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ABSTRACT 

A previously developed method of generating 

uniformly valid, multiple- scale asymptotic 

expansions for the solution of weakly 

nonlinear one-dimensional wave equations is 

applied to problems with slowly-varying 

speed. The method is also shown to be 

applicable specifically to periodic initial 

data.  

  

 

1.  INTRODUCTION 

In the analysis of wave propagation 

problems, small nonlinear terms are often 

neglected. The resulting equation is linear 

and easily solved. Nonlinear waves have 

been considered by Chikwendu and Kevorkian 

[l], using asymptotically valid multiple-

scale perturbation expansions. 

Nonlinearities involving derivatives of the 

unknown were considered and only weakly 

nonlinear waves were treated, as contrasted 

from Whitham's average Lagrangian method 

[2,3] which treats fully non-  

linear wave propagation on a finite 

interval with specified boundary 

conditions, in which the speed of 

propagation varies slowly with time. Thus 

we consider the following initial-boundary 

values problem.  
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where subscripts denote partial 

differentiation, x and t represent position 

and time, respectively. The nonlinearity 

H(ut, ux) involves only the first partial 

derivatives of the dependent variable, 

c(ɛt) is the slowly varying speed of 

propagation, and ɛ is a small parameter.  

An example of such a problem would be 

longitudinal wave propagation along  

a rod in which the propagation speed varies 

slowly with time, as a result of say, 

heating. 

It should be noted here that the 

method of [1] is applicable only when the 

interval is finite as above or 

alternatively when the initial data are 

periodic. It is assumed that u is bounded 

and that appropriate conditions are imposed 

on H, as in [1], such that u remains 

bounded.  

 

2. MULTIPLE-SCALE PERTURBATION 

PROCEDURE  

A straight-forward expansion of u in 

power of ɛ leads to terms that are not 

uniformly asymptotically valid at large 

times. The two-variable or multiple-scale 

method has been applied by Cole [4], 

Kevorkian [5], and others to the solution 

of various problems involving ordinary 

differential equations and some partial 

differential equations as a means of 

overcoming this difficulty and obtaining 

uniformly valid asymptotic expansions. 

Following the usual procedure, we assume 

that the time dependence of u involves two 

explicit time scales which are treated as 

separate independent  

variables: the "fast" time t, and the 

"slow" time T =ɛt. Since the propagation 

speed is a slowly-raying function of time, 

we introduce a new fast time, defined as 

follows: 
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where prime (‘) denotes differentiation with respect to T.  

 We seek a uniformly asymptotic expansion for u in powers of ɛ, 
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 If equation 4b is used in (1), the following equation results: 
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It is assumed that H(ut,ux) is analytic and so has a Taylor series in 

its arguments. Thus using (4a) and (5) in H(ut,ux) and expanding in a 

Taylor series about (cuoτ, uox), we obtain 
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That is, 
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When (4a) and (5) are used in the initial and boundary conditions (2), 

and the coefficients of ɛ
n
 are set equal to zero for n=0,1,2,…,we 

obtain,  
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1,0),,(),,0( 0  nTuTun     (8c) 

 The asymptotic expansion for u, (eq. 5), and the expansion (7) are 

now substituted in (6). The coefficients of ɛ
n
 are separately set equal 

to zero for each n and this leads to a set of equations for u0, u1, u2,…, 

as follows: 
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2.1 Zeroth Order Approximation 

 Equation (9a) is a  linear wave equation and has the general 

solution 

),(),(),,(0 TrgTsfTxu    (10) 

Where s=x-τ, r=x+τ, and f and g are arbitrary functions of s and r 

respectively, that will be chosen so that u0 will satisfy the initial 

conditions (8a). The dependence of f and g on T is at present 

undetermined. 

Note that 
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Thus, initially, 
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The familiar result is 
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These equations specify the initial conditions of f and g and thus the 

nature of the functional dependence of f and g on r and s respectively. 

 Similarly, f and g must satisfy the boundary conditions, thus 
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But from (13a), 
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Combining equations (14) and (15) 

),2(),( TpgTpg     (16) This result shows that g is a 

periodic function of r, with period 2π. We can also note that  
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2.2 First Order Approximation  having determined the fast time 

dependence of u0 we can now proceed to equation (9b) and try to 

determine the fast time dependence of u1 and also the slow time 

behaviour of u0. When the results of section 2.1 are used in equation 

(9b0, we have 
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      If we If we change the characteristic 

variables r and s with the aid of equation (11), we have 
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 We shall determine the dependence of f and g on T by eliminating 

those terms on the right hand side of eq.(19) that lead to non-

uniformities. For example the particular solution corresponding to the 

inhomogenous term sTf
c

2
 is Tf

c

r
2

1 . Since r=x+τ, such a term would become 

unbounded for large x or τ, and thus fail to be valod expansion term. 

Thus the inhomogenous term sTf
c

2
 must be eliminated. A systematic method 

of doing this follows. 

 We integrate (19) with respect to r, and obtain 
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Next we evaluate equation (20a) between r=0 and r=2πn, where N is an 

integer. Thus we take the mean of the equation over N periods in r. We 

then take the limit as N tends to infinity and obtain 
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Since uls is bounded, the left hand side of equation (20b) will go to 

zero in this limit. The bracketed terms on the right hand side will 

vanish since g and gT are both periodic in r with period 2π. In the last 

terms on the right hand side the integrand is assumed to be periodic in 

r (this would be the case for example if H is an odd function of its 

arguments), so that the limit exists and will in fact be the same 

result as would have been obtained if we had merely integrated over one 

period. The resulting equation is 
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 If we note that the integral in this equation is a definite 

integral and so is independent of r, we see that this is in fact an 

ordinary differential equation for fs and so can be written as 
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 Similarly, by integrating (19) with respect to s and taking the 

mean over one period in s we arrive at the ordinary differential 

equation 
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 The determination of the dependence of fs and gr with resopect to 

s and r, respectively. 

The result thus obtained for u0 is uniformly valid to order of ɛ. 

Thus for small ɛ, we have a useful approximation to the solution of a 

difficult nonlinear wave propagation problem, with slowly-varying 

speed. The equation for u1 now becomes 
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4   The slow time behaviour of u1 can be 

determined only by proceeding to order ɛ
2
, by means of (9c). In this 

paper we shall not go beyond the complete calculation of the zeroth 

order approximation, u0. 

 

2.3 Special Example: H=uut 

 The nonlinear perturbation term H=uut does not fall into the class 

of nonlinaerities introduced in Section 1. However, the consideration 

of this example will illustrate the extension of the method to another 

class of nonlinearities. 

 For this example,       
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Similarly,  
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The equation (22a) becomes in this case 
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Integrating with respect to s, we get the nonlinear equation: 
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The substitution 
f

w
1

 , leads to a linear equation for w, 
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With the solution 
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Where F(s) is chosen so that f will satisfy the appropriate initial 

conditions. 

Thus    
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Where again G(s) is chosen so that g satisfies the initial conditions.  

 If the speed of propagation were constant, c=1, the expression for 

f would be 
1

4
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Thus the varying speed of sound results both in a changing amplitude 

and also a varying rate of decay. 

 For example, let the initial conditions be (note that the initial 

conditions must also satisfy the boundary conditions), 
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These are Fourier series expansions of the initial conditions. The 

initial conditions on f and g are then 
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Thus if c(0)=1, we have 
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And a similar result for g(r,T), 
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For small ɛ, the result u0=f+g would be a valid approximate solution of 

the nonlinear wave equation with a small error of the order of ɛ, up to 

times of order 1/ɛ. The method is available in this example because the 

nonlinearity is of the form )
2

(
2u

t
H




 , that is, the derivative of a 

function of u. 
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