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ABSTRACT 

 

A solution is obtained for simply supported rectangular plates based on 

the Galerkin vector strain function approach of elasticity. Sinusoidal, 

uniform and partial loads are studied and detailed numerical results are 

presented for plates with different a/h ratios. And in the light of the 

present elasticity results, those obtained using Classical and Reissner 

theories and those given by Lee based on Donnel's three dimensional thick 

plate theory, are examined.  

 

NOTATION 

 

2a, 2b, 2h = dimensions of the 

plate; respectively    

   length, breadth and 

thickness 

E = Young's modulus  

F = Galerkin vector 

G = modulus of rigidity  

FX,Fy,Fz= Components of the 

Galerkin vector  

M, n  = odd integer variables  

q(z,y)  =loading function  

q  = intensity of uniform 

load  

u, v, w = displacement c()m'" 

ponents  

x, y, z = Rectangular cartesian 

co-ordinates  

x, y, z  = direct stresses  

xy, xz, yz  = shear stresses 

y, y, z  = direct strains  

rxy, rxz ryz  = shear strains  

   = Poisson’s ratio 

 = rm /Pb 

= n/2b 
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1. INTRODUCTION 

 One of the earliest attempts 

on the analysis of plates, 

initiated at the instance of the 

French Academy of Science, led to 

the theory of thin plate flexure 

by Sophie Germain and Lagrange in 

1811. Over the years this theory 

has received extensive attention 

and a wide variety of problems 

have been solved using this. 

However, due to approximations 

inherent in its derivation, this 

theory cannot be applied with any 

guarantee of accuracy to thick 

plates and this led to several 

improved theories in recent years 

in the field of analysis of 

plates. Theories due to Reissner
l
, 

Lure
2
 Vlasov

3
, Volterra

4
, Donnel1

5
, 

Goldenveizer
6
, Poniatovskii

7
 are 

but a few to mention.  

 Attempts have been made in 

the recent years to find exact 

solutions to rectangular plate 

problems. Srinivas et a1
8
 solved 

the three dimensional equations of 

equilibrium in terms of 

displacement components. The 

solution is set up in the form of 

double trignometric series in 

cartesian co-ordinates. The use of 

double trignometric series for 

rectangular plate problems was 

apparently first suggested by 

Krieger
9
 Iyengar et al

lO
 using the 

method of initial functions of 

Vlasov
3
 which is the mixed method 

of elasticity, has obtained an 

exact solution for simply 

supported rectangular plates. 

Using a Galerkin vector approach, 

Iyengar and Prebhakara
1l
 developed 

a three dimensional elasticity 
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solution for rectangular prisms 

subjected to end loads, the 

components of the Galerkin vector 

being expressed as double Fourier 

series and being so chosen to 

satisfy all the boundary 

conditions. In the present 

investigation, the-Galerkin vector 

approach is used to obtain an 

exact solution for rectangular 

plates with simply supported 

edges. Detailed numerical results 

are presented for square plates 

subjected to sinusoidal and 

uniform loads and also load 

distributed over a small 

rectangular area. Numerical 

results using classical and 

Reissner theories are also 

obtained for comparison. And in 

the light of the present 

elasticity results those obtained 

from classical and Reissner 

theories and those given by Lee
12
 

based on Donnell's
5
 thick plate 

theory are examined. 

  

2.  BASIC EQUATIONS  

The general solution of the equations of elasticity can be expressed in 

terms of Galerkin vector strain function using the approach given by 

westergaard
13
. If F is the Galerkin vector, the basic equation of 

elasticity, in the absence of body forces, is  

 4F  =  
where F = i Fx + jFy + kFz; Fx, Fy and Fz are components of F and each in 

general is a function of x,y and z. The stresses and displacements are 

given by  

Fdiv)
δx

δ
(μμFΔ

δx

δ
u)(12σx

2

2

X

2   
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yδx
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u)(12xy 2

X
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The other stresses and displacement components can be obtained by a 

cyclic interchange of x, y and z  

 

3. BOUNDARY CONDITIONS  

The boundary conditions for simply supporced edges are taken as (Fig 1):  
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on x = ± a; 
σ

x = o, W =0, v = 0 

on y = ± b ; 
σ

y  0, W = 0, u = 0       (3)  

 

These are identical to those assumed by Lee
12
) srinivas et al.

8
 and 

Iyengar et. al
1O
. The conditions on the top and bottom faces of the late 

are  

on z = - h: xz = 0, yz = 0, z = -q(x,y)  

on z = +h: xz = 0, yz = 0, z   (4) 

 

 

The loading function q(x,y) can always be represented in the form of a 

double trigonometric series as  

)5(coscos),( yqnmyxq X
nm

  

where  = m/2a,  = m/2a 
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16q
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coscos(

π

16q
1)(q

2
2

nm

mn  for a plate loaded over a rectangular 

area 2cX2d 

 

q = intensity of loading 

 

 

4. SOLUTION  

The components of the Galerkin vector are assumed as: 

FX = O, Fy = O   and  

 

βycosαxCosrz)coshrzDSinhrzCmnSinhrzrzBrzcosh(AFZ mnmnmn

Σ

n

Σ

m   

where r =  
2

1
)β(α 22   

 

It can be seen that boundary conditions for simply supported edges, eg. 

(3), are satisfied by virtue of the form of eg. (6). Satisfaction of the 

remaining boundary conditions, that is eg. (4), gives the coefficients Am, 

Bm Cm and Dm which when substituted into eg.(6) yield  

 

rh)2sinh(2rh

rz)sinhrh)coshrh(2μrzsinhrz

r

rhsinh

rh)2sinh(2rh

rz)sinhrh)tanhrh(2μrzcoshrz
(
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3
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the final expressions for stresses an displacements are derived form (2) 

and (7) as: 
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Expressions for y, yz and v can be obtained from those of x, yz and u  
 

5. NUMERICAL RESULTS 

Numerical results have been obtained for simply supported square plates 

of various side to thickness ratios. Three different loadings name1y 

uniform, sinusoidal and partial are considered. Tables 1 and 2 show a 

comparative study of maximum middle plane deflection (Ewo/2qh) and maximum 

stress (x/q) obtained  
Table 1: Comparison of maximum dimensional deflection and stresses for 

uniformly          loaded square plates ( = 0.3) 
 

h

a
 

Maximum mid-plane deflection at 

centre, Ewo/2qh 

Maximum stress- /q)σ(/qσ yx   

at centre 

2.5  5  10  20  2.5  5  10  20  

Present  2.966  32.79  463.97  7179.4  2.067  7.453  28.99  U5.21  
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Reissner  2.660  32.64  463.05  7175.9  1.938  7.273  28.82  1l5.02  

Classical  1. 741  27.72  443.58  7097.4  1.797  7.179  28.Tj  114.93  

 

 

Table 2: Comparison of non-dimensional deflection and stresses for 

sinusoidally loaded square plates- ( = 0.3) 
 

a/h  
Maximum mid-plane deflection at 

centre, Ewo/2qh 

Maximum stress-σx/q(=-

σy/q)at centre 

present  1. 929  20.98  294.25  4540.9  1.607  5.244  20.04  79.32  

Reissner  1. 665  20.87  293.70  4537.9  1.44Cl  5.029  19.85  79.12  

Classical  L095  17 .52  280.26  4484.1  1.235  4.939  19.76  79.03  

 

from classical, Reissner and present analysis for plates under uniform 

and sinusoidal loadings. Poisson’s ratio of 0.3 is used. To study the 

effect of Poisson's ratio on stresses and deflection, numerical results 

have also been obtained for μ = 0.1, 0,2and 0.4 for uniformly loaded 

plate and are presented in Table 3. All numerical results presented were 

computed to an accuracy of 0.1%. Variations of stresses and displacements 

(x, w, z and u) across the thickness of the pate for uniformly loaded 
square plate with a/h = 1.25 and 2 are shown in fig. 2 while similar 

variations for a partially loaded plate with a/h = 2.5 and 5 and for c/a 

= 0.10 are shown in fig. 3.  

For partially loaded plate, it can be seen that the localised nature of 

load alters the linear variation of classical theory in Ox even for 

thinner plates (fig.3a)  

A comparative study of the results obtained from classical, Reissner and 

Lee solutions with the present elasticity results are Shown in figs 4 to 

7. In these comparisons numerical results for Lee's solution have been 

taken from reference 3. The percentage deviation shown in the figures are 

calculated as:  

%ge deviation ={(Elasticity solution Classical, Reissner or Lee 

solution)/Elasticity solution}x 100  

 

Table 3; Maximum deflection and stresses for  different values of 

Poisson’s ratio (u) for uniformly loaded square plates 

 

a/h→ 

 

μ↓ 

Maximum mid-plane 

deflection at centre, 

Ewo/2qh 

Maximum stress at centre 

σx/a = σx/a 

2.5  5  10   20  2.5  5  10  20  

0.1  3.561  45.30  592.4  9213.5  1.678  6.238  24.47  97.40  

0.2  3.264  36.96  528.2  8196.0  1.876  6.850  26.74  106.30  

0.3  2.966  32.79  463.9

7  
7178.4  2.074  7.463  28.99  115.21  

0.4  2.668  28.61  399.7  6161. 2  2.272  8.075  31.28  124.09  
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(a) σx at center      (b) w at centre 

 

 
Fig 2 Stresses and displacements for uniformly loaded simply supported 

square plates 
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Fig. 4: Percentage deviations in maximum middle plane deflection – 

sinusoidally loaded square plates 
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NIJOTECH VOL. 7. NO. 1 SEPTEMBER 1983      SEBASTIAN 20 

 

The results bring out that classical theory underestimates both maximum 

deflection and maximum stress, the classical theory results being 

inaccurate for deflections than for stresses. It can also be seen from 

these figures that Reissner and Lee solutions improve classical results 

substantially and are very close to elasticity for plates- with a/h=5 

especially in predicting deflection.  

 

REFERENCES  

1. Reissner, E., The effect of transverse shear deformation on the 

bending of elastic plates, J. Appl. Mech. Vol.12, 1945, pp 69-77.  

 

2. Lure, A.I., On the theory of thick plates, PMM, Vol.6,1942, p 151  
 

3. Vlasov, V. Z., The method of initial functions in problems of the 
theory of thick plates and shells, Proc. 9th Int. Congress Appl. 

Mech. Brussels 1957, p. 321.  

 

4. Volterra, E., Method of Internal constraints and its 

applications,Trans. ASCE. Vol. 128, 1963, pp 509-533. 

 

5. Donnell, L.R., A theory for thick plates, Proc. 2nd U.S. National 
Congress Appl. Mech. 1954, pp . 369-373.  

 

6. Goldenviezer, A.L., Derivation of an approximate theory of bending 
of a plate by the method of asymptotic integration of the equations 

of the theory of elasticity, Appl.Maths.Mech., Vol. 26, 1962, pp. 

1000-1025.  

 

7. Poniatovskii, V.V., Theory of  plates of medium thickness, J. Appl. 
Maths. Mech., Vol 26, 1962, pp 478-486.  

 

8. Strinivas, S. Rao, A.K. and Joga Pao, C:V., Flexure of s irrp.ly 
supported thick homogeneous and laminated rectangular plates, ZM-1M, 

Vol. 49, 1969  

pp 449-458.  

 

9. Krieger, W, Der spannungzustand in dicken elastischen platten. Ing. 
Arch., Vol.4, 1933, p. 203:  

 

10. Iyenger, K. T. S. Chandrashekhara, K. and Sebastian, V. K ., 

On the analysis of thick rectangular plates, Ing. Arch., Vol. 43, 

1974, pp 3l7-330. 

 

11. Iyenger, K.T.S. and Prabhakara, M.K., A three-dimensional 

elasticity solution for rectangular prisms under end loads, ZAMM, 

Vol. 49 1969, pp 321-332.  

 

12. Lee, C.W A three dimensional solution for simply supported 

thick rectangular plates, Nucl. Eng DesignVol.6, 1967, pp 155-162.  

 

13. Westergaard, H.M., Theory of elasticity and plasticity. 

Harvard monograph in Applied Science, No.3, Harvard University 

Press, Cambridge, Mass, 1952.  


