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ABSTRACT

Nsukka.

1980)

A solution 1is obtained for simply supported rectangular plates based on

the Galerkin wvector strain function approach of elasticity.

Sinusoidal,

uniform and partial loads are studied and detailed numerical results are

presented for plates with different a/h ratios.

present elasticity results,

And in the 1light of the

those obtained using Classical and Reissner

theories and those given by Lee based on Donnel's three dimensional thick

plate theory, are examined.

NOTATION
2a, 2b, 2h = dimensions of the
plate; respectively

length, breadth and
thickness
E = Young's modulus
F = Galerkin vector
G = modulus of rigidity
Fy,Fy, F,= Components of the
Galerkin vector
M, n = odd integer variables
al(z,vy) =loading function
q = intensity of uniform
load
u, v, w = displacement c()m'"
ponents
X, V, 2 = Rectangular cartesian
co-ordinates
oxX, Oy, Oz = direct stresses
Exyr Exzr &2 = shear stresses
ey, &y, €z = direct strains
Tyyr Txz TLyz = shear strains
W = Poisson’s ratio
o = rm /Pb
= nn/2b

1
R =(a®+P?)2
2 2 2
A = (82 + 82 + 52)2
Ox dy 0z

1. INTRODUCTION

One of the earliest attempts
on the analysis of plates,
initiated at the instance of the
French Academy of Science, led to

the theory of thin plate flexure
by Sophie Germain and Lagrange in
1811. Over the years this theory
has received extensive attention
and a wide variety of problems
have been solved wusing this.
However, due to approximations
inherent in its derivation, this
theory cannot be applied with any
guarantee of accuracy to thick
plates and this led to several
improved theories in recent vyears
in the field of analysis of
plates. Theories due to Reissner?,
Lure’ Vlasov3, Volterra4, Donnelli
Goldenveizer®, Poniatovskii’ are
but a few to mention.

Attempts have been made in
recent vyears to find exact
solutions to rectangular plate
problems. Srinivas et al® solved
the three dimensional equations of
equilibrium in terms of
displacement components. The
solution is set up in the form of
double trignometric series in
cartesian co-ordinates. The use of
double trignometric series for
rectangular ©plate problems was
apparently first suggested by
Krieger’ Iyengar et al'® using the
method of initial functions of
Vlasov’ which is the mixed method
of elasticity, has obtained an
exact solution for simply
supported rectangular plates.
Using a Galerkin wvector approach,
Iyengar and Prebhakara'’ developed
a three dimensional elasticity

the
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solution for rectangular prisms subjected to sinusoidal and
subjected to end loads, the uniform loads and also load
components of the Galerkin vector distributed over a small
being expressed as double Fourier rectangular area. Numerical
series and being so chosen to results using classical and
satisfy all the boundary Reissner theories are also
conditions. In the present obtained for comparison. And in
investigation, the-Galerkin vector the light of the present
approach 1is wused to obtain an elasticity results those obtained
exact solution for rectangular from classical and Reissner
plates with simply supported theories and those given by Lee'?
edges. Detailed numerical results based on Donnell's® thick plate
are presented for square plates theory are examined.

2. BASIC EQUATIONS

The general solution of the equations of elasticity can be expressed in
terms of Galerkin vector strain function using the approach given by

westergaard”. If F is the Galerkin vector, the basic equation of
elasticity, in the absence of body forces, is

A'F =0
where F = 1 F, + JF;, + kF,; F,, F, and F, are components of F and each in

general 1is a function of x,y and z. The stresses and displacements are
given by

ox = 2(1-U) —> A%F, +(uu? -2 ) div F
0x ox
5 5 5
=2(1-u) —— A’F, + — A°Fy)——— divF
&y =2(1-u) 5 AP+ 5 y) Sxoy
2GU = 2(1-u) A%F, +(u? Si)div F
X

The other stresses and displacement components can be obtained by a
cyclic interchange of x, y and z

3. BOUNDARY CONDITIONS
The boundary conditions for simply supporced edges are taken as (Fig 1):
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Fig.l Co-ordinate system and loading
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These are identical to those assumed by Lee'?) srinivas et al.® and
Iyengar et. al'®. The conditions on the top and bottom faces of the late
are

on z = - h: &z = 0, &yz = 0, o, = -g(x,V)

on z = +h: &xz = 0, &yz = 0, o, (4)

The loading function g(x,y) can always be represented in the form of a
double trigonometric series as

q(x,y) =X Xqgnm cosa, cos Sy (5)

where o« = mn/2a, B = mn/2a

m+n-1
,— 16q
qmn = 04) 2 for uniformly distributed load and
T mn
B 1? 16q  (mac) (nad
qmn - (_) Tl',zmnCOS( a C0S b for a plate loaded over a rectangular

area 2cX2d
g = intensity of loading
4. SOLUTION

The components of the Galerkin vector are assumed as:
Fy =0, F, =0 and

FZ=> > (A, coshrz + B, rz Sinhrz+ Cmn Sinhrz + D, rz cosh rz) Cos ox cosPy

where r = (a2-+62)%

It can be seen that boundary conditions for simply supported edges, eg.
(3), are satisfied by virtue of the form of eg. (6). Satisfaction of the
remaining boundary conditions, that is eg. (4), gives the coefficients Ay,
By Cn and D, which when substituted into eg. (6) yield

F % = (cosh rh (rz cosh rz — (2u+rh tanh rh) sinh rz)
z s (2rh — sinh 2 rh)

m n r

sinh rh rz sinh rz —(2p+rhcosh rh) sinh rz)

r (2rh — sinh 2 rh)
the final expressions for stresses an displacements are derived form (2)
and (7) as:
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o’ {sinh rz(cosh rh — rh sinh rh) + rzcosh cosh rh} + 2up? sinh rzcosh rh

oXx =2 X 5 -
r°(2rh —+sinh 2 rh)

. a?{coshrz(sinh rh — rh cosh rh) + rzsinh rh} + 2up® cosh rzsinh rh
r?(2rh —+sinh 2 rh)
sinh rz {(1-2x) cosh rh rh sinh rh}+rz coshrz coshrz
r (2rh—sinh 2rh)

gmn cos o, COSp,

&y =-% Zaf

N coshrz {(1—2u) sinh rh rh cosh rh}+rzsinhrz sinhrz
r? (2rh—sinh 2rh)

O SINOXSIN B,

o rzsinh rz (1-2u) cosh rh—rh sinh rh coshrz)
2r (2rh—sinh 2rh)

&z =-X X

N rzcosh rz sinh rh—rh cosh rh} sinhrz
2r (2rh—sinh 2rh)

Oy SIN QX COS B,

rzsinh rz cosh rh—{2(1— ) coshrh + rh sinh rh}coshrz)
2r (2rh—sinh 2rh)

2GW =% X

N rzcosh rz sinh rh—{2(1— x)sinhrh + rh cosh rh}sinh rz)
r (2rh—+sinh 2rh)

Oy COS X COS B,

{(@-2x) cosh rh — rh sinh rh} sinh rz + rz coshrh

2Gu=% Xa - 5 -
r < (2rh+sinh 2rh)

N {(1-24) sinh rh — rh cosh rh} cosh rz + rzsinh rh
r > (2rh+sinh 2rh)

Expressions for o,, &, and v can be obtained from those of o, &, and u

O SINOX COS 3, (8)

5. NUMERICAL RESULTS

Numerical results have been obtained for simply supported square plates
of wvarious side to thickness ratios. Three different loadings namely
uniform, sinusoidal and partial are considered. Tables 1 and 2 show a
comparative study of maximum middle plane deflection (Ew,/2gh) and maximum
stress (o,/qg) obtained

Table 1: Comparison of maximum dimensional deflection and stresses for

uniformly loaded sqguare plates (p = 0.3)

Maximum mid-plane deflection atMaximum stress- o,/ (=-o0,/q)

centre, Ew.,/2gh at centre

h
2.5 5 10 20 2.5 5 10 20
Present 2.966 32.79  463.97 7179.4 2.067 7.453 28.99 U5.21
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Reissner [2.660 32.64 463.05 7175.9 1.938 7.273 28.82 115.02
Classical (1. 741 27.72 443.58 7097.4 1.797 7.179 28.Tj 114.93
Table 2: Comparison of non-dimensional deflection and stresses for

sinusoidally loaded square plates- (u = 0.3)

2/h Maximum mid-plane deflection atMaximum stress-o,/q(=-
centre, Ew,/2gh o,/q)at centre

present (1. 929 20.98 |294.25/4540.9 1.607 5.244 20.04 (79.32

Reissner (1. 665 20.87 [293.70}4537.9 1.44C1 |5.029 ]19.851(79.12

ClassicallL095 17 .52 1280.26(4484.1 1.235 4.939 [19.76(79.03

from classical, Reissner and present analysis for plates under uniform
and sinusoidal loadings. Poisson’s ratio of 0.3 1is used. To study the
effect of Poisson's ratio on stresses and deflection, numerical results
have also been obtained for pu = 0.1, 0,2and 0.4 for uniformly loaded
plate and are presented in Table 3. All numerical results presented were
computed to an accuracy of 0.1%. Variations of stresses and displacements

(ox, w, o, and u) across the thickness of the pate for uniformly loaded
square plate with a/h = 1.25 and 2 are shown in fig. 2 while similar
variations for a partially loaded plate with a/h = 2.5 and 5 and for c/a
= 0.10 are shown in fig. 3.

For partially loaded plate, it can be seen that the localised nature of
load alters the 1linear wvariation of classical theory 1in Ox even for
thinner plates (fig.3a)

A comparative study of the results obtained from classical, Reissner and
Lee solutions with the present elasticity results are Shown in figs 4 to
7. In these comparisons numerical results for Lee's solution have been
taken from reference 3. The percentage deviation shown in the figures are
calculated as:

%ge deviation ={(Elasticity solution Classical, Reissner or Lee
solution) /Elasticity solution}x 100

Table 3; Maximum deflection and stresses for different values of
Poisson’s ratio (u) for uniformly loaded square plates

Maximum mid-plane .
. Maximum stress at centre
deflection at centre,o_/a - o./a
a/ho Ew,/2gh * *
s 2.5 |5 10 20 2.5 5 10 20
0.1 3.561 |45.30 [592.4 (9213.5 1.678 6.238 [24.47 [97.40
0.2 3.264 |36.96 [528.2 8196.0 1.876 6.850 [26.74 [106.30
2.966 [32.79 [463.917178.4 2.074 |7.463 [28.99 [115.21
2.668 |28.61 [399.7 |6lel. 2 [2.272 8.075 |[31.28 [124.09
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The results bring out that classical theory underestimates both maximum
deflection and maximum stress, the classical theory results Dbeing
inaccurate for deflections than for stresses. It can also be seen from
these figures that Reissner and Lee solutions improve classical results
substantially and are very close to elasticity for plates- with a/h=5
especially in predicting deflection.
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