Main Article Content
High impedance fault arc analysis on 11 kV distribution networks
Abstract
This paper presents a study of high impedance fault (HIF) arc analysis on 6 km 11 kV distribution network from New Haven to New NNPC, Enugu State. These HIF currents have low fault current ratings and are not readily detected by the distribution sub-station relays and protective equipment. This was realized with the aid of MATLAB. Firstly, the HIF was modelled based on the electric arc theory method for single line-to-ground and double line-to-ground faults, when the 11 kV New-haven to New NNPC Enugu distribution line interfaces with a dry asphalt ground surface. The HIF was incident on the midpoint of the distribution line between the switching times of the circuit breaker from 0.02 to 0.05 seconds. The results showed that for single line-to-ground and double line-to-ground faults, a peak current magnitude of 12.4 A and 2280 A were seen respectively and initial spikes due to arcing in the system voltages at the initial switching times of 0.02 seconds. The corresponding residual currents Ib and Ic are very small with a peak spike of 0.3 A and 1.9 A for double line-to-ground fault (BC-G). These spikes are because of the impact of the initial transients caused by the arc flames as its quenches and re-ignites.