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WEAKLY NONLINEAR WAVES WITH SLOWLY-VARYING SPEED

By

S. C. CHIKWENDU

ABSTRACT

A previously developed method of generating
uniformly valid, multiple- scale asymptotic
expansions for the solution of weakly
nonlinear one-dimensional wave equations is
applied to problems with slowly-varying
speed. The method is also shown to be
applicable specifically to periodic initial
data.

1. INTRODUCTION

In the analysis of wave propagation
problems, small nonlinear terms are often
neglected. The resulting equation is linear
and easily solved. Nonlinear waves have
been considered by Chikwendu and Kevorkian
[1], using asymptotically wvalid multiple-
scale perturbation expansions.
Nonlinearities involving derivatives of the
unknown were considered and only weakly
nonlinear waves were treated, as contrasted
from Whitham's average Lagrangian method
[2,3] which treats fully non-
linear wave ©propagation on a finite
interval with specified boundary
conditions, in which the speed of
propagation varies slowly with time. Thus
we consider the following initial-boundary
values problem.

u, —c’(et)u, +e H(u,,u,)=0,0<x<z O<e<l

(1)
u(x,0) = a(x) (2a)
u, (x,0) =b(x) (2b)
u(,t) =u(z,t)=0 (2c)
where subscripts denote partial
differentiation, x and t represent position
and time, respectively. The nonlinearity
H(u;, uy) involves only the first partial
derivatives of the dependent variable,
c(et) 1is the slowly varying speed of

propagation, and & is a small parameter.

An example of such a problem would be
longitudinal wave propagation along
a rod in which the propagation speed varies
slowly with time, as a result of say,
heating.

It should be
method of [1]

noted here that the
is applicable only when the

interval is finite as above or
alternatively when the initial data are
periodic. It is assumed that u is bounded
and that appropriate conditions are imposed
on H, as in [1], such that u remains
bounded.

2. MULTIPLE-SCALE PERTURBATION

PROCEDURE

A straight-forward expansion of u in
power of e leads to terms that are not
uniformly asymptotically wvalid at large
times. The two-variable or multiple-scale
method has been applied by Cole [4],
Kevorkian [5], and others to the solution
of wvarious problems involving ordinary
differential equations and some partial
differential equations as a means of
overcoming this difficulty and obtaining
uniformly valid asymptotic expansions.
Following the wusual procedure, we assume
that the time dependence of u involves two
explicit time scales which are treated as

separate independent
variables: the "fast" time t, and the
"slow" time T =et. Since the propagation

speed is a slowly-raying function of time,
we introduce a new fast time, defined as

follows:
dr
—=c(T (3)
™ (M)
Thus,
dr
Ut=aut+6UT=C(T)UT+6UT (4a)
utt :CZ(T)UTT+26C(T)+‘C’C'(T)UT+8ZUTT (4b)
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where prime (‘) denotes differentiation with respect to T.
We seek a uniformly asymptotic expansion for u in powers of g,

u(x,t) =u, (X, 7,T)+au(x,z,T)+O(e?) =

N n N+1 (5)
Ze u,(x,7,T)+0(" ™)
n=0
If equation 4b is used in (1), the following equation results:
2¢ —C
urz’ _uXX :__uz'T —& 2 (T) ur
c(T) c™(T)

(6)

& &

CZ(T) H(Cu‘r +eélr, ux)_cz—(.l_)uTT

It is assumed that H(us,uyx) 1s analytic and so has a Taylor series in

its arguments. Thus using (4a) and (5) in H(u:,ux) and expanding in a

Taylor series about (cuo:, Uox), we obtain

Hicu, +eu 0 )= H{cuorz+g(cuh +u0T)+2 }
0(8 )’ uox +‘C’u1x +O(8 )

That 1is,

(7)

Cu,, +&(Cu,, + U, )+
H(cur+¢c,uT,uX):H{ or +€(CUL, +Uyr) }

0(&%),u,, +eu, +0(g?)

When (4a) and (5) are used in the initial and boundary conditions (2),
and the coefficients of &" are set equal to zero for n=0,1,2,..,we
obtain,

U, (%,0) = a(x), u,, (x,0,0) =b(x) (8a)
u,(x,0,0)=0,u,_ (x,0,0)=-u, ;; (x,0,0),
(8b)
n>1
u,©,7,T)=u, (I1,7,T)=0,n>1 (8c)
The asymptotic expansion for u, (eq. 5), and the expansion (7) are
now substituted in (6). The coefficients of &" are separately set equal

to zero for each n and this leads to a set of equations for up, ui, uz,..,
as follows:

N=0:Uy —Upy =0 (9a)
_ 2 c

n :1'ulTT — Uy :_EUOTT _C_zuOT

1 (9b)
__ZH(CUOT’UOX)

C

Py ~ c 1
N=2Uyp —Uyy, __EulTT __zulT C_zuOTT

oH

_(Culr+u0T)a(CUOr'uox) (9¢)

t

—Ux ﬁ(Cuor »Uogx )
Ou
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2.1 Zeroth Order Approximation

Equation (9%a) 1is a linear wave equation and has the general
solution
Uy(X,7,T)=T(s,T)+g(r,T) (10)

Where s=x-t1t, r=x+1t, and f and g are arbitrary functions of s and r
respectively, that will be chosen so that up will satisfy the initial

conditions (8a). The dependence of f and g on T 1is at present
undetermined.

Note that

0 0 0 0 0 0

= = (11)
or Or—0s OX or—os

Thus, initially,
f(x,00+g(x,0)=a(a),0<x<r

— £ (x,00+9 (x,00=b(x),0<x<7x

The familiar result is

f(x,O):y—% b(x)dx,0< x <7 (12a)
g(x,O):¥+% Tb(x)dx,0< x< 7 (12Db)

These equations specify the initial conditions of £ and g and thus the
nature of the functional dependence of f and g on r and s respectively.
Similarly, f and g must satisfy the boundary conditions, thus

Uy (0,7,T)=f (-7, T)+9(r,T)=0 (13a)

Uy(7, 7, T)=f(r—7,T)+9(7,7,T)=0 (13b)

f(-p, T)+g(2zc+p,T)=0 (14)

But from (13a),

f(-p, T)+g(2zc+p,T)=0 (15)

Combining equations (14) and (15)

g(p, T)=9(p+27,T) (16) This result shows that g 1s a
periodic function of r, with period 2m. We can also note that
f(-p.T)=-9(p.T) (17)

2.2 First Order Approximation having determined the fast time

dependence of uy we can now proceed to equation (9) and try to
determine the fast time dependence of u; and also the slow time
behaviour of up. When the results of section 2.1 are used in equation
(90, we have

Wn_uung(ur+gﬂ)_
c ¢ (18)
LH (cf, +cg,, f+0y
C_Z(fr‘i‘gr)_cz(r 9. 9x)
If we If we change the characteristic
variables r and s with the aid of equation (11), we have
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2 2
_4u1rs :E fsT _Eng -
(19)

c 1[H(ca, et 9.+ )
55047+9J—C

We shall determine the dependence of f and g on T by eliminating
those terms on the right hand side of eqg.(19) that lead to non-
uniformities. For example the particular solution corresponding to the

2 r
inhomogenous term —fg; is-1—f; . Since r=x+1, such a term would become
c Cc

unbounded for large x or 1, and thus fail to be valod expansion term.

21

Thus the inhomogenous term — T, must be eliminated. A systematic method
C

of doing this follows.
We integrate (19) with respect to r, and obtain

r
—4@,5:% fsT—%gT —lZJ'H(cgrfcfs.gH fs)dr (2 Oa)
c

Next we evaluate equation (20a) between r=0 and r=2nn, where N 1is an
integer. Thus we take the mean of the equation over N periods in r. We
then take the limit as N tends to infinity and obtain

“m_qph(&ZﬂN,T)—UB(&OJW]KZ”N)

N—>w©
2 2
:EfST —E[gT (27Z'N,T)_g‘|' (O,T)]

c (20Db)

2, - g, T) - g(0.T)]
C C

. 2
Lim ¢
N—sco 27Nc?

N
J'H(cgr +cf,, g, + f)dr
0

Since u;s is bounded, the left hand side of equation (20b) will go to
zero in this limit. The Dbracketed terms on the right hand side will
vanish since g and gr are both periodic in r with period 2m. In the last
terms on the right hand side the integrand is assumed to be periodic in
r (this would be the case for example if H is an odd function of its
arguments), so that the limit exists and will 1in fact Dbe the same
result as would have been obtained if we had merely integrated over one
period. The resulting equation is

gfsT+C
C

1
27c?

f —

o "

(21)

IH(cgr —cf,, g, + f,)dr=0

If we note that the integral in this equation is a definite
integral and so 1is independent of r, we see that this is in fact an
ordinary differential equation for f; and so can be written as

EfsTJrC—Zfs—y(fs,T):O (22a)
C C
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Where Yy(fs;,T)= cf,, g, + f,)dr.

Similarly, by integrating (19) with respect to s and taking the
mean over one period 1in s we arrive at the ordinary differential
equation

2 c
Eng +C_zgr+z(gr!T)=0 (22Db)

Where z(9;,T)=

—cf,, g, + f,)ds.

The determination of the dependence of f; and g, with resopect to
s and r, respectively.

The result thus obtained for up is uniformly valid to order of e.
Thus for small &, we have a useful approximation to the solution of a
difficult nonlinear wave propagation problem, with slowly-varying
speed. The equation for u; now becomes

1
Au,,  =— The slow time behaviour of u; can be
determined only by proceedlng to order g7, by means of (9c). In this

paper we shall not go beyond the complete calculation of the zeroth
order approximation, up.

2.3 Special Example: H=uus

The nonlinear perturbation term H=uu. does not fall into the class
of nonlinaerities introduced in Section 1. However, the consideration
of this example will illustrate the extension of the method to another
class of nonlinearities.

For this example,

o =(f +9)(cg, —cf)

y(f,, T)=
—cff. +c —cgf.)dr
Zﬂcz S ggr gs)
(23)

— 1 o,

27C

ff,
T c cas( )
Similarly,
z(cgjr,T)———(g )
The equatlon (22a) becomes in this case
2f c 10 ,f2
° ST+c_2 __(_)_ (24a)

Integrating w1th respect to s, we get the nonlinear equation:
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21+ g (24D)
c c 2

. . 1 . .
The substitution W=>?, leads to a linear equation for w,

c 1
WT —2—CW=Z (25)

With the solution

!
w(s,t) = /¢ F(s)+% (26)
0

Where F(s) 1is chosen so that f will satisfy the appropriate initial
conditions.

Thus
1
f(s,t)= F(s)+ j
Similarly,
1 1% dr
g(rit)== G(N+-|— (27)
c 4£\/C(F)

Where again G(s) 1s chosen so that g satisfies the initial conditions.
If the speed of propagation were constant, c=1, the expression for
f would be
-1

f(s,t)=F(s)+% (28)

Thus the varying speed of sound results both in a changing amplitude
and also a varying rate of decay.

For example, let the initial conditions be (note that the initial
conditions must also satisfy the boundary conditions),

u(x,0) = ian sinnx (29a)
u,(x,0) = ibm sinnx (29Db)
m=1

These are Fourier series expansions of the initial conditions. The
initial conditions on f and g are then

0 . 0 b
f(x,0) = Za?“smnx+zd—mcosmx (30a)
n=1 m=1 Y'm

s} ] 0 b

g(x,0) = Za?"smnXJFZ—mcosmx (30Db)
n=1 m=1

Thus 1if c(0)=

f(sT) = =
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(31a)
And a similar result for g(r,T),

0

> . b
Zaz”smnwzmcosmr
o(r,T) = nL m I (31Db)

o i b p
Je(T) 2+13 (a, smnwﬁcos nr) j%
n=1 0

For small g, the result up=f+g would be a wvalid approximate solution of
the nonlinear wave equation with a small error of the order of &, up to

times of order 1/e. The method is available in this example because the
2

u
nonlinearity 1is of the form H::EE(?;)’ that is, the derivative of a

function of u.
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