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ABSTRACT: Localizing wireless sensor networks poses a persistent challenge in accurately determining sensor node 
locations based on known anchor node positions, especially when nodes move between different locations. 
Conventional techniques like Trilateration, relying on Received Signal Strength Indicators (RSSIs), frequently 
employed in Wireless Sensor Networks (WSNs), serve the purpose of localizing and tracking moving targets. 
However, the inherent nonlinear relationship between RSSI and distance often leads to substantial errors in localization 
estimations. This paper introduces an innovative approach by proposing the utilization of an Adaptive Neural Fuzzy 
Inference System (ANFIS) as a departure from the conventional RSSI-based method. This ANFIS-based approach 
aims to initially estimate the locations of single moving targets in a 2-D WSN setup. Subsequently, these initial 
estimates undergo further refinement within an Unscented Kalman Filter (UKF). The results demonstrate the superior 
performance of the proposed algorithms in tracking targets, showcasing high accuracy levels within a few centimeters 
is evident from the mean localization errors for standard RSSI, ANFIS, and ANFIS+UKF,   that the ANFIS+UKF 
framework can handle real-time target tracking issues in WSN utilizing RSSI (5.657, 0.805, and 0.068, respectively). 
By contrast, the proposed method offers an impressive improvement of 98.797% over the standard RSSI method. 
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I. INTRODUCTION 

WSNs are comprised of hundreds, or thousands of wireless 
nodes scattered across a geographic area in an ad hoc manner 
(Burhanuddin et al, 2018). These nodes work together to detect 
different kinds of physical events, and the collected data is 
processed to yield the desired results. A crucial role of sensor 
networks is to gather and transmit data to a destination, making 
it imperative to accurately determine the location of this data 
(Shalaby et al, 2017). This vital information can be acquired 
through localization techniques in wireless sensor networks 
(WSNs), which involve methods to pinpoint the precise 
positions of sensor nodes.  

Indoor localization presents distinct challenges compared 
to outdoor GPS-based methods. Classic GPS technique is quite 
helpful when used outdoors, but because structures and other 
obstructions block radio signals, it is useless indoors, with high 
cost, and energy consumption (Molla et al, 2023; Din et al, 
2018). The existing localization methods can be divided into 
three main categories: range-free (Khelifi et al, 2019), range-
based (Alrajeh et al, 2013)), and AI-based (Ali et al, 2021). 
Calculating the angles or distances between an unknown node 
and the network's known nodes is crucial when trying to 
pinpoint where it is to other nodes. This approach called the 
range-based method (Gharghan et al, 2016), such as angle of 

arrival, time of arrival, time difference of arrival (Ge et al, 
2019), received signal strength indicator (RSSI) (Le et al, 
2020), and global positioning system (GPS) ( Piras and Cina, 
2010).in contrast, The distances or angles between nodes do 
not need to be estimated when using range-free localization 
techniques. The range-free method offers cost-effectiveness 
but suffers from reduced accuracy in estimating where sensor 
nodes are located. On another hand, localization approaches 
for numerous applications divided into ANN, PSO, Fuzzy 
Logic, ANN-PSO, and GA are a few examples of AI-based 
using received signal strength (RSS) data to forecast the 
location of a target node inside a WSN. 

Despite being often employed for target localization and 
tracking, RSSI field measurements are susceptible to high 
levels of noise and fluctuations, particularly in challenging 
indoor RF environments. Significant localization mistakes are 
caused by the difficulties faced by RSS-based L&T systems, 
which include indoor interference, multipath fading, noise, and 
different obstructions (Ingabire et al, 2021). Due to its 
simplicity of use, trilateration, a straightforward method for 
target L&T, is extensively used. However, because of the 
ambiguities in RSSI measurements or the dynamic nature of 
interior surroundings, it frequently has low localization 
accuracy. The erratic nature of RSS measurements frequently 
has an impact on the precision of trilateration (Molla et al, 
2023).  Contrarily, ANFIS algorithms offer advantages over 
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trilateration in more dynamic indoor environments with 
reflections, interference, and obstructions which is more 
accurate and reliable target localization. As the gathered RSSI 
are nonlinear data, it is appropriate for our purpose. The well-
known ANFIS method for evolving self-organizing neuro-
fuzzy systems has several useful applications. Therefore, in 
this research, we adopted the use of ANFIS to overcome the 
weaknesses of the traditional method. After obtaining the 
estimated coordinates, enhance these location approximations 
by employing the Unscented Kalman filter (UKF) to attain 
enhanced results. 

The key outcome of the research is an ANFIS-based L&T 
model was proposed to address the dynamicity issue in both 
indoor environments and RSSI measurements. At the same 
RSSI measurements, it was contrasted with a trilateration-
based L&T method. Here, three and six RSSI measurements, 
respectively, were input into the proposed ANFIS-based 
method and the trilateration.  In addition, the target location 
estimates obtained from the proposed ANFIS scheme were 
refined further by passing them through a UKF. The suggested 
frameworks were assessed in comparison to trilateration and 
plain ANFIS-based methods. The ANFIS + UKF-based 
method is the most advanced of these giving the target location 
estimate with the least amount of error. 

II. RELATED WORKS 
 
The localization of sensor nodes in WSNs has recently 

attracted a lot of concern in academic research. An ANFIS-
using robot was created. This robot utilized an extended 
Kalman filter (EKF) to adjust the RSSI values of a ZigBee 
wireless protocol and was able to locate itself in a dangerous 
outside environment. Its localization accuracy ranged from 2 
to 10 meters based on its location to the stationary sensor nodes 
Palipana et al, (2012). WSN objects were located in an indoor 
environment using a fuzzy inference system approach based on 
fingerprints and a multi-nearest neighbor scheme (Oussalah et 
al, 2015). The technique reduced computation costs while 
increasing localization accuracy. This study's overall 
localization accuracy was 0.43 m. 

According to Abdou et al (2016), to improve indoor 
localization accuracy, the author developed a Support Vector 
Regression (SVR) and Affinity propagation indoor localization 
system that takes into account the direction of mobile devices. 
To decrease the computational cost, affinity propagation was 
used. To prevent selecting the incorrect cluster during the 
online matching stage, many matching strategies were 
employed. Additionally, the strong APs approach was utilized 
to lessen weak APs and their effects and to lower the size of 
the training input space. The experimental results have 
demonstrated that SVR improves indoor localization accuracy 
due to its capacity to generalize, particularly with a limited 
number of training data. The disadvantage of Affinity 
Propagation is that you are not required to predetermine the 
number of clusters, even if this can occasionally be useful. This 
may also be a drawback because the method may generate an 
unanticipated or unsatisfactory number of clusters. 

Gharghan et al (2016), the author’s proposed two soft 
computing localization methods for WSNs in this research. 

The two methods, ANN and ANFIS concentrate on a range-
based localization approach that measures the RSSI from the 
three ZigBee anchor nodes that are dispersed across the track 
cycling field. Calculating the distance is the aim of soft 
computing techniques. The indoor area is 36*34  and 780 
samples of the three anchor nodes' RSSI values were gathered 
is utilized for training, testing, and validating ANFIS to 
calculate the distance to the coach. A total of 780 samples of 
the three anchor nodes' RSSI values were collected where the 
average localization error produced with ANFIS is 1.42 m. 

 Due to the instability of RSS, the positioning system 
based on it is susceptible to interference from the outside 
world, so the authors provide a better indoor localization 
method based on the GRNN and RSSI to address this issue. An 
enhanced average filter is suggested in the raw data processing 
module to stabilize and reliably handle the raw data. The 
positioning result is then revised using an enhanced weighted 
centroid localization algorithm (IWCLA) based on maximum 
likelihood estimation (MLE). To achieve better application and 
higher positioning accuracy, an enhanced GRNN localization 
method is suggested, taking into account the dynamic and 
complicated interior environment (Xu et al, 2016). 

In the study (Jondhale et al, 2016), to tackle the 
complexities posed by dynamic RF channels and the nonlinear 
system dynamics inherent in indoor Localization and Tracking 
(L&T) of mobile targets, this study introduces an improved 
architecture referred to as the Trilateration Centroid 
Generalized Regression Neural Network (TCGRNN). Solving 
the challenge of indoor L&T for mobile targets necessitates 
addressing the issues arising from dynamic RF channels and 
nonlinear system dynamics. During simulations, the parameter 
representing the normal random variable in the LNSM path 
loss model is systematically varied from 3 to 9 dB in 3 dB 
increments to simulate the uncertainty associated with RSSI 
measurement noise. Despite the good results, the calculations 
were complicated by finding the coordinates using the 
Trilateration and Centroid methods and adding them to the 
RSSI as inputs to GRNN. 

In lieu of the traditional RSSI-based approach, this study 
Tariq and Al-Mejibli, (2023) suggested a fusion technique 
termed PSO-GRNN to increase the sensor nodes' capacity to 
predict location and target tracking with better accuracy. The 
RSSI values can be used by the GRNN method as start data to 
determine the target node's location and trace it. The spread 
constant (σ) is a crucial part of the GRNN design. The ideal 
GRNN spread constant value is found using the PSO approach. 
The hybrid tracking algorithm PSO-GRNN beat the traditional 
LNSM approach and yielded remarkable outcomes. By 
comparing the suggested approach to the traditional RSSI, a 
significant 87.58% gain can be achieved. 

 
III. LOG-NORMAL SHADOWING MODEL AND 

ANFIS 
 

A.    Log-Normal Shadowing Model 
The RSSI measurements are primarily a result of specific 

propagation models. Presently, the most widely used 
propagation models include the free space model, the two-ray 
ground reflection model, and the log-normal shadowing model 
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Figure 1: ANFIS architecture. 

(LNSM) (Naseem et al, 2018). The free space and two-ray 
models offer deterministic predictions of received power based 
on distance, assuming an ideal circular relationship between 
the transmitter and receiver. In practice, received power at a 
given distance is subject to random variability due to multipath 
fading effects. Given its consideration of fading effects, the 
LNSM has gained broader acceptance within the research 
community (Mohammed, 2016). This study adopts the LNSM 
for its analysis. 

���� = �� (�� ) − 10����(�/�� ) + ��              (1) 
�� Represents the RSSI calculated at the transmitter's 

reference distance to the receiver node, which is set at a 
distance of 1 meter (d0). The variable � is the path-loss 
exponent, which is described as the attenuation factor, while 
Xσ stands for a common random variable used to measure the 
impact of shadowing effects. The attenuation factor � values 
usually range from 1 to 3 in outdoor settings and from 3 to 5 
indoors (Zheng et al, 2016; Wojcicki et al, 2021; Bose et al, 
2007). 

 
B.    ANFIS 

Jang (1993), created ANFIS, a useful AI method that 
mimics human thought to solve ambiguous problems. 
Numerous studies (Gharghan et al, 2018) have used ANFIS to 
estimate node positions or distances within wireless sensor 
networks (WSNs). It functions as a simple data-learning 
technique by using fuzzy logic to convert inputs from linked 
neural network processing units into the intended output. 
Fuzzy inference and artificial neural networks (ANN) are 
combined to create ANFIS, which can handle complex 
nonlinear problems in a single framework. It operates as a 
proficient approximator by interpreting information between 
input and output variables as a series of if-then rules. ANFIS 
has been used in many previous studies ( Palipana et al, 2012; 
Oussalah et al, 2015; Gharghan et al, 2018) to calculate node 
positions or distances within WSNs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Typically, ANFIS comprises five layers: (1) Fuzzification, 
(2) Product, (3) Normalization, (4) Defuzzification, and (5) 
Summation. 

Adaptable and fixed node types contain multiple nodes 
characterized by specific functions.  Make up the network 
architecture used by ANFIS. The network's effectiveness 
mostly depends on these nodes' adjustable parameters. The 
network's learning rules call for modifying some parameters to 
reduce the difference between the expected and actual output. 
Three inputs and one output make up the ANFIS design, which 
is depicted in Figure 1 (Gharghan et al, 2018). Two rules that 
utilize the Takagi-Sugeno fuzzy inference approach can be 
examined to clarify the structure of the ANFIS: 

���� 1 ∶ �� � = �1, � = �1, � = �1, �ℎ�� �1 =
�1� + �1� + �1� + �1                                                         (2) 

���� 2 ∶ �� � = �2, � = �2, � = �2, �ℎ�� �2 =
�2� + �2� + �2� + �2                                                        (3) 

In this context, �1, �2, �1, �2, �1, and �2 represent 
fuzzy sets related to the inputs �, �, and �. The parameters �, 
�, �, and �  are associated with the defuzzification layer. The 
output of the ANFIS model is indicated as f. The parameters 
in the IF part are termed precedent or premise parameters, 
while those in the THEN part is recognized as consequential 
parameters. Layer 1 (premise) and Layer 4 (consequent part) 
comprise adaptable nodes, while Layer 2 (product) and Layer 
3 (normalization) consist of fixed nodes. Illustrated in Figure 
1, the ANFIS model comprises five layers involving three 
inputs and one output, outlined in the subsequent steps 
(Gharghan et al, 2018). 

Layer 1 (Fuzzification): Each node in this layer functions 
as an adaptive layer, producing membership grades according 
to the input vectors. The difference between two sigmoids 
(����) is selected and set up twice for each input in this study.  
Eqn. (4) represents the output of this layer. 

�� = ���(�)             (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



4                                                                   NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 21, NO.2, JUNE 2024 

 

Figure 2: Block Diagram of the proposed algorithm. 

Layer 2 (Product): The nodes that are associated with 
certain fuzzy rules in the Sugeno style make up the product 
layer. Nodes in this layer receive inputs from the associated 
fuzzification neurons and determine the rule they represent 
firing strength. As a result, this mechanism affects the output 
that neurons in layer three produce. 

�� = �� = ∏ ���(�)�
���                                                 (5) 

Where the output for any neuron i in the product layer 
is ��, and the layer input from layer 1 is represented by 
���(�). 

Layer 3 (Normalization):  known as the normalization 
layer, is responsible for receiving input from all neurons in the 
product layer. This layer assesses the weighted firing strength 
of a specified rule. Within this layer, the output of a neuron is 
determined as such: 

�� = � = ��� =
��

�����
                                                  (6) 

In this context, ��  signifies the input received and 
produced by the neuron from layer 2 to neuron layer 3. 
Meanwhile, �� represents the output of layer 3. 

Layer 4 (Defuzzification): comprises adaptable nodes 
responsible for defuzzification. Neurons within this layer 
evaluate the weighted, calculated value of a particular rule as 
follows:  

�� = ����� = ���[��� + ��� + ��� + ��]                       (7) 
 
Layer 5 (Summation): This layer's output is the model's 

overall output, which combines the outputs of all the previous 
layers. 

�� = � = ∑ ��� ��
�
���                     (8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The learning process in ANFIS involves adjusting its 
parameters through a two-step learning algorithm that includes 
forward and backward passes. ANFIS utilizes a hybrid 
approach, combining gradient descent (GD) with least square 
(LSE) estimator techniques. Through this iterative process, the 

model trains its parameters to minimize the disparities between 
the desired and actual output. 

During the forward pass of the learning algorithm, the 
outputs of nodes progress sequentially from Layer 1 to Layer 
4. In Layer 4, consequent parameters are calculated using the 
least squares method. In the subsequent backward pass, error 
signals propagate backward, moving from the output layer 
back to the input layer. Within this phase, the GD algorithm is 
employed to adjust the premise parameters. This iterative 
process enables the neural network to learn and refine its 
parameter values to better align with the presented training 
data. 
C.    Learning ANFIS 

In our study, we used the ANFIS editor toolbox in 
MATLAB. Before generating any output based on a set of 
RSSI values, the ANFIS needs training with a set of RSSI 
values along with their corresponding x-y coordinates, 
denoting the exact position of the target. We divided this 
dataset into two subsets: one for x coordinates along with their 
respective RSSI values and another for y coordinates with their 
corresponding RSSI values. These subsets were then 
separately provided to two distinct ANFIS systems. This 
separation was necessary as a single trained ANFIS system 
cannot produce two outputs, such as x and y coordinates, for a 
set of three RSSI values. Furthermore, we further divided the 
RSSI value dataset into training and validation datasets. These 
two sets of values were separately inputted into the system for 
training purposes and to verify and validate their accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The ANFIS model was initially trained using 880 sets of 

RSSI measurements along with their target coordinates x-y in 
an offline phase (Refer to Figure 2). After training, the model 
can process any new set of real-time RSSI measurements to 
predict the corresponding target location in an online 
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Symbol                         Parameter] Value                                              

X0 Target State 
initial at t 0 

[10 10 0 
0] 

dt The time step for 
discretization 

1s 

F Frequency of 
operation 

2.4 GHz 

X Normal Random 
Variable 

~N (3, 1) 

 Path Loss 
Exponent 

3.4 

No. membership 
functions 

 3 

Type of 
membership 
functions 

 ���� 

 

Table 1. The parameters of ANFIS and the LNSM. 

 

 

 

 

 

 

 

Table 2. Comparison of localization error estimates with 

different ANFIS membership function numbers and types. 

 

estimation phase. During this process, the ANFIS architecture 
scans the training dataset to find similar RSSI input vectors that 
closely resemble the new input. By identifying the closest 
match from the training set, the model determines the 
estimated target location based on that resemblance. 
 

IV. SYSTEM DESIGN 
The study examines a 100 m × 100 m Wireless Sensor 

Network (WSN) area with six anchor nodes (ANs) and one 
mobile target, as shown in Figure 3. The proposed ANFIS and 
ANFIS+UKF location estimate models require data from any 
three of the six deployed ANs to pinpoint the location of the 
moving target, while all ANs contributed measurements for the 
trilateration-based localization scheme. RSSI measurements 
gathered from the six ANs were labelled as RSSI1 to RSSI6. 
Essential simulation parameters for this investigation are 
outlined in Table 1. 

It is possible to formulate the input vector Hi for the 
suggested ANFIS-based algorithms as follows each target 
location throughout its mobility at a certain time instance i: 
�� = [�����, �����, �����]                i=1,2,…,880             (9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A variety of state mobility models have been previously 
detailed in the literature. In this study, we have selected a 
model that assumes constant velocity. The subsequent 
equations presented in this study delineate the motion of the 
mobile target. 

�� = ���� + �⃛��                   (10) 
�� = ���� + �⃛��          (11) 
Where �� and �� specify the position. �⃛ and �⃛ the speed in 

(�) and (�) directions respectively at i time instance, and 
where �� = � − (� − 1)and is taken as 1 s here. 

For every input, three or five membership functions (���) 
were used in the ANFIS training and testing stages (Model 1 
and Model 2). Furthermore, eight different ��� membership 
functions were taken into consideration within ANFIS: 
trapezoidal (����), triangular (���), Gaussian curve (�����), 

bell-shaped (�����), two-sided Gaussian curve (�����2pi-
shaped curve (��), product of two sigmoid (����), and 
difference of two sigmoid (����), to preserve consistency for 
the training and testing datasets, each simulation ran for 100 
epochs. The goal of using a variety of membership function 
types and numbers was to find the best configurations that 
provide the lowest localization estimation errors. 

The average localization error and root mean square error 
(RMSE), as shown below in Eqns. (12) and (13), were the 
performance evaluation parameters employed in this work 
(Tariq and Al-Mejibli, 2023). 

��� =
�

�
∑

�

�

�
���              (12) 

���� = �
�

� 
∑ (�)��

���           (13) 

Where E=� − ��, � and �� is the actual and estimation 
coordinate value for unknown nodes, respectively, and n 
represents the quantity of RSSI samples.   

  
V. RESULTS AND DISCUSSIONS 

It makes sense that location estimates from different 
ANFIS-based models, using different types and numbers of 
membership functions would exhibit different levels of 
performance. Thus, it becomes a fascinating endeavour to 
study how various membership functions and their numbers 
affect indoor target localization in the suggested ANFIS-based 
framework. In this study, target localization was assessed using 
the suggested ANFIS-based model through 16 independent 
simulations carried out with the same system configuration. 
Table 2 provides a full summary of the simulation results. The 
study used several indicators to discriminate between the 
actual target trajectory and the position estimates derived from 
trilateration, ANFIS, and ANFIS+UKF. To evaluate the 
localization accuracy of the proposed ANFIS-based schemes 
and trilateration, ���� using Eqn. (13) and ��� using Eqn. 
(12). The target trajectory in the specified indoor environment 
is represented in Figure 3, together with the estimated 
trajectories obtained from all the localization methods that 
were taken into consideration. 

 
 
 
 
 

 

ANFIS mf 
type 

 

Average          
Localization Error 

RMSE 

Three  Five    Three Five 

���� 
��� 
����� 
������ 
����� 
�� 
�������� 

1.020 
1.309 
1.143 
1.868 
1.018 
1.035 
0.805 
1.149 

1.210 
1.739 
2.051 
4.908 
2.062 
1.389 
2.403 
1.929 

2.119 
2.852 
2.251 
8.012 
1.963 
2.277 
1.564 
2.370 

2.698 
3.669 
5.269 
9.239 
5.409 
3.681 
6.275 
4.738 
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Table 3. The algorithms' errors. 

Algorithm                       

Avg. 

Localizatio
n Error (M) 

Avg. RMSE in x-y 
Estimation(M) 

Traditional 
RSSI 

5.657 9.702 

ANFIS 0.805 1.564 
ANFIS+UKF 0.068 0.145 
 

 

Figure 3: The real and predicted values obtained from 
Traditional RSSI, ANFIS, and ANFIS+UKF techniques. 

 

Figure 3: The real and predicted values obtained 
from Traditional RSSI, ANFIS, and ANFIS+UKF. 

techniques. 

 

Figure 4: Localization inaccuracies in x estimations 

within Traditional RSSI, ANFIS, and ANFIS+UKF 
methodologies. 

 

Figure 5: Localization inaccuracies in y estimations 
within Traditional RSSI, ANFIS, and ANFIS+UKF 

methodologies. 

Table 2 lists the predicted error for different types and numbers 
of ANFIS membership functions for indoor localization. The 
best localization error that results from selecting three 
membership functions for every input. Furthermore, the 
difference between two sigmoid types (����) is preferable to 
the other membership function. 

 
The online localization phase uses three membership 

functions and the difference of two sigmoid types (����) to 
process data within the same network parameters as the 
training phase. The target routes inferred by the ANFIS, 
ANFIS+UKF, and standard RSSI techniques are shown in 
Figure 3. Red squares indicate the true target position and black 
circles indicate anchor nodes. The estimated positions obtained 
from RSSI and ANFIS at a specific time instance i are 
indicated by the black and blue plus signs, respectively. The 
simulation results show that in terms of localization and 
tracking efficiency, the ANFIS+UKF-derived technique is 
superior to RSSI. The predicted positions of the ANFIS+UKF 
approach are indicated by the green triangle. It is evident from 
the mean localization errors for ANFIS, ANFIS+UKF, and 
standard RSSI that the ANFIS+UKF framework can handle 
real-time target tracking issues in WSN utilizing RSSI (5.657, 
0.805, and 0.068, respectively). By contrast, the proposed 
method offers an impressive improvement of 98.797% over the 
standard RSSI method.  (See Table 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figures 4 and 5 illustrate the comparison of localization errors 
concerning x and y estimations utilizing the aforementioned 

techniques. Figure 6 demonstrates the average performance 
for both x and y estimates by considering the average of 
errors in these estimations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the other hand, Figure 7 Cumulative Distribution Function 
(CDF) of the average location errors makes it evident that 
ANFIS+UKF provides the most accurate basis for position 
determination.  The accuracy is far better. 
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No. Ref Location 
technolog
y  

Localization 
technique 

Metric Environment Tested 
area  (m) 

Average 
localization 
error 

RMSE 

1 Abdou et al 
(2016) 

WIFI SVR RSSI Indoor           12X4 1.8 / 

2 Gharghan et 
al (2016) 

ZigBee ANFIS RSSI Indoor  36*34   1.42 / 

3 Xu et al 
(2019) 

Simulatio
n          

GRNN RSSI Indoor 80*60 1.08 / 

4 Jondhale et 
al (2019) 

Simulatio
n          

TCGRNN RSSI Indoor 100*100  3.3949 4.91 

5 Tariq et al 
(2023) 

Simulatio
n          

PSO-GRNN RSSI Indoor 100*100 0.88  1.62 

6 Palipana et 
al (2012) 

ZigBee ANFIS RSSI Outdoor / 2m / 

7 Oussalah et 
al (2015) 

Wi-Fi ANFIS RSSI Indoor 20x20 0.48 / 

8 Proposed  
Method 

Simulatio
n 

ANFIS+UKF RSSI Indoor 100*100 0.06 0.14 

 

Table 4. Comparison error analysis of the hybrid ANFIS+UKF algorithms with previous works. 

 

Figure 7: CDF of the average location errors based on 
the RSSI, ANFIS, and ANFIS+UKF. 

 

 

Figure 6: Localization inaccuracies in x-y 

estimations within Traditional RSSI, ANFIS, and 
ANFIS+UKF methodologies. 
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Additionally, Table 4 contrasts the outcomes of the 
current study, which is based on ANFIS+UKF, with those of 
earlier studies. It can be seen that the ANFIS+UKF has a lower 
localization error than these earlier studies. 

 
VI. CONCLUSION 

The paper introduces an innovative target-localization 
framework based on ANFIS designed to handle uncertainties 
stemming from noise in RSSI measurements. Through 
comprehensive experimentation involving 16 simulations, the 
study assessed the influence of varying types and numbers of 
membership functions within the ANFIS-based schemes on 
indoor localization performance. Among the configurations 
tested, the optimal localization error was achieved by 
employing three membership functions alongside '����'. 
Consequently, the ANFIS+UKF combination was utilized to 
refine the estimated location accuracy. Notably, this 
ANFIS+UKF approach proves particularly suitable for 
applications requiring precise target-localization accuracy at 
the centimetres level within indoor environments. The 
proposed methodology demonstrates a remarkable 
enhancement of 98.797% when compared to the standard RSSI 
method, showcasing its potential for substantially improving 
localization accuracy. 
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