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ABSTRACT: Energy is a fundamental human need for several activities. Energy can be impacted by several factors 

ranging from technical to social and environmental. The impact of COVID-19 outbreak on the energy sector is 

enormous with serious global socioeconomic disruptions affecting all economic sectors, including tourism, industry, 

higher education, and the electricity industry. Based on the unstructured data obtained from Eko Electricity 

Distribution Company this paper proposes three deep learning (DL) models namely: Long Short-Term Memory 

(LSTM), Simple Recurrent Neural Network (SimpleRNN), and Gated Recurrent Unit (GRU) were used to analyse the 

effect of COVID-19 pandemic on energy consumption and predict future energy consumption in various district in 

Lagos, Nigeria. The models were evaluated using the following performance metrics namely: Mean Absolute 

Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error 

(MAE). On overall, the lowest MAPE, MAE, RMSE, and MSE of 0.120, 71.073, 93.981, and 8832.466 were obtained 

for LSTM in Orile, SRNN in Ijora, and GRU in Ijora, respectively. Generally, the GRU performed better in predicting 

energy consumption in most of the districts of the case study than the LSTM and SimpleRNN. Hence, GRU model 

can be considered the optimal model for energy consumption prediction in the case study. The importance of having 

this model is that it can help the government and other stakeholders in economic planning of electricity distribution 

networks. 
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I. INTRODUCTION 

Energy is one of the most essential commodities for 

running day-to-day activities of different sectors like 

industries, commercial, residential, educational, and sports 

(Makinde et al., 2021; Haq et al., 2021). The efficiency and 

growth of these sectors largely depend on the availability of 

quality and affordable electricity. The availability of electricity 

needed for the effective running of these sectors also depends 

on a number of factors among which include the technical, 

economic, and consumption patterns of the consumers (Jangali 

Satish & Nagesha, 2015; Amole et al., 2020). Energy 

consumption has been defined as the amount of energy an 

individual, household (De Araujo, 2019), industry, or 

organization requires to carry out their basic activities (Shah et 

al., 2020). The consumption of energy is generally a point of 

attention for energy planners as it helps to understand energy 

production, management, and sales (Fezzi & Fanghella, 2020). 

The SDG’s goal 7: clean, reliable, and affordable energy for all 

will not be realistic without a clear understanding of the energy 

consumption patterns of the consumers (Khan et al., 2021). 

Energy deficit and poverty limits economic growth of a nation 

hence, it is important to embrace energy consumption 

prediction prevent it. The outbreak of coronavirus disease 2019 

(COVID-19) came as a rude shock to the entire human race in 

late 2019 with its origin in Wuhan, a city of 11 million 

inhabitants in China's Hubei region (Nour et al., 2020). The 

outbreak of COVID-19 has left an indelible mark on almost 

every aspect of human endeavours like health, transport, sport, 

agriculture, education, and energy (Musumeci, 2022; Ahshan 

et al., 2020). The coronavirus pandemic has arguably exposed 

deficient socioeconomic systems' resilience to economic 

shocks in several nations and areas around the world sports 

(Soava et al., 2021). The first confirmed case of COVID-19 in 

Nigeria was reported in February, 2020 and spread to the 36 

states in Nigeria like wildfire resulting in about 3,143 deaths in 

May 18, 2022 according to the Nigeria Centre for Disease 

Control (NCDC).  The outbreak of COVID-19 greatly 

impacted the Nigerian Electricity Supply Industry (NESI) 

negatively during the lockdown, with Generation Companies 

(GenCos) and Distribution Companies (DisCos) experiencing 
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the more pronounced effect due to gas shortage (Ojosu & 

Akolo, 2020). 

The impact of COVID-19 on the electricity industries can 

be predicted with the help of forecasting models. Deep learning 

(DL) is one of the recent forecasting models that has gained 

significant visibility in a variety of fields, including computer 

gaming, natural language processing, pattern identification, 

and medical diagnosis, to mention a few (Ungureanu et al., 

2021). It utilizes algorithms to analyze data and mimic the 

cognitive process, as well as to build abstractions. It has 

capability to process data, understands human speech, and 

visually recognizes things (Nour et al., 2020). Architecturally, 

DL has layers namely: input layer, output layer, and the hidden 

layer with only one type of activation function for each layer, 

which makes them all simple, homogenous algorithms. There 

are several models of DL which have been used for different 

purposes like prediction and classification. However, the 

neural network models have been mostly used for most of 

prediction purpose (Zhou et al., 2020). 

Though it has been argued that DL models have 

complicated structures and over-fitted performances (Lee et 

al., 2021), there are several models of DL that have been 

deployed by researchers to depict and analyze different 

scenarios. Though, use of DL models for event forecasting 

(Hernandez-Matamoros et al., 2020; Ibrahim & Rabelo, 2021; 

Azeem et al., 2021; Ullah et al., 2021) seems to be prevalent. 

However, the use of DL models transcends forecasting to find 

applications in scientific and industrial fields (Moradzadeh et 

al., 2021), data classification and feature extraction (Nour et 

al., 2020), fault detection (Wlodarczak, 2019), renewable 

power plant potential measurement and image processing 

(Abraham & Nair, 2020), object detection (Melanthota et al., 

2022; Slart et al., 2021), vehicle energy monitoring (Ko et al., 

2021), and cyber security (Mahdavifar & Ghorbani, 2019). 

One of the recent variants of DL is extreme learning 

machine (ELM) that has capability to overcome the non-linear 

and non-stationary aspect of the electricity price. ELM have 

been used to predict short-term electricity price in Australia 

(Khan et al., 2021). The long short-term memory (LSTM) 

model appears to be one of the popular DL models that have 

been used in different fields of energy study like solar 

irradiation prediction (Ozdemir et al., 2022), wind speed 

prediction (Elsaraiti & Merabet, 2021), state of charge 

estimation (Vellingiri et al., 2022), and load forecasting 

(Masood et al., 2022; Ungureanu et al., 2021). The popularity 

of LSTM may be attributed to its ability to effectively handle 

very huge amount of data which is crucial model accuracy. A 

modified LSTM is the Bi-LSTM which has also aided short-

term load forecasting to ensure sustainable energy 

management in microgrid (Moradzadeh et al., 2021). 

Similarly, gated recurrent unit (GRU) is another DL model that 

gained popularity in prediction and forecasting problems 

(Bahij et al., 2022; Sehovac et al., 2019; Ji et al., 2021). The 

recurrent neural networks (RNN) and its various variants can 

be said to have played a significant role in the field of 

prediction and forecasting as it is evident in (Ahn & Park, 

2021; Liang et al., 2018; Mocanu et al., 2016). The 

convolutional neural networks (CNN) is another versatile DL 

model that has been applied to solve emerging problems both 

in the medical and energy fields (Jogunola et al., 2022; Pereira 

et al., 2020). The CNN model has been modified to the multi-

CNN and Faster Regions with CNN (Faster R-CNN) with 

applications mainly in the diagnosis of COVID-19 diseases 

(Abraham & Nair, 2020; Shibly et al., 2020).     

The energy consumption during the COVID-19 outbreak is 

highly dynamical thereby making it difficult to forecast. 

Energy consumption is difficult to forecast due to a variety of 

issues, including a lack of data, finding the optimal forecasting 

model, and unpredictable forces that could disrupt projections, 

such as weather disasters, COVID, and the outbreak of war. 

The goal of this article is to find an optimal energy 

consumption forecast model through a comparative analysis 

using some districts in Lagos, Nigeria as case study. To 

achieve this, a concise review of the various methods currently 

in use for energy consumption forecast was carried out. 

Consequently, three DL models namely: LSTM, SimpleRNN, 

and GRU were employed to accurately forecast the energy 

consumption. This work is motivated by the need to create an 

accurate forecasting model that can be adopted by 

governments and policymakers to make future economic 

decisions on energy planning and management. To that effect, 

the following research issues are attempted to be addressed in 

this study: (1) DL techniques capable of forecasting energy 

consumption, (2) Optimal model for forecasting future energy 

consumption, (3) Effect of COVID-19 lockdown on the energy 

consumption in the distribution network. 

II. MATERIALS AND METHODS 

 

The energy consumption data for three years was 

obtained from Eko Electricity Distribution Company. The 

following operations namely: data acquisition and preparation, 

data exploration and visualization; model training, model 

testing, performance evaluation and comparison. Three Deep 

Learning models namely; GRU, LSTM, and Simple Recurrent 

Neural Network (SimpleRNN) were used for the analysis 

while the performance of the models was evaluated and 

compared using MAE, MAPE, MSE, and RMSE.  

 

A. Case study description and data acquisition  

The case study in this work, Eko Electricity Distribution 

Company (EKEDC) located within Lagos State, Nigeria. 

EKEDC has three circles namely: east, west, and central. The 

distribution network of the company is made up of ten districts 

with seventy-six 33kV feeders as presented in Table 1. The 

daily energy consumption dataset was collected from Eko 

Electricity Distribution Plc over a three-year period from the 

1st of January 2019 until the 30th of November 2021. This 

period spans the pre-COVID, COVID, and post-COVID 

periods to reflect the impact of COVID-19 on the energy 

consumption of the study area. It contains the daily 

consumption of each District, Circle, and 33kV feeder as 

shown in Plate 1. Every month had a different sheet in each 

dataset for each year. For analysis purpose, one master sheet 

showing the feeders, circle, district, and consumption in Plate 

2 was generated from the dataset in Plate 1.  

The consumption per circle of the distribution company is 

presented in Figure 1 which revealed the data distribution and 
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Plate 1: Sample dataset 

Plate 2: The transformed dataset 

Figure 1: Consumption per circle 

behaviour. Figure 1 showed that more energy is generally 

consumed within the east circle while the least energy 

consumption is experienced within the west circle. It can also  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be observed from Figure 1 that the consumption variability of 

the east circle is generally high compared to that of the west 

and central. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Data pre-processing 

The consumption data for each circle and district obtained 

in sub-section A contain a wide range of values not suitable for 

deep learning models. Consequently, scaling of the dataset was 

performed to improve the performance of the models. Data 

normalization was performed to avoid bias during the training 

of data using Eqn. (1) and result of the normalization is shown 

in Plate 3. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
                                                    (1) 

The normalized data is then partitioned into train and test 

data. This allows for the training of the models prior to test 

while test permits the performance evaluation of the models 

using the specified metrics.  

The training data are the observations used to build the 

algorithm to learn from. For this work, the train data ranged 

from 01/01/2019 - 10/03/2021 which captured the pre-COVID 

and COVID periods. The test data which must be exclusive to 

the train set is used to test the performance of the deep learning 

model based on different metrics.  
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DISTRICT 33KV FEEDER 

APAPA Amuwo Local T3, Apapa Mains 1, Apapa Mains 2, Apapa Road Local T1, Apapa Road Local T2, Badia 33, Flour 

Mills, Naval Base 
IJORA NRC (AKOKA), Akoka Local T3a, Causeway 1 33, Causeway 2 33, Nrc (Akangba), Sabo 33, UNILAG 

MUSHIN Idi Araba 33, Ijesha, Isolo Local, LUTH, New Yaba (Akangba), New Yaba (Akoka), NITEL 33, PTC 

ORILE Adelabu 1, Adelabu 2, Amuwo, Iganmu 1, Iganmu 2, Sanya 33 
IBEJU Ajah Local T1, Eleko, Elemoro, Ibeju, Main One, Oke-Ira, Royal Garden City, Urban Prime 

ISLAND Berkley Express, Ademola 2, Ademola 1, Ajele 1, Ajele 2, Alagbon Local T1, Alagbon Local T2, Anifowoshe 1, 

Anifowoshe 2, Banana Island 1, Banana Island 2, Custom 1, Custom 2, Federal Secretariat 33, Fowler 1, Fowler 2, 
Fowler 3, Maroko, New Idumagbo, UBA/UBN, Ademola 3, Anifowoshe 3, 21st Century 

LEKKI Agungi, Chevron 33, Elegushi, Igbo Efon, Ikate Express, Lasan, Lekki, Oniru 33, Twinlake, Water Front, 21st 

Century 
AGBARA Agbara 33, Agbara Local T4, Agbara Local T5, Agbara Local T6, Badagry 33, Badagry Express, Guinea (Beta) 

Glass, Oko Afo, Ryder Glass 

FESTAC FESTAC 1 (Amuwo), FESTAC 2, Kirikiri Express, Satellite 1 33, Satellite 2 33, Snake Island, TINCAN, 
OJO FESTAC 1 (Ojo), Ojo Local T1, Ojo Local T2, Ojo Local T3, Volkswagen 

 

Table 1: Districts and its associated 33kV Feeders 

Plate 3: The normalized data 

 

Figure 2: The architecture of LSTM Unit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this work, the test data was taken from 11/03/2021 – 

30/11/2021 that represent the post-COVID period. 

C. Deep learning models 

Deep learning provides a cutting-edge technique that 

mimics how neurons in the human brain function. Deep 

learning takes a lot of memory and time to train the model 

because due to several layers and millions of weights from 

which it must learned makes it exceptionally accurate. Three 

models namely: Long-term short-term memory (LSTM), 

simple recurrent neural network (SimpleRNN), and gated 

recurrent unit (GRU) subsequently presented were used for the 

prediction of energy consumption across the case study 

distribution. 

1) Long short-term memory (LSTM) 

 The LSTM has become a popular and scalable method for 

solving learning challenges using sequential data. It's a type of 

recurrent network that has excelled at various task because it 

can distinguish between recent and old samples by giving each 

a different weight while forgetting memories that aren't crucial 

for forecasting future results. It can handle lengthy input 

sequences better than other RNNs in this regard. The LSTM 

architecture presented in Figure 2 has three gates namely: the 

input, forget, and output gates that regulate the information 

flow between cells inspired by RNNs. The input and forget 

gate structures has the capability to alter the information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

moving along the cell state and the final output is a filtered 

version of the cell state depending on the context of the inputs. 

The sigmoid activation function was adopted for the recurrent 

layers while the network was trained for 100 epochs, a batch 

size of 1 and verbose of 2 is used with an added dense layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The adam optimizer and mean squared error was used for 

optimization and the loss function, respectively. The gates and 

the cells states can be described by the following equations 

given the input time-series 𝑋𝑡 and the number of hidden units 

ℎ: 

 

Input Gate: 𝐼𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑖 +  𝐻𝑡−1𝑊ℎ𝑖 +  𝑏𝑖)                          (2) 

Forget Gate: 𝐹𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑓 + 𝐻𝑡−1𝑊ℎ𝑓 + 𝑏𝑓)                             

(3) 

Output Gate: 𝑂𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑜 +  𝐻𝑡−1𝑊ℎ𝑜 +  𝑏𝑜)                            

(4) 

Intermediate Cell State: �̃�𝑡 = tanh(𝑋𝑡𝑊𝑥𝑜 +  𝐻𝑡−1𝑊ℎ𝑜 +  𝑏𝑐)    

(5) 

Cell State (next memory input): 𝐶𝑡 =  𝐹𝑡  ° 𝐶𝑡−1�̃�𝑡                                               

(6) 

New State: 𝐻𝑡 =  𝑂𝑡  ° tanh (𝐶𝑡)                       (7) 

Here, 𝑊ℎ𝑖 , 𝑊𝑥𝑐  , 𝑊𝑥𝑓 , 𝑊𝑥𝑜  , 𝑎𝑛𝑑 𝑊ℎ𝑐  , 𝑊ℎ𝑓 , 𝑊ℎ𝑜  are the 

weight parameters while 𝑏𝑖  , 𝑏𝑓  , 𝑏𝑐  , 𝑏𝑜 symbolise bias 
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Figure 3: The architecture of SimpleRNN Unit 

 

 
Figure 4: The architecture of GRU Unit 

parameters, ° represents the element-wise multiplication. It 

should be noted that the estimation of 𝐶𝑡 depends on the output 

information’s from memory cells (𝐶𝑡−1) and the current time 

step �̃�𝑡. 

 

2) Simple Recurrent Neural Network (SimpleRNN) 

The RNNs fundamentally considers the impact of previous 

knowledge when generating the output. The architecture of 

SimpleRNN used in this work is presented in Figure 3. 

Consider, an RNN is a neural network with a hidden state ℎ and 

an optional output 𝑦 which works on a sequence 𝑋 =
(𝑥1, . . . , 𝑥𝑡) of variable length, at each time step 𝑡, the hidden 

state ℎ(𝑡) of the RNN is updated by Eqn. (8): 

ℎ(𝑡) = 𝑓(ℎ(𝑡−1), 𝑥𝑡)                                              (8) 

Where 𝑓 represents a non-linear activation function which 

is an element-wise logistic sigmoid function and complex as 

LSTM unit. However, one visible layer with 1 input, a hidden 

layer with 100 neurons, and an output layer was used to create 

the Simple RNN model for this work. Consequently, the 

sigmoid activation function is used for the recurrent layers while 

the network was trained for 100 epochs, a batch size of 1, and 

verbose of 2 is used with an added dense layer. The adam 

optimizer and mean squared error was used for optimization and 

the loss function, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)    Gated Recurrent Unit (GRU) 

GRU is an alternate LSTM with enhanced performance, 

decreased number parameters, and streamlined design process. 

As a result, GRU is straightforward to compute and use. GRU 

has two gates namely; update and reset gates as opposed to 

LSTM's three as shown in its architecture presented in Figure 4. 

The input and forget gates of the LSTM model have been 

integrated into a single gate known as the update gate in GRU. 

Therefore, the GRU components were modelled using Eqns. (9) 

to (12): 

Update gate: 𝑍𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑧 + 𝐻𝑡−1𝑊ℎ𝑧 +  𝑏𝑧)               (9) 

Reset gate: 𝑅𝑡 =  𝜎(𝑋𝑡𝑊𝑥𝑟 + 𝐻𝑡−1𝑊ℎ𝑟 +  𝑏𝑟)                (10) 

Cell State: 𝐻𝑡 = tanh ( 𝑋𝑡𝑊𝑥ℎ + (𝑅𝑡° 𝐻𝑡−1)𝑊ℎℎ + 𝑏ℎ)  (11)      

New state : 𝐻𝑡 =  𝑍𝑡  ° 𝐻𝑡−1 + (1 − 𝑍𝑡)° �̃�𝑡)                    (12) 

The recurrent layer had one visible layer with 1 input, a 

hidden layer with 100 recurrent layer blocks or neurons, and 

an output layer that makes a single value prediction. The 

default sigmoid activation function is used for the recurrent 

layers. The network is trained for 100 epochs, a batch size of 1 

and verbose of 2 is used. The adam optimizer was used and the 

loss function was mean squared error. 

The LSTM, SimpleRNN, and GRU models were extracted 

and stored in a JSON serialized file. The plots of learning rate 

for the actual consumption, train prediction, and test prediction 

were obtained for each of the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Performance Evaluation of the Forecasting Models 

It is important to evaluate the performance of the 

forecasting models to select the best model using specified 

metrics. In this study, the forecasting models are evaluated 

using the Mean Squared Error (MSE), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), and Root 

Mean Squared Error (RMSE) presented in Eqns. (13) to (16), 

respectively:  

MSE = 
1

𝑛
 ∑ (𝑌𝑡 − 𝑌�̂�)2𝑛

𝑡=1                                     (13) 

MAE = 
1

𝑛
 ∑ |𝑌𝑡 − �̂�𝑡|𝑛

𝑡=1                                       (14) 

MAPE = 
100%

𝑛
 ∑ |

𝑌𝑡− 𝑌�̂�

𝑌𝑡
|𝑛

𝑡=1                                  (15) 

RMSE = √
1

𝑛
 ∑ (𝑌𝑡 −  𝑌�̂�)𝑛

𝑡=1                               (16) 

where 𝑌𝑡 and 𝑌�̂� are the actual and estimated values, 

respectively, and 𝑛 represents the number of observations. It 

should be noted that the lower the values of RMSE, MAE, or 

MAPE the more accurate forecasting models. The models were 

finally used to predict the consumption of the feeders for a year 

ahead and the performance of the models were evaluated using 

the listed metrics. 

 

III. RESULTS AND DISCUSSION 

This section present model’s consumption forecasting 

results and discussion for all the feeders under consideration. 

The LSTM, GRU, and SimpleRNN predictions for Central, 

East, and West circles are shown in Figures 5, 6, and 7, 

respectively. It can be generally observed from the Figures that 

the trends of both the training and test closely followed the 

trend of the actual consumption for all the prediction models. 

This implied that the models were able to predict the energy 

consumption during the post-COVID era based on the pre-

COVID and COVID era energy consumption data. It was 

observed that there was a drop in the energy consumption of 

all the circles during the COVID period specifically from April 

to August, 2020, which might result from inactivity of some of  
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Figure 5: Central Circle prediction for LSTM, GRU, simpleRNN Figure 6: East Circle prediction for LSTM, GRU, SimpleRNN 
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Figure 7: West Circle prediction for LSTM, GRU, SimpleRNN Figure 8: Apapa District prediction for LSTM, GRU, SimpleRNN 
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Figure 9: Ijora District prediction for LSTM, GRU, SimpleRNN Figure 10: Mushin District prediction for LSTM, GRU, SimpleRNN 
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Figure 11: Orile District prediction for LSTM, GRU, SimpleRNN 

the energy-consuming industries due to lockdown which is 

consistent with the assertion of (Edomah & Ndulue, 2020). 

Furthermore, the LSTM, GRU, and SimpleRNN predictions 

for the ten feeders are presented in Figures 8 to 17. Figure 8 

shows the energy consumption prediction of the LSTM, GRU, 

and SimpleRNN models for Apapa feeder. It was observed that 

there was a sharp drop in the energy consumption of Apapa 

feeder during the COVID period; May to September, 2020, due 

to the lockdown of energy-consuming industries in Apapa 

(Ghiani et al., 2020). It can be inferred from the energy 

consumption prediction of the LSTM, GRU, and SimpleRNN 

models for Ijora feeder in Figure 9 that there was a slight drop 

in the energy consumption during the COVID period because 

is a mixed area of both residences and industries which is 

consistent with the result of (Alavi et al., 2022). 

The result for Mushin feeder presented in Figure 10 from 

which it can be inferred that the energy consumption prediction 

of the LSTM, GRU, and SimpleRNN models for the feeder 

depicted a rise in the energy consumption during the COVID 

period because the feeder supplies residential areas. This result 

is in accordance with the work of (Soava et al., 2021) which 

claimed that household global electricity consumption has 

increased by 40%, resulting from lockdown to stop the spread 

of COVID-19. 

Figure 11 shows the result for Orile feeder, and it is 

evident from Figure 11 that the energy consumption prediction 

based on LSTM, GRU, and SimpleRNN models showed an 

average rise in the dynamics of the energy consumption during 

the COVID period because Orile is predominantly residential 

areas. A similar result to that of Figure 10 is obtained in Figure 

12 for Ibeju district feeder. Consequently, the rise in the energy 

consumption during the COVID period can be attributed to the 

fact that Ibeju is a residential area. This result is also 

corroborated by the work of (Soava et al., 2021). The result 

presented in Figure 13 for Island district feeder is similar to 

that presented in Figure 11 that showed an average rise but 

highly dynamic energy consumption in LSTM, GRU, and 

SimpleRNN models which is supported by (Alavi et al., 2022). 

Figure 14 shows the result of energy consumption of 

Lekki district feeder using LSTM, GRU, and SimpleRNN. 

This result demonstrates that the energy consumption 

generally rose during COVID-19 lockdown. This can be 

attributed the fact that Lekki is strictly residential area, the 

residents were forced to stay at home during the lockdown 

(Alavi et al., 2022). There was increase in the energy 

consumption of Agbara district feeder during COVID as 

shown in Figure 15. The result is a contradiction to the 

assertion that there was a drop in the energy consumption of 

the industrial hub during COVID-19 lockdown. The result of 

FESTAC and Ojo districts feeders presented in Figures 16 and 

17 respectively, exhibited the same trends as that of Figure 15. 

Arising from these results presented so far, it can be 

summarized that there was an increase in the energy 

consumption of the following districts: Ijora, Mushin, Orile, 

Ibeju, Agbara, Ojo, Lekki, Festac, and Island during COVID-

19 while in Apapa district a decrease in the energy 

consumption occurred during COVID-19. Also, it was 

generally observed that after COVID-19, an increase in energy 
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Figure 12: Ibeju District prediction for LSTM, GRU, SimpleRNN Figure 13: Island District prediction for LSTM, GRU, SimpleRNN 
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Figure 14: Lekki District prediction for LSTM, GRU, SimpleRNN Figure 15: Agbara District prediction for LSTM, GRU, SimpleRNN 
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Figure 16: Festac District prediction for LSTM, GRU, SimpleRNN Figure 17:  Ojo District prediction for LSTM, GRU, simpleRNN 
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District Model MAPE MAE RMSE MSE 

APAPA SRNN 0.157 89.108 116.927 13671.893 

LSTM 0.154 86.151 114.878 13196.921 
GRU 0.158 82.265 113.468 12874.893 

IJORA SRNN 0.254 71.073 95.310 9084.027 

LSTM 0.235 71.424 94.319 8896.122 
GRU 0.237 71.242 93.981 8832.466 

MUSHIN SRNN 0.139 114.321 151.996 23102.707 

LSTM 0.138 113.342 151.302 22892.416 
GRU 0.139 112.580 151.252 22877.019 

ORILE SRNN 0.123 86.616 113.987 12993.032 

LSTM 0.120 79.539 110.202 12144.388 
GRU 0.123 87.472 114.471 13103.691 

IBEJU SRNN 0.245 153.339 191.249 36576.339 

LSTM 0.244 157.340 194.731 37920.128 
GRU 0.253 149.605 189.910 36065.918 

ISLAND SRNN 0.169 278.975 388.520 150947.830 

LSTM 0.169 278.825 389.163 151447.621 
GRU 0.164 274.052 378.234 143060.881 

LEKKI SRNN 0.182 214.091 286.408 82029.320 

LSTM 0.181 226.617 290.914 84630.959 
GRU 0.185 213.451 288.326 83131.962 

AGBARA SRNN 0.291 157.622 194.395 37789.351 

LSTM 0.289 158.221 195.193 38100.278 
GRU 0.299 156.88 193.497 37441.194 

FESTAC SRNN 0.310 110.019 139.857 19560.050 
LSTM 0.313 108.919 139.135 19358.453 

GRU 0.320 104.179 138.883 19288.491 

OJO SRNN 0.233 121.904 178.005 31685.781 
LSTM 0.192 95.332 155.107 24058.051 

GRU 0.196 91.812 153.519 23568.073 

 

Table 3: Performance evaluation of SimpleRNN, LSTM, and GRU 

for all the feeders 

Figure 18: MAPE & MAE scores per circle 

 

consumption occurred in Apapa, Ijora, Island, Lekki, Festac 

and a decrease occurred in Mushin, Orile, Ibeju, Agbara, Ojo. 

The performance evaluation of the prediction models 

namely: SimpleRNN, LSTM, and GRU is presented in Table 

3. It should be noted that the lower the value of MAPE, MAE, 

RMSE, and MSE values of a model, the better the model. It 

can be deduced fromthe table that GRU gave the best 

prediction result in terms of MAE, RMSE, and MSE of 82.265, 

113.468, and 12874.893, respectively for Apapa district. Also, 

GRU gave the best prediction result in terms of RMSE and 

MSE of 93.981 and 8832.466, respectively for Ijora district. 

However, for Mushin district, the GRU model was seen to have 

the best result arising from the fact that it has the lowest values 

in terms of MAE and RMSE of 112.580 and 151.252, 

respectively. The LSTM model performed excellently well 

compared to SimpleRNN and GRU for Orile district in terms 

of MAPE, MAE, RMSE, and MSE of 0.120, 79.539, 110.202, 

and 12144.388 respectively. The Ibeju district has the best 

prediction from GRU model with a MAE, RMSE, and MSE of 

149.605, 189.910, and 36065.918 respectively. The GRU 

model demonstrated an excellent performance for Island 

district in terms of MAPE, MAE, RMSE, and MSE of 0.164, 

274.052, 378.234, and 143060.188 respectively. The 

SimpleRNN model exhibited the preferred result for Lekki 

district in terms of RMSE and MSE of 286.408 and 82029.320 

respectively, while for Agbara district, the GRU model 

outperformed LSTM and SimpleRNN with a MAE, RMSE, 

and MSE of 156.880, 193.497, and 37441.194 respectively. 

Finally, it can be seen from the table that Festac and Ojo 

districts are characterized by the same metrics namely: MAE, 

RMSE, and MSE for GRU model with 104.179, 138.883, and 

19288.491 respectively, for Festac district and 91.812, 

153.519, and 23568.073, respectively for Ojo districts. 

Generally, the GRU model gave the best result for most 

districts except for Orile district where LSTM showed better 

performance and Lekki district where SimpleRNN gave a 

preferred result. Hence, Figures 18 and 19 illustrates the 

MAPE, MAE, RMSE, and MSE for the East, West, and Central 

circles. It is obvious from Figures 18 and 19 that the GRU 

model generally performed better in terms of MAPE, MAE, 

RMSE, and MSE for all the circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result of future energy consumption predicted by 

LSTM, SRNN, and GRU for the east, west, and central circles 

are presented in Figure 20 which shows a decrease in the future 

energy consumption for all the models except for SRNN which 

predicted a rise in the future energy consumption in the west 

circle. The future energy consumption predicted by LSTM, 

SimpleRNN, and GRU for all the feeders are presented in 

Figures in 21-25. It is observed that the future energy 

consumption for all the models decreased except for Agbara 

feeder in which a rise in the future energy consumption was 

predicted by the all the models. The predicted values became 

constant after some time because the model assumed perfect 

electricity consumption. This is due to the inability of the 

models to capture unexpected events like simple electrical 

faults that may occur. 
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Figure 19. RMSE & MSE scores per circle 

Figure 20: Consumption prediction in CENTRAL, EAST & WEST for 2022 

Figure 21: Consumption prediction in APAPA & IJORA for 2022 
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Figure 22: Consumption prediction in MUSHIN & ORILE for 2022 

Figure 23: consumption prediction in IBEJU & ISLAND for 2022 

Figure 24: Consumption prediction in LEKKI & AGBARA for 2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44                                                                   NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 20, NO.3,SEPTEMBER 2023 

 

Figure 25: Consumption prediction in FESTAC & OJO for 2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

Energy consumption in a distribution network was the 

focus of this study. An attempt was made to assess the impact 

of COVID-19 outbreak on the energy consumption within the 

case study using LSTM, SimpleRNN, and GRU for energy 

consumption prediction. The case study has three (3) circles 

namely: east, west, and central with ten (10) feeders namely: 

Apapa, Ijora, Mushin, Orile, Ibeju, Island, Lekki, Agbara, 

Festac, and Ojo from which daily energy consumption data 

were obtained. The results of the models based on the MAPE, 

MAE, RMSE, and MSE demonstrated that GRU is optimal for 

energy consumption prediction in the case study when 

compared to the LSTM and SimpleRNN. The results of the 

analysis showed that there was a drop in the energy 

consumption in the industrial areas within the case study while 

the residential areas in the case study witnessed a rise in energy 

consumption during COVID-19 outbreak due to lockdown. 

Consequently, it can be concluded that GRU model is optimal 

for energy consumption prediction in the case study. This work 

serves as a reference model for the case study network 

operator, government, and other stakeholders in future energy 

planning towards building a resilient energy system. 
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