reduces ischemia-reperfusion 
damage after myocardial infarction (Bae et al., 
2013). VitD deficiency is correlated with an increased 
oxidative injury (Sinanoglu et al., 2012; Assalin et al., 
2013; Seif and Abdelwahed, 2014). 
In humans and animals, the liver is a crucial organ 
for detoxification, and malfunction of the liver after 
environmental toxicant exposures is accompanied by 
liver pathology (Paradies et al., 2014; Al-Griw et al., 
2022a). According to the vest knowledge of the authors, 
there are no/little studies on the role of VitD in reducing 
and/ or preventing liver pathology. Therefore, this work 
aimed to explore the VitD role in BPA-induced liver 
pathology using a mouse model, as no earlier study had 
done so. Our findings showed that VitD protects mice 
from BPA-induced liver damage.

Materials and Methods
Animals and experimental design
Healthy 4.5-week-old male (n = 35) and female (n = 35) 
Swiss albino mice, weighing 13.5 ± 1.48 g were used 
in this study. All animals were bred and housed in 
the animal house at the University of Tripoli, under 
conventional circumstances of a 12  hours light/ dark 
cycle and temperature (24°C ± 1°C). The mice were fed 
with a pelleted diet and water ad libitum. 
The mice were divided into control and untreated 
groups, with 14 mice in each (7 males and 7 females). 
The control groups were further divided into sham (no 
treatment) and vehicle (corn oil), whereas the treated 
groups were also divided into VitD (2195 U/kg), BPA 
(50 μg/kg), and BPA + VitD (50 μg/kg + 2195 U/kg) 
groups. For 6 weeks (twice a week), the animals were 
dosed intraperitoneally (Fig. 1). The BPA and VitD 
were dissolved in sterile corn oil. The BPA and VitD 
doses were chosen according to previous works (Vom 
Saal and Hughes, 2005; Tyl et al., 2008; Sadowski et 
al., 2014; Tesic et al., 2015; Khodayar et al., 2020). 

One week later (at 10.5-week-old), the animals were 
killed for biochemical and histopathological analyses.
Toxicity assessment 
Any abnormal signs and the survival/mortality rate 
were daily recorded. During the exposure period, mice 
were observed twice daily for any abnormal clinical 
signs or behavior that may result from toxicity.
Body and organ weights
For the calculation of body weight alterations, the body 
weights were measured at the onset and the end of the 
experiments. At the end of the experiments, the livers 
were weighted in all experimental groups.
Blood and tissue harvesting
At the end of the experiments, approximately 1 ml of 
blood was drowned from the tail vein of each mouse 
for biochemical analyses. Sera were obtained by 
centrifugation at 3,000  rpm for 15 minutes and were 
stored at−20°C until being used.
The animals were killed under anesthesia with 1% 
ketamine and their livers were rapidly dissected. After 
washing the livers in sterile normal saline, they were 
fixed in 10% buffered formalin for histopathological 
investigations. For determining lipid peroxidation and 
antioxidant values, pieces of the livers were frozen 
at−20°C until used.
Liver enzyme damage in the sera
For liver damage test, alanine transaminase (ALT), 
alkaline phosphatase (ALP), and gamma-glutamyl 
transferase (GGT) were measured using commercial 
kits (Biomaghreb, Tunisia) as previously described 
(Al-Griw et al., 2022a). The enzymatic-based method 
was used to measure the activities of the enzymes.
Histopathological study and microscopy
The histopathological studies were made based on 
prior published methods (Ginsberg et al., 1981; Al-
Griw et al., 2015). Following dissection, 10% neutral 
buffered formalinfixed tissues were dehydrated in a 
series of increasing concentrations of ethanol solutions, 
cleared in xylene, and then embedded in paraffin wax. 
Paraffin sections were cut at 5 µm thick, deparaffinized, 
hydrated, stained with H&E, and examined under light 
microscopy (Leica, Germany). The hepatic tissue 
architecture was examined and imaged using light 
microscopy (Leica, Germany). The tissues from each 
animal were assessed blindly by two pathologists for 
histopathological changes.
Histopathologic investigation of liver sections 
was performed with particular consideration for 
inflammatory changes, hepatocellular necrotic changes, 
biliary ductless changes, fibrosis, architectural changes, 
and degenerative changes. The frequency of lesions was 
unbiasedly evaluated to determine a pattern of injury, 
which was assessed semi-quantitatively according to the 
severity and distribution of the pathological changes. 
Note that the only diagnoses that were considered to 
be accurate based on histopathological changes and 
data presented in each group were included in the 
histopathological description and depictions. 
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Scoring of cell death
Using the image-analysis software (ImageJ, National 
Institutes of Health, MA,  http://rsb.info.nih.gov/ij/), 
the cell death in images of H&E-stained liver sections 
was measured.
Apoptotic cells were characterized morphologically by 
determining chromatin margination and condensation 
as well as cell shrinkage (Gujral et al., 2001), while 
the criteria of cell swelling, karyolysis, karyorrhexis, 
absence of nucleus, and increased cytoplasmic 
eosinophilia were signs for hepatocyte necrosis. 
Statistical analysis
GraphPad Prism software (version 7.0) was used to 
analyze the data. All data represent the mean ± SEM. 
Normality was assessed using the computerized 
Kolmogorov–Smirnov test. Normality was assessed 
using the computerized Kolmogorov–Smirnov test. For 
data with normal distributions, multiple comparisons 
were made with a two-way analysis of variance 
followed by a post-hoc test, Dunnett’s. p values of 
≤0.05 were considered statistically significant.
Ethical approval
The Research Ethics Committee of the Biotechnology 
Research Centre in Tripoli, Libya granted ethical 
permission for animal work (Reference BEC-
BTRC-2020).

Results
VitD preserves the total body weight upon BPA exposure
During the daily follow-up of the animals, no death was 
documented in any of the groups, and no symptoms of 
toxicity were seen.
In males and females, there were no marked treatment 
effects in total body weights compared to the control 

groups (Fig. 1). No marked gender difference was 
detected when experimental groups were compared 
(p > 0.05, Fig. 1).
On the contrary, there was a statistically significant 
difference in the body weights between control and BPA 
groups in both genders (F = 29.3; p < 0.001, F = 14.18; 
p < 0.001, respectively), and VitD treatment preserved 
the body weights in both males and females, which was 
similar to that seen in controls (p < 0.001, Fig. 1).
VitD preserves liver weights upon BPA exposure
In males and females, there were no significant 
treatment effects on liver weights compared to the 
control groups (Fig. 2). On the other hand, there were 
marked treatment effects in the liver weights between 
control and BPA groups in both males and females 
(F = 8.22; p = 0.0021, F = 6.6; p < 0.041, respectively), 
and that treatment with VitD preserved the liver weights 
in males but not females (p  =  0.0019, p = 0.0697, 
respectively, Fig. 2). No marked gender difference was 
detected when experimental groups were compared 
(p > 0.05, Fig. 2).
VitD alleviates liver damage markers in the sera of mice 
upon BPA exposure
There were no significant gender effects in the ALP, 
ALT, and GGT between male and female control 
groups (Fig. 3A and B). On the other hand, there were 
significant treatment effects in the ALP, ALT, and GGT 
levels between individual treated groups (Fig. 3A–C). 
For males, BPA significantly increased the levels of 
ALP, ALT, and GGT compared to controls, and that 
treatment with VitD significantly preserved the levels 
of ALP and ALT, but not GGT, which were similar to 
that seen in controls (Fig. 3A and B). For females, BPA 
significantly increased the levels of ALP and GGT, but 

Fig. 1. VitD preserves animal body weights. Male and female mice were subjected 
to conditions of sham control, vehicle control, VitD, BPA, or BPA + VitD. 
Measurements of the body weights. The data are represented as mean ± SEM. 
(***) indicates p < 0.001 in male groups and (≠≠≠) indicates p < 0.001 in female 
groups.
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not ALT, compared to controls, and that treatment with 
VitD significantly preserved the levels of ALP, but not 
ALT and GGT, which was nearly similar to those seen 
in controls (Fig. 3A–C). The findings also found that 
there were marked treatment effects in the levels of 
ALT and GGT, but not ALP between male and female 
BPA-treated groups (Fig. 3A–C). Specifically, post-hoc 
tests revealed that the levels of ALT and GGT were 
markedly higher in males than in females (p < 0.001 
and p < 0.01, respectively).
VitD ameliorates liver pathology upon BPA exposure
The histological examination of this study showed 
that treatment with VitD was effective against the 
deteriorating BPA effects on the liver tissues of male 
and female mice. Specifically, the liver tissues of sham 
and vehicle control-treated mice of males and females 
show no/little hepatic architecture changes (Fig. 4A 
and B). The images showed that the hepatic lobule was 

composed of a central vein surrounded by radiating cords 
of the normal hepatocyte. The cords of the hepatocytes 
were separated by sinusoids. The hepatic lobules were 
surrounded by the normal portal area comprised of 
the hepatic artery, hepatic vein, and bile duct. Sections 
from animals treated with VitD alone did not trigger 
any alterations in either male or female mice (Fig. 4A 
and B). In comparison with the liver tissue sections of 
control-treated mice, tissue sections of BPA-treated mice 
showed congestion in the central vein and portal area, 
alteration in hepatocyte architecture, degeneration, and 
vacuolation in the hepatocytes with pyknotic nuclei. 
It also showed dilatation in the hepatic sinusoids and 
central vein with aggregation of lymphocytes (Fig. 4C 
and D). It also showed infiltration of macrophages in the 
sinusoids and between hepatocytes. On the other hand, 
the liver tissues of BPA+VitD-treated mice mitigated the 
pathological alterations induced by BPA (Fig. 4).

Fig. 2. VitD preserves liver weight. Male and female mice were subjected 
to conditions of sham control, vehicle control, VitD, BPA, or BPA + VitD. 
Measurement of liver weights. The data are represented as mean ± SEM. (**) 
indicates p < 0.01 in male groups and (≠) indicates p < 0.001 in female groups.
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Fig. 3. VitD alleviates liver enzyme damage. Male and female mice were subjected to conditions of sham control, vehicle control, 
VitD, BPA, or BPA + VitD. (A): ALP levels are measured in micrograms per liter (IU/l). (B): ALT levels (IU/l) are measured. (C): 
GGT level measurement (IU/l). The data is represented as mean ± SEM. (*) indicates p < 0.05, (**) indicates p < 0.01, and (***) 
indicates p < 0.001 in male groups and (≠≠) indicates p < 0.01 and (≠≠≠) indicates p < 0.001 in female groups. (′) indicates p < 0.05 
and (′′) indicates p < 0.01 males versus females.
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Discussion
The main findings of this study showed that BPA 
triggered a marked liver pathological change in later 
life, as illustrated by biochemical and histopathological 

analysis. Specifically, BPA significantly increased the 
total body and liver weights. There was also a significant 
increase in the levels of liver enzymes (ALP, ALT, 
and GGT), hepatocellular apoptosis, and hepatocyte 
injury scores. These noxious treatment impacts were 

Fig. 4. Representative photomicrographs of H&E-stained male and female liver tissue sections of control (A, a, B, and b), vehicle 
(C, c, D, and d), Vit D (E, e, F, and f), BPA (G, g, H, and h) and PBA + VitD (I, I, J, and j). The control vehicle and VitD-treated 
groups of both males (A, B, and C) and females (a, b, and c) exhibited normal hepatocyte architecture, central vein, sinusoids, and 
portal area components. Liver sections from BPA-exposed animals showed hepatocellular hydropic degeneration (arrows) and pan 
lobular closed to Glisson's capsule (open arrows). Hepatocellular coagulative necrosis (arrowhead) with the disintegration of the 
cytoplasmic membrane, cytoplasmic eosinophilic and nuclear changes including karyopyknosis and karyolysis, is accompanied 
by lymph-histiocytic infiltration with few neutrophils (white arrows). Sections from BPA + VitD-exposed mice from males (I and 
i) and females (J and j) revealed slight preservation of liver architecture, including hepatocyte proliferation and repopulation with 
multifocal hyperemia and small erythrocyte extravasation and minimal lymph-histiocyte infiltration. Scale bars indicate 100 µm, 
100× m H&E staining. Hepatocytes (H), central vein (CV).
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markedly ameliorated by VitD treatment. Our findings 
also showed significant VitD effects in terms of some 
biochemical and histopathological findings, although 
not all findings enhanced markedly in the treated group 
compared to the untreated group. 
Even at lower doses, BPA remains a public health issue 
due to its ability to promote phenotypic variations, 
as previously discussed (Chan, 2000; USEPA, 2003; 
Manikkam et al., 2012; Al-Griw et al., 2016; Nilsson 
et al., 2018). The BPA was found to cause negative 
impacts on health in early and later life (Anway et al., 
2005; Salian et al., 2009; Bruner-Tran and Osteen, 
2011; Manikkam et al., 2012; Rogers et al., 2013; 
Schug et al., 2013; Camarca et al., 2016; Koike et al., 
2018; Özaydın et al., 2018; Al-Griw et al., 2021a).
The active form of VitD is important in clinical medicine 
because of its powerful effects on bone metabolism 
and Ca2+ balance (Piotrowska et al., 2016; Parva et 
al., 2018). It was found that VitD and VitD receptor 
activators protect against brain injury (Tokgoz et al., 
2018) and kidney damage (Tan et al., 2008). Similarly, 
it was demonstrated that the VitD receptor activator has 
a beneficial impact on renal injury after ischemia (Azak 
et al., 2013). This work aimed to explore the VitD role 
in BPA-induced liver pathology using a mouse model.
Accumulating evidence illustrates BPA-induced 
hepatotoxicity. BPA exposure is correlated to a 
raised risk of being obese (Braun, 2017).  Exposure 
to BPA  during  prenatal and postnatal was linked to 
increased body weight (Akingbemi et al., 2004; Suttie, 
2006; Magliano and Lyons, 2013; Picard and Turnbull, 
2013; Gear and Belcher, 2017). Other investigations 
found a marked decrease in the body weights in the 
animals that were treated with 0.1 mg/kg BPA (Hassan 
et al., 2012). In addition, a marked significance and 
dose-related decrease in liver weights were found 
when compared to controls with BPA-treated groups 
(Yamasaki et al., 2002a, 2002b). In this study, we 
found that BPA significantly increased the total body 
and liver weights in both mouse males and females 
when compared to untreated mice. This reduction was 
attenuated with VitD treatment.
It is well known that the liver plays role in protecting 
the body from chemical substances. Environmental 
toxicants were found to disrupt normal liver function, 
causing various diseases (Praveena et al., 2018; Lee et 
al., 2019). Liver damage tests, including monitoring 
of AST and ALT enzymes levels, are evaluated in 
the presence of liver abnormalities. Increased levels 
of liver damage indices were previously reported 
considering the BPA toxicity that resulted from 5 mg 
BPA/kg/day in rats with no effects at ≤5 mg (Korkmaz 
et al., 2010). It was documented an increase in AST 
activity in male rats treated with BPA ≥ 200 mg/kg/day 
and increased ALP activity in rats treated with 600 mg/
kg/day (Yamasaki et al., 2002a, 2002b). In this study, 
we found that BPA (400  mg/kg) markedly increased 
the serum indices of liver damage enzymes (ALP, ALT, 

and GGT) compared to controls, which are attributed 
to liver injury. Interestingly, our findings showed that 
treatment with VitD upon BPA exposure modulated 
their levels. This indicates the curative role of VitD 
against BPA-induced liver pathology.
Growing evidence reports that the toxicity of BPA is 
dependent on its doses and administration routes. Rats 
subjected to BPA at 125  mg BPA/kg/day orally for 
13 weeks were shown to have liver and kidney damage 
(Tyl et al., 2008; Dong et al., 2013; Yıldız and Barlas, 
2013). As a ubiquitous environmental toxicant, BPA 
damages tissues/organs in humans and animals (Acaroz 
et al., 2019; Soundararajan et al., 2019). 
According to Gear and Belcher (2017), BPA has dose- 
and sex-specific effects on the tissue architecture of 
the spleens, revealing minor changes in hematopoietic 
and immunomodulatory functions. When mice were 
subjected to 5  mg BPA/kg/day in dietary, there were 
no effects on the liver or kidney, but toxic effects were 
found at 50 or 600 mg BPA/kg/day (Tyl et al., 2008; 
Dong et al., 2013). Recently, it was found that BPA 
promoted heart, kidney, lung, and spleen pathologies 
in mouse males and females (Al-Griw et al., 2021b; 
Shaibi et al., 2022). In this study, we found that BPA 
significantly increased histopathological scores of the 
hepatocytes, which ultimately led to induced liver 
pathology. This is likely due to inducing oxidative 
injury.

Conclusion
This study demonstrated that BPA exposure triggered 
liver pathological changes, as revealed by biochemical 
and histopathological investigations. Our findings shed 
light on the possible underlying mechanism(s) for the 
development of a range of abnormalities induced by 
BPA. Although some improvement is gained, there 
are no marked differences in other biochemical and 
histopathological parameters. We thought that it may 
be correlated to the long elimination and VitD action 
time. However, we were not capable of finding the 
precise mechanism(s) by which VitD exerts its actions. 
Nevertheless, the findings of this study show that 
VitD provides effective treatment for BPA-induced 
liver pathological changes. Further works need to be 
undertaken for a better understanding of the role of 
VitD in BPA-induced liver pathological changes.
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