Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common and global cause of neonatal calf diarrhea, but there is a little information regarding calf ETEC strains in Argentina. In this study, five ETEC isolates from diarrheic dairy calves (2–10 d old) from Buenos Aires and Cordoba, Argentina were characterized on the basis of virulence gene (VG) pattern, O:H serotyping, hemolytic phenotype, phylogenetic group affiliation, antimicrobial (AM) resistance profile, and presence of integron class 1 and 2. The five isolates were examined by polymerase chain reaction (PCR) for the presence of 18 bovine VGs and showed the following genotypes: F5+ /F41+ /sta+ (D242), F5++ /sta+ (D158), F5+ /sta+ (D157), F5+ (D151- 9), and F5+ /iucD+ (D151-5). These VGs confer pathogenic potential and most of them are associated with the ETEC pathotype. The five isolates showed a non-hemolytic phenotype, belonged to five different serotypes: O101:H- , O141:H- , O60:H- , ONT:H10, and ONT:H- , and were assigned to the phylogenetic group A by the quadruplex Clermont PCR method. The AM resistance of the three isolates D242, D157, and D151-5 was determined by agar disk diffusion method for 24 AMs and they exhibited a multi-resistance phenotype (resistance to four different AM classes: Cephalosporins, Penicillins, Macrolides, and Ansamycins). In addition, class 1 integrons were found in the isolate D151-5 containing the dfrA17-aadA5 gene cassette and in the bovine ETEC reference strain FV10191 containing the dfrA1-aadA1 gene cassette. The present study revealed for the first time the occurrence of multi-resistant ETEC associated with neonatal diarrhea in dairy calves in Argentina. This finding may be used for diagnostic and therapeutic purposes. Keywords: Antimicrobial resistance, Dairy cattle, Escherichia coli, Neonatal diarrhea, Virulence gene.