Main Article Content

Numerical Analysis of the Thermodynamic Response of a Hollow Concrete Cylinder


T.T. Akano
H.O. Onovo
O.S. Osasuyi
S.A. Alabi

Abstract

The stability and durability of concrete materials are essential factors in the construction industry. Environmental conditions, such as  temperature affect the tensile strength and durability of concrete structures. This work investigates the thermodynamic behaviour of  hollow cylindrical concrete using the finite element method (FEM). By deploying ANSYS®, the element mesh was created, and the  temperature distribution inside the hollow cylinder was calculated. The effect of the hollowness of the concrete on its heat absorption is  determined. The findings demonstrate that the temperature profiles changed radially throughout the concrete thickness. Moreover, it  was discovered that the temperature distribution was impacted by the airflow into the cylinder. The numerical experiment in this study  was essential in providing a comprehensive understanding of the behaviour of the concrete, particularly when exposed to higher heating  rates. This study contributes to the knowledge of the performance and stability of concrete materials. It also demonstrates that the  hollowness of the concrete enhances its heat-shielding performance. Furthermore, the inflow of air into the cylinder affects the  temperature distribution, with a higher influx of air resulting in lower temperatures. These findings can be utilised to develop appropriate  measures to enhance the performance and durability of concrete structures. 


Journal Identifiers


eISSN: 2437-2110
print ISSN: 0189-9546