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Abstract

Availability is an important measure in describing the performance of a system. The
availability of a decomposition process in an urea production system in the fertilizer
industry is considered in this paper. The system contains four subsystems and is
supported by a standby unit. An estimation study of the steady state availability of
the system is performed and illustrated by means of a numerical example.
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1 Introduction

The role and importance of (being able to measure) reliability has been a core issue in
the Engineering industry over the last three decades. Reliability is of importance to both
manufacturers and consumers. From the point of view of consumers and manufacturers,
reliability provides quality and vice versa. The reliability measure is also very impor-
tant, as improvement in reliability of a system is often achieved through quality analyses.
While this measure is of great importance in industry, there are many situations where
continuous failure free performance of a system, though desirable, may not be absolutely
necessary. For instance, in a production industry possible interruptions may occur and
can be tolerated. In such situations it may be eminently reasonable to introduce another
measure called ‘availability,’ which denotes the probability that the system is functioning
at any time instant.

In the process industry, like the fertilizer industry, one encounters many processes like
synthesis decomposition, crystallization, prilling and recovery. See, for example, Kumar
et al. (1991) and the UN Fertelizer Manual (1967).

∗Corresponding author: Department of Industrial and Systems Engineering, University of Pretoria,
0002, South Africa, email: sarma.yadavalli@up.ac.za

†Department of Industrial and Systems Engineering, University of Pretoria, Pretoria, 0002, South
Africa, and Department of Statistics, University of Namibia, Namibia

139



140 VSS Yadavalli & MAE Muller

In an urea decomposition system a gas liquid mixture (urea, NH3, CO2, Biuret) flows from
a reactor at 126◦C into the upper part of a high-pressure decomposer where the flushed
gasses are separated. The liquid falls through a sieve plate, which comes in contact with
high temperature gas available from a boiler and a falling film heater. The process is
repeated in a low-pressure absorber. The solution is further heated to 165◦C in a falling
film heater, which reduces the Biuret formation and hydrolysis of urea (see Figure 1 for
the layout of a typical urea decomposition plant).

The overhead gasses from the high-pressure decomposition then go to the high-pressure
absorber cooler. The liquid flows to the top of a low-pressure absorber and is cooled in
a heat exchanger. Additional flushing of the solution takes place in the upper part of
the low-pressure absorber so as to reduce the solution pressure from 17.5 to 2.5 kg/cm2.
The low-pressure absorber has four sieve trays and a packed bed. In the packed bed, the
remaining ammonia is stripped off by means of CO2 gas.

The overhead gases then go to the low-pressure absorber cooler, in which the pressure is
controlled at 2.2 kg/cm2. Most of the excess ammonia and carbonate is separated from
the solution flowing to the gas separator. The gas separator has two parts:

1. the upper part functions at 105◦C and 0.3 kg/cm2 and here the remaining small
amounts of ammonia and CO2 are recovered by reducing the pressure; the heat of
the solution is enough to vaporize these gasses.

2. The lower part comprises a packed section at 110◦C and atmospheric pressure.

Air containing a small amount of ammonia and CO2 is fed off from the gas absorber by
an on/off gas blower so as to remove the remaining small amounts of ammonia and CO2

present in the solution. Off gasses from the lower and upper parts are mixed and led to the
off-gas condenser. The urea solution concentrated to 70–75% is finally fed to a crystallizer.

2 System description and notation

The complex system (urea plant in Figure 1) described in the previous section consists of
four subsystems connected in series. The following assumptions are required to describe
the system:

1. Subsystem (Ai) comprises two units. Unit A1 is the boiler for the high-pressure
absorber and A2 is the falling filter heater for the low-pressure absorber. This
subsystem (Ai) fails by failure of A1 or A2.

2. Subsystem Bi comprises two units in series. Unit B1 is called the high-pressure
absorber and unit B2 is called the low-pressure absorber. Failure of either causes
complete failure of the system.

3. Subsystem D, the gas separator, comprises only one unit, arranged in series with B1

and B2. Failure of unit D causes complete failure of the system.
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Figure 1: Plan of an urea plant (by courtesy of Balance Kapuni, South Taranaki, New Zealand),

4. Subsystem Ei the heat exchanger comprises one unit and another in standby mode.
Failure occurs only when both units fail.

5. The life time of the units (Ai, Bi, D, Ei; i = 1, 2) are exponentially distributed
random variables with parameters λi; i = 1, 2, . . . , 6.

6. The repair time of the units are exponentially distributed random variables with
parameters µj ; j = 1, 2, . . . , 6.

7. Each unit is as good as new after repair.

8. Spare parts and the repair facility are always available.

9. The standby unit in E is of the same nature and capacity as the operating active
unit.

10. The repair is performed at regular time intervals or at the time of failure. The repair
includes replacement as well.

11. There is no common failure among subsystems.

12. State 0 indicates the operating state without using the standby unit and state 6
indicates the operating state using the standby state in subsystem E.

13. E1 is the state of the system running at full capacity with a standby unit in subsys-
tem E.
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Figure 2: The state transition diagram.

3 Availability analysis of the system

Let Pi(t) denote the probability that the system is in state i at time t and let Pi =
limt→∞ Pi(t).

Using Figure 2, the flow balance technique [2] is applied to find the steady state probabil-
ities (Pi): (

6∑
i=1

λi

)
P0 =

6∑
i=1

µiPi, (1)

(
6∑

i=1

λi + µ6

)
P6 =

6∑
i=1

µiPi+6 + λ6P0, (2)

5∑
i=1

µiPi =
5∑

i=1

λiP0; i = 1, 2, . . . , 6 (3)

6∑
i=1

µiPi+6 =
6∑

i=1

P6; i = 1, 2, . . . , 6 (4)

and
6∑

i=1

Pi = 1. (5)

Solving the system of equations (1)–(5), we obtain Pi. The system measure A∞, namely
the probability that the system is up over the long run, may be obtained as

A∞ = P0 + P6 =
1 + λ6

µ6

1 +
(
1 + λ6

µ6

)∑6
i=1

λi
µi

.

4 Interval estimation for A∞

Let Xi1, Xi2, . . . , Xin (i = 1, 2, . . . , 6) be random samples of size n, each drawn from
different exponential populations with failure rates λi. Similarly, let yi1, yi2, . . . , yin (i =
1, 2, . . . , 6) be random samples, each drawn from exponential populations with parameters
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α1=α2 0 0 0 0.001 0.001 0.001 0.005 0.005 0.005
α3=α4=α5 0 0.005 0.01 0 0.005 0.01 0 0.005 0.01

α6=0 1 0.90909 0.83333 0.99602 0.90578 0.83056 0.98037 0.89284 0.81967
α6=0.001 0.99998 0.90907 0.83332 0.99600 0.90578 0.83055 0.98037 0.89284 0.81966
α6=0.002 0.99994 0.90903 0.83328 0.99595 0.90574 0.83052 0.98033 0.89280 0.81962
α6=0.003 0.99985 0.90897 0.83323 0.99587 0.90568 0.83046 0.98025 0.89274 0.81957
α6=0.004 0.99974 0.90888 0.83316 0.99577 0.90559 0.83039 0.98015 0.89266 0.81950
α6=0.005 0.99961 0.90877 0.83306 0.99563 0.90548 0.83029 0.98002 0.89254 0.81941
α6=0.006 0.99944 0.90863 0.83294 0.99546 0.90534 0.83018 0.97985 0.89241 0.81929
α6=0.007 0.99924 0.90846 0.83280 0.99526 0.90517 0.83004 0.97966 0.89255 0.81916
α6=0.008 0.99901 0.90827 0.83264 0.99503 0.90498 0.82988 0.97944 0.89207 0.81901
α6=0.009 0.99875 0.90806 0.83247 0.99478 0.90477 0.82970 0.97919 0.89186 0.81883

Table 1: Availability measure, A∞ (β1 = β2 = 0.5; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25).

α1=α2 0 0 0 0.001 0.001 0.001 0.005 0.005 0.005
α3=α4=α5 0 0.005 0.01 0 0.005 0.01 0 0.005 0.01

α6=0 1 0.90900 0.83333 0.99668 0.90634 0.83102 0.98361 0.89552 0.82192
α6=0.001 0.99998 0.90908 0.83332 0.99666 0.90633 0.83101 0.98359 0.89551 0.82191
α6=0.002 0.99994 0.90904 0.83329 0.99661 0.90629 0.83098 0.98355 0.89547 0.82187
α6=0.003 0.99986 0.90894 0.83323 0.99654 0.90623 0.83093 0.98347 0.89541 0.82182
α6=0.004 0.99975 0.90888 0.83316 0.99643 0.90614 0.83085 0.98336 0.89532 0.82175
α6=0.005 0.99961 0.90877 0.83316 0.99629 0.90602 0.83075 0.98323 0.89521 0.82165
α6=0.006 0.99944 0.90863 0.83306 0.99612 0.90588 0.83064 0.98306 0.89507 0.82154
α6=0.007 0.99924 0.90846 0.83294 0.99592 0.90572 0.83050 0.98287 0.89491 0.82140
α6=0.008 0.99901 0.90827 0.83280 0.99569 0.90553 0.83034 0.98265 0.89473 0.82125
α6=0.009 0.99875 0.90806 0.83247 0.99544 0.90532 0.83016 0.98240 0.89452 0.82107

Table 2: Availability measure, A∞ (β1 = β2 = 0.6; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25).

α1=α2 0 0 0 0.001 0.001 0.001 0.005 0.005 0.005
α3=α4=α5 0 0.005 0.01 0 0.005 0.01 0 0.005 0.01

α6=0 1 0.92308 0.85714 0.99715 0.92065 0.85505 0.98592 0.91106 0.84677
α6=0.001 0.99998 0.92306 0.85713 0.99714 0.92064 0.85504 0.9859 0.91105 0.84676
α6=0.002 0.99994 0.92302 0.85710 0.99709 0.9206 0.85500 0.98585 0.91101 0.84673
α6=0.003 0.99986 0.92296 0.85704 0.99701 0.92053 0.85494 0.98578 0.91094 0.84667
α6=0.004 0.99975 0.92286 0.85696 0.9969 0.92044 0.85486 0.98567 0.91085 0.84659
α6=0.005 0.99961 0.92274 0.85685 0.99676 0.92032 0.85476 0.98553 0.91074 0.84649
α6=0.006 0.99944 0.9226 0.92260 0.99659 0.92017 0.84637 0.98537 0.91060 0.84637
α6=0.007 0.99924 0.92243 0.92243 0.99639 0.92000 0.84623 0.98517 0.91043 0.84623
α6=0.008 0.99901 0.92223 0.92223 0.99617 0.91981 0.84606 0.98495 0.91024 0.84606
α6=0.009 0.99875 0.92201 0.92201 0.99591 0.91969 0.84588 0.98470 0.91003 0.84588

Table 3: Availability measure, A∞ (β1 = β2 = 0.7; β3 = β4 = 0.3; β5 = 0.1; β6 = 0.25).
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α1=α2 0 0 0 0.001 0.001 0.001 0.005 0.005 0.005
α3=α4=α5 0 0.005 0.01 0 0.005 0.01 0 0.005 0.01

α6=0 0.99998 0.93023 0.86957 0.99751 0.92807 0.86768 0.98765 0.91954 0.86022
α6=0.001 0.99994 0.93022 0.86955 0.99749 0.92806 0.86767 0.98764 0.91953 0.8602
α6=0.002 0.99986 0.93018 0.86952 0.99744 0.92802 0.86763 0.98759 0.91949 0.86017
α6=0.003 0.99975 0.93011 0.86946 0.99736 0.92795 0.86757 0.98752 0.91942 0.86011
α6=0.004 0.99975 0.93001 86937 0.99726 0.92786 0.86749 0.98741 0.91933 0.86003
α6=0.005 0.99961 0.92989 0.8627 0.99712 0.92774 0.86738 0.98727 0.91921 0.85992
α6=0.006 0.99944 0.92975 0.86914 0.99695 0.92759 0.86726 0.98711 0.91906 0.858
α6=0.007 0.99924 0.92957 0.86899 0.99675 0.92742 0.86711 0.98691 0.9189 0.8597
α6=0.008 0.99901 0.92937 0.86882 0.99652 0.92722 0.86893 0.98669 0.9187 0.85948
α6=0.009 0.99875 0.92915 0.86862 0.99626 0.927 0.86674 0.98644 0.91848 0.85929

Table 4: Availability measure, A∞ (β1 = β2 = 0.8; β3 = β4 = 0.4; β5 = 0.1; β6 = 0.25).

α1=α2 0 0 0 0.001 0.001 0.001 0.005 0.005 0.005
α3=α4=α5 0 0.005 0.01 0 0.005 0.01 0 0.005 0.01

α6=0 1 0.93458 0.87719 0.99778 0.93264 0.87549 0.98901 0.92497 0.86873
α6=0.001 0.99998 0.93457 0.87718 0.99777 0.93263 0.87547 0.989 0.92496 0.86871
α6=0.002 0.99994 0.93452 0.87714 0.99772 0.93259 0.87544 0.98895 0.92492 0.86868
α6=0.003 0.99986 0.93446 0.87708 0.99764 0.93252 0.87538 0.98887 0.92485 0.86862
α6=0.004 0.99975 0.93436 0.871 0.99753 0.93242 0.87529 0.98876 0.92476 0.86854
α6=0.005 0.99961 0.93424 0.87689 0.99739 0.9323 0.87519 0.98863 0.92464 0.86843
α6=0.006 0.99944 0.93409 0.87676 0.99722 0.93215 0.87506 0.98846 0.92449 0.8683
α6=0.007 0.99924 0.93391 0.87661 0.99702 0.93198 0.8749 0.98827 0.92432 0.86815
α6=0.008 0.99901 0.93371 0.87643 0.9968 0.93178 0.87473 0.98804 0.92413 0.86798
α6=0.009 0.99875 0.93349 0.87623 0.99654 0.93156 0.87453 0.98779 0.92391 0.86778

Table 5: Availability measure, A∞ (β1 = β2 = 0.9; β3 = β4 = 0.5; β5 = 0.1; β6 = 0.25).

Figure 3: Availability measure, A∞, for different values of α (failure-free operation time) and β

(repair time) values.
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µi. Since λi is a parameter of the exponential distribution, an estimate may be found for
λi or for 1/λi = αi (say), which is equal to the mean value of failure-free time. Let

αi =
1
λi

and βi =
1
µi

.

Tables 1 to 5 and Figure 3 show values of the above availability function, A∞ for different
values of the parameters αi and βi. Then the maximum likelihood estimates (MLE) of αi

and βi are given by
1
n

n∑
j=1

Xij = x̄i and
1
n

n∑
j=1

Yij = ȳi

respectively. Hence

Â∞ =
1 + ȳ6/x6

1 + (1 + ȳ6/x̄6)
∑6

i=1 ȳi/x̄i

.

Applying the multivariate central limit theorem (See, for example, Rao (1973)), yields
√

n(x̄ − θ) D−→ N6(0,Σ) as n → ∞, where x̄ = (x̄1, x̄2, x̄3, x̄4, x̄5, x̄6, ȳ1, ȳ2, ȳ3, ȳ4, ȳ5, ȳ6)
and θ = (α1, α2, α3, α4, α5, α6, β1, β2, β3, β4, β5, β6). The dispersion matrix Σ = (σij)12×12

is given by Σ = diag(α2
1, . . . , α

2
6, β2

1 , . . . , β2
6). Hence,

√
n(Â∞ − A∞) D−→ N6(0, σ2(θ)),

where

σ2(θ) =
6∑

i=1

(
δA∞
δαi

)2

δii +
6∑

i=1

(
δA∞
δβi

)2

δii

and where θ̂ = (ᾱ1, ᾱ2, ᾱ3, ᾱ4, ᾱ5, ᾱ6, β̄1, β̄2, β̄3, β̄4, β̄5, β̄6), which entails that σ̂2 = σ2(θ) is
a consistent estimator of σ2(θ). Therefore by Slutzky’s theorem (see, for example, Slutzky
(1928)), √

n(Â∞ −A∞)
σ̂

D−→ N(0, 1) as n→∞

or,

P

−κα
2
≤
√

n
(
Â∞ −A∞

)
σ̂

≤ κα
2

 = 1− α.

5 Numerical illustration

The α = 95% and α = 99% confidence intervals for different simulated samples are
presented in Table 6. Observe that the steady state availability decreases if n increases.

6 Conclusion

The availability of equipment used for the decomposition process in a urea production sys-
tem was considered in this paper. The system consists of four subsystems, with a standby
unit in one of the sub-systems. The long run availability of the system is calculated, and
asymptotic confidence limits are obtained for the steady-state availability. The results
clearly show that, as the repair time increases, the steady state availability decreases.
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α = 95% α = 99%

n = 100 20 (0.79414; 0.96586) (0.76702; 0.99298)
40 (0.62674; 0.78366) (0.60196; 0.80824)
60 (0.54593; 0.68317) (0.52533; 0.69537)
80 (0.50775; 0.61515) (0.48552; 0.62088)

100 (0.47816; 0.56924) (0.45556; 0.57544)
n = 200 20 (0.81928; 0.94072) (0.80008; 0.95992)

40 (0.64986; 0.76074) (0.63234; 0.77826)
60 (0.57289; 0.66421) (0.55843; 0.67867)
80 (0.52347; 0.59943) (0.51147; 0.61143)

100 (0.49148; 0.55592) (0.48128; 0.56612)
n = 2000 20 (0.86080; 0.89920) (0.85468; 0.90532)

40 (0.68790; 0.72270) (0.67998; 0.73062)
60 (0.60409; 0.63301) (0.59953; 0.63757)
80 (0.54945; 0.57345) (0.54567; 0.57723)

100 (0.51356; 0.53384) (0.51032; 0.53708)

Table 6: Confidence limits for A∞ (For α1 = α2 = 0; α3 = α4 = α5 = 0; α6 = 0.001β1 = β2 =
0.5; β3 = β4 = 0.2; β5 = 0.1; β6 = 0.25).
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