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Abstract 

Disease has remained a threat to the existence of every living thing on earth. 

Particularly in agriculture, disease has remained a major constraint to the 

success of crop yield and demands urgent solutions, starting with early 

detection. While many studies have been presented on plant disease detection 

and control, despite their success, the research gap resides in creating a balance 

between plant disease detection and farm disease detection. This is because 

detecting disease in a plant does not necessarily imply that the farm is infected 

with diseases, and this has resulted in issue of false alarm in the existing system. 

To address this challenge, YOLOV-5 model was trained with a plant disease 

dataset considering diverse classes of plants such as corn, waterleaf, tomato, 

pepper, and cassava. The plant disease model generated was used to develop a 

farm disease monitoring, detection and notification algorithm, which was 

converted into mobile application software using Python programming for real-

time monitoring notification of farm diseases. This multi-purpose system when 

tested, reported an average precision mean of 0.95. In addition, experimental 

validation of the model in maize and watermelon farms reported real-time 

disease detection and notification which facilitates rapid response and control 

of the disease by the farmer. 
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1.0  INTRODUCTION 

Man's ability to cultivate the land and grow food is a 

testament to our resilience, creativity, and connection 

to nature. In the act of nurturing the soil, we nurture 

our own well-being and sustain our journey on this 

Earth.  In this context, nurturing the soil involves the 

traditional preparatory steps undergone by farmers 

such as clearing the land, tilling of soil, treatment, and 

then cultivation of plants, which then yield the harvest 

to sustain life. However, pests and diseases remained 

the most disruptive factors that affect the growth of 

plants with an annual loss of 10-28% [1]. In addition, 

the impact of climate change, and natural disasters, 

coupled with the exponential increase in the 

population of man, have all presented a major 

challenge to sustainable global food supply [2]. 

According to [3], while all these factors have the 

potential to cause food scarcity, plant diseases stand 

as a major contributing factor affecting sustainable 

food production through the agricultural process, and 

hence form the purpose of this paper tailored towards 

providing a reliable, easy-to-use, cost-effective real-

time plant disease monitoring, and detection using 

Transfer Learning Technique (TLT).  
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Plant diseases are organisms such as viruses, fungi, 

bacteria, early blight, yellow curl virus, septoria, 

molds, and environmental conditions that cause 

infection in plants [3]. Currently, the traditional 

approaches to plant disease detection are pathogen 

analysis and expert diagnosis [4]. The latter refers to 

the expertise of farmers to detect plant disease based 

on previous experiences, while the former involves a 

microscopic analysis of plant pathogens to detect 

diseases [3]. While the expert analysis approach can 

be prone to human error, and classification of farm 

disease as homogenous in many instances, the 

pathogen analytical approach is more reliable, but 

time-consuming and cumbersome, hence making it 

not suitable for large farm disease monitoring [4]. 

 

In recent years, artificial intelligence approaches, 

specifically TLT have been applied to help improve 

plant disease monitoring and control. TLT is pre-

trained deep learning algorithms such as Alex.Net, 

GoogleNet, ResNet, You Only Look Once Version 

(YOLOV) among many others carefully designed and 

trained with large volumes of datasets to solve real-

time object classification problems [2, 4]. Among 

these algorithms [5, 6, 7, and 8] revealed that YOLOV 

algorithms stand out as one of the most adopted to 

solve real-time object classification problems and 

have also been applied for plant disease detection due 

to their high accuracy potential and speed of 

classification. For instance [10] applied YOLOV-4 for 

the detection of apple diseases, while the model was 

improved to YOLOV-5 in [11] and applied for the 

detection of the apple diseases. The result 

demonstrated successful detection of apple diseases 

but lacked trustworthiness as it was not practically 

validated.  

 

Authors in [12, 13, 14] applied YOLOV-5 for the 

classification of (Citrus, grapes, and tomato) plant 

diseases and reported an average overall mean 

absolute precision of over 80%. While these studies 

have all demonstrated high precision values in 

detecting diseases, there is no balance between plant 

diseases and farm disease detection. This is because, 

the detection of plant disease does not necessarily 

mean that the entire farm is infected and when 

deployed results in issue of false alarm, as it is almost 

impractical to have a farm with 100% healthy plants. 

To correctly label a farm as infected with disease, at 

least a certain small proportion of the farm has to be 

infected, which presents the need for an algorithm that 

determines this infected proportion of the farm using 

intelligent computation as proposed in this research. 

Other part of the paper includes more literature 

review, material used for the research, and methods 

used for the development of the farm disease 

monitoring and notification algorithm. The highlights 

of this paper are as follows; 

i. A clarity differentiating plant disease from farm 

disease was presented   

ii. A new algorithm for farm disease monitoring and 

notification was presented  

iii. Propose a multi-purpose system for diverse plant 

diseases monitoring  

iv. Proposed a model that is tested and experimentally 

validated in an actual farm  

 

2.0  LITERATURE REVIEW 

Over the years, many studies have applied YOLOV 

algorithms for the classification of plant diseases. This 

is because YOLOV has consistently recorded high 

classification performance in terms of speed, 

accuracy, and precision. Among the studies include 

[4] who trained YOLOV-4 with 200 samples of 

tomato pants spanned across three classes of unripe 

fruits, ripe and disease infected fruits, and reported an 

average precision of 81.28%. Similarly, [9] trained 

YOLOV-5 on 5700 samples of apple data to classify 

calyxes, stems, and defects classes of the data. In the 

study, model pruning was applied to compress the 

YOLOV-4 model and then tested to report a precision 

of 93.74%, which when compared with [4] implied 

that increased data size improves learning 

performance. In the case of [14], YOLOV-2, 3, and 4 

were trained using 30,059 images and then compared. 

The result reported that YOLOV-4 achieved the best 

average precision value of 90.8%. What this means is 

that the denser the YOLOV model, the better the 

performance.  

 

In this vein, [10], improved the YOLOV-5 model, 

adding two extra layers and an attention layer to 

consider the importance of different channels and then 

trained with 1600 images of kiwifruit spanned across 

four classes, the result reported 94.7% precision, 

which was improved by [12] who pruned the model 

and trained on 3165 samples of apple fruit and 

reported 95.8% precision. In addition, [15] added an 

attention mechanism to replace the PANet multiscale 

features fusion network of YOLOV-5 and trained with 

16000 images generated with data augmentation. The 

result reported a 98.4% precision rate, which is good, 

thus demonstrating the effectiveness of YOLOV-5 in 

plant disease detection; however, while these studies 

all reported high classification precision scores for 

plant disease detection, it is not clear the definition of 

success in classifying an infected farm. This is 

because these models while able to detect disease in a 

plant, do not necessarily imply that the farm is infected 

and hence present an issue of false alarm.   
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[16] Presented a customized CNN based predictive 

intelligence for the monitoring and detection of 

disease infected millet. In achieving this, 3000 images 

of millet with rust and blast diseases were collected 

and applied to train CNN customized with three 

convolutional layers and generate model for the 

classification of millet diseases. The results reported 

98.8% and training time o 67secs. [17] Applied IoT 

and A.I for smart cattle health monitoring. Data of 

castle behavior considering heart rate, skin 

temperature and accelerometer was collected and used 

to train XGboost and random forest classifier and 

generate model for the monitoring of cattle behavior. 

Model was converted to mobile application software 

and deployed in android operating system. The results 

reported for R 96% accuracy and XG 100% accuracy. 

[18] Used logistic regression to improve Wifi network 

and apply for the monitoring of livestock. In addition, 

cryptograph and stenography was applied to protect 

the network. These studies have successfully 

demonstrated the application of A.I and IOT for smart 

agriculture; however more studies are needed to 

explore how deep learning can improve real time 

monitoring [19].   

 

Diving more into deep learning [20], applied it for the 

optimal selection of soil sampling sites. In the paper, 

the first approach involves utilizing encoder–decoder 

architecture with a self-attention mechanism with the 

CNN backbone, while the second is to innovate a 

deep-learning design grounded in the concepts of 

transformer and self-attention. In the decoder, the 

system introduces convolution networks to 

concatenate, fuse the extracted features, and then 

export the optimal locations for soil sampling. The 

results after training reported a mean accuracy of 

99.52%, a mean Intersection over Union (IoU) of 

57.35%, and a mean Dice Coefficient of 71.47%, 

while the performance metrics of the state-of-the-art 

CNN-based model are 66.08%, 3.85%, and 1.98%, 

respectively. The result despite the success leaves 

room for improvement especially in the dice 

coefficient but provides a good foundation for DL 

studies on soil sampling.  

 

In [21] deep learning was applied for precision 

agriculture with focus on cereal plant head detection. 

The work discussed the various types of deep learning 

algorithms capable of counting cereal heads using 

image segmentation and object detection strategies. 

Research gap was identified in the need for a diverse 

sophisticated dataset and image processing algorithm 

which can adapt to dynamic nature of cereal plants. In 

addition, the application of unmanned vehicles was 

recommended as a tool to improve precision 

agriculture in the future. In [22] a comparative study 

on the application of deep learning and IoT was 

presented for improved precision agriculture. The 

study surveyed the diverse application of deep 

learning and IoT in agriculture, considering areas such 

as crop yield, weed detection, pest, diseases and soil 

prediction. In addition, the architecture of IoT for 

precision agriculture was presented constituting of the 

physical layer, network layer, middleware layer, 

processing layer and application layer. Sensors such 

as electrochemical, location, optical, acoustic, airflow 

were all discussed in the study. Types of datasets to 

facilitate training of DL were discussed and then the 

challenges of IoT and DL were also highlighted.  In 

the IoT challenges issues such as hardware failure, 

cost, scalability, interference are some of the issues 

pointed out which needs immediate attention. For the 

DL approaches issues of over-fitting, increased 

training time, varnishing and exploding gradient and 

huge data requirements for model success.  

 

Suggestions to solve these issues such as application 

of dropout regularization, network pruning, back-

propagation algorithms were presented to help address 

these challenges. In [23] DL and semi-automated 

image labeling as applied for wheat stripe detection. 

ResNet-18 was fine-tuned on data collected with UV 

from multiple wheat conditions such as winter, spring, 

irrigated wheat, non-irrigated wheat. The generated 

model was validated across sensor platforms, location 

and types of wheat. The area under curve recorded 

0.72 to 0.87, while an independent validation 

approach applied reported 0.79 to 0.86. While this 

work achieved good score for the respective 

classification metrics, there is still room for 

improvement in the metrics. In addition, the model is 

limited to the classification of wheat, and therefore 

can be improved considering other plants to improve 

application diversity. In addition, the model lacks 

clear definition of plan disease detection success, 

because as we have already stated that plant disease is 

not farm disease. Therefore, there is an urgent need for 

a model that computed the fitness of the entire farm to 

determine the health or unhealthy status of the farm. 

In addition, the applications of the existing studies are 

mostly limited to single plants, which are good but can 

be improved considering many other plants to expand 

their practicability and also make the marketing very 

easy. 

 

3.0  MATERIAL AND METHODS 
The materials used for the research are YOLOV-5 

model, Techno Samsung Galaxy A12, android 

operating system, 5G, internet enabled SIM card, 

battery, python programming language. The methods 
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used are data collection of plant diseases, considering 

diverse classes as discussed in Section 3.1. Data 

processing to automatically label the plant disease 

data according to their classes, training the YOLOV-5 

model for plant disease detection, development of the 

farm disease monitoring and notification algorithm, 

integrated of the algorithm as mobile application 

software for real time farm disease surveillance and 

notification using python programming; finally, 

experimental demonstration of the model’s 

applicability in a real farm for diseases monitoring and 

detection as a validation strategy.  

  

3.1  Data Collection  

The primary sources of data collection are 300 x 120 

meter infected maize farm and 150 x 120 meter 

infected water leaf farm respectively identified at 

Agric center, Aninri Local Government Area, Enugu 

State, Nigeria. The instrument used for the data 

collection are a 550mm quadcopter integrated with 

Tapot100 camera sensor, which was remotely 

controlled with the quadcopter fight control system 

and flew around the farm at a vertical distance of 4ft 

above the infected plant area, while the capturing of 

the plant disease images in a resolution format of 

640x640pixels. The maize diseases considered are 

bacteria spot, early blight and late blight, while the 

cassava diseases considered are mosaic virus and 

yellow curl virus. During the data sampling of these 

plant diseases by the drone, diverse lightening 

condition was also taken into consideration, to capture 

the effect of lightening condition on the model 

sensitivity.  

 

For each plant, was sampled at early morning hours 

(7am to 8am), afternoon period of (1pm to 2pm) and 

night period of (6:30 to 7pm). After each period, of 

data sampling, it was automatically stored in a 

250MBSD memory cards system and collected 

inserting the SD card reader system into a USB 3.0 

iPad SD Card reader linked to an iPad computer. From 

the iPad, each folder of the data collected was copied 

and saved in the new plant disease dataset. The 

population sample size of maize plant disease images 

copied is 800 incorporating the diverse diseases 

aforementioned for maize, while that of cassava plant 

diseases is 755 images respectively of diverse cassava 

plant diseases, thus presenting a total population 

sample of 1555 images. The Figure 1 presented the 

experimental setup of the instrument used for the data 

capturing at the testbed. To prepare the data and make 

it perfect for integration with a secondary dataset 

which will be collected shortly, first it was divided 

into training (1200sample) and test (355sampels) sets 

respectively.  

The test class was not processed, as it was mapped out 

for the model testing, while the training samples were 

automatically annotated through the assignment of 

bounding box around the images and assigning the 

appropriate class name in a .text file and saved. This 

labeling was in-line with YOLOV-5 requirement, with 

the labeled represented in c,x,w,h formats 

respectively, where c is the object class index, x and y 

are the bounding box coordinated, w and h represented 

the height and weight of the boxes. This was achieved 

using the python-based Labelling [83] graphic 

annotation tool, which is a special toolbox for the 

labeling of images to train YOLOV-5. The Figure 2 

presents the annotated images of plant diseases ready 

for integration. 

 

Figure 1:  Experimental setup for data collection  

 

 
Figure 2:  Outcome of the primary data annotation 

process  

 

The secondary data set used for this study is the plant-

village dataset collected from Kaggle repository 

which contained 54303 plant species span across nine 

classes of peach, potato, strawberry, cherry, blue 

berry, tomato, pepper, and apple and their respective 

diseases and grouped into two classes of health and 

unhealthy. The link for the data source was reported 

in the Appendix A. These data were already processed 
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with annotation labels [24, 25] and are grouped into 

training, validation and test sets in the ratio of 

80:10:10. The 80% was used to train the classifier 

which understands the intricate of the plants with 

diverse disease; the test was used to evaluate the 

training performance of the classifier, while the 

validations set validated the reliability of the classifier 

to detect plant diseases. The Figure 2 presents the 

annotated plants in the dataset. Collectively the 

primary and secondary data were integrated with the 

Google data fusion tool, with a total sample size of 

55858 images. 

 

3.2  YOLOV-5 Model 

The typical YOLOV-5 architecture is made up of three 

parts which are the backbone, neck and output [15]. 

The backbone is used for the extraction of features 

from input image, the neck is applied for fusion of 

extracted features and generation of feature maps, 

while the output is used for the plant detection from 

these generated feature maps. The Figure 3 presents 

the architecture. 

 

 
Figure 3:  Architecture of YOLOV-5 

 

The backbone network is made of convolutional 

neural network which extracts the features maps from 

the various image sizes of the input data, through the 

multiple convolutions and pooling. The backbone is 

made of input layer dimensioned as 608x608x3 

(height, weight and color channel), then a focus layer 

was applied for spatial dimensionality reduction of the 

input, by aggregation of the input information across 

different spatial location of the image. In addition, 

four layers of feature maps which are 152x152 pixels, 

76x76 pixels, 38x38 pixels and 19x19 pixels 

respectively are individually consisted of Convolutio-

nal, Batch Normalization, and Leaky ReLU (CBL) 

which role is to improve speed of training and 

introduction of nonlinearity. Then Cross Stage Partial 

(CSP)was applied to improve the flow of information 

and address vanishing gradient problem during over-

fitting and also improve training performance. In the 

last layer, Spatial Pyramid Pooling (SPP) was applied 

for multi-scale information extraction from the feature 

maps and then applying maximum pooling approach 

to each pixel region.  

 

It involves dividing the input feature map into regions 

of different sizes and pooling each region separately, 

making the network more robust to plants of different 

sizes. The neck part of the YOLOV-5 is responsible 

for fusion process. This is achieved using the CSP 

which in this case employs a pyramid structure of Path 

Aggregation Network (PAN) and Feature Pyramid 

Network (FPN) for the localization of pixels 

concentrated at the concat and then fusion together in 

three output layers with a color channel of 255. The 

up-sampling was used to recover spatial information 

loss, thus allowing the model to make high resolution 

predictions. In the output section of the model, three 

layers of new scales of feature maps with sized of 

76x76x255 for the layer one; 38x38x255 and then 

19x19x255. What this means is that the model was 

able to perform plant disease detection for diverse 

plant sizes and classification in real time. 

 

3.3  Training of the YOLOV-5 Model 

Training of the YOLOV-5 model [26] was performed 

on Google colab platform, using the prepared plant 

disease dataset, Stochastic Gradient Descent 

Optimization (SGDO) technique [27], and then 

training parameters in table1. The data already 

prepared and splitted into training, test and validation 

sets of ratio (80:15:5) were imported to the YOLOV-

5 model adopted from ultralytic environment and then 

trained. During the training process in batches, the 

learning rate, weights, bias, momentum is adjusted 

automatically while the loss function is monitored 

using the Equation 1 [28]. 

 

𝐿𝑜𝑠𝑠 = 𝛼1𝐿𝑐𝑙𝑠 +  𝛼2𝐿𝑜𝑏𝑗 + 𝛼3𝐿𝑐𝑙𝑜𝑢      (1) 

Where, ∝ is the classes of detected objects, 𝑐𝑖𝑜𝑢 is 

complete intersection over union, 𝑜𝑏𝑗is the object 

loss, L is the location of loss and cls is the 

classification loss. The test and validation sets are also 

applied to evaluate the model, and the hyper-

parameters continuously adjusted at each epoch 

iteratively until the neurons converges, then the plant 

disease detection model generated and reported in the 

algorithm 1.  
 

Table 1: Training parameters 
Items  Specification 

Momentum  0.937 

Epoch; batch size  150; 16 
Weight decay 0.0005 

Input size  608x608 

Learning rate 0.01 
Optimizer  SGDO 

Bias and momentum 0.8; 0.1 
Warmup epoch 3 

https://doi.org/10.4314/njt.v43i4.21
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Table 2: Implementation materials 

 

Algorithm 1: Plant disease detection 

 
 
Algorithm 2: New Farm Disease Monitoring and 

Notification system 

 
 

4.0  THE FARM DISEASE DETECTION (FDD) 

SYSTEM 

FDD is a system proposed in this paper to address the 

issue of false positive identified as major issue with 

the existing systems. This is because; while there are 

numerous models which can correctly detect real time 

diseases in plants, this does not exactly imply that the 

whole farm or major portion of the farm is infected 

with disease and hence presents an issue of false alarm 

and lack of integrity with the existing system. This 

paper proposes a new algorithm which considers the 

area of the farm, percentage of disease detected by the 

classification model and then make an informed 

decision on the farm status, through a simple rule 

based which determines disease on the farm when >= 

10% of the entire farm area is infected. The detected 

disease is relayed to the farmer using Email 

notification. The farm disease detection algorithm is 

presented in algorithm 2; while the assumptions used 

in the development model was presented as; 

i. Farmer’s email is cjeneral@yahoo.com 

ii. Host email is stevrolas@gmail.com  

iii. Farm size is measured in square meters 

iv. Threshold for disease is 10% 

 

5.0  PERFORMANCE EVALUATION PARA-

METERS 

The evaluation of the YOLOV-5 model trained 

considers parameters such as Precision (P), Recall (R), 

Average Precision (𝐴𝑃𝑖), and mean average precision 

(𝑚𝐴𝑃). These Equations of the parameters are; 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (2) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (3) 

𝐴𝑃𝑖  =  ∫ 𝑃(𝑅)𝑑(𝑅)
1

0
                                                (4)                                                                             

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1            (5) 

Where, TP is true positive plant disease detection, FP 

is negative samples which are positively detected, FN 

are positive samples which are not detected. 

 

6.0  RESULTS AND DISCUSSION 

The performance of the trained YOLOV-5 model was 

evaluated considering the loss function model in 

Equation 1 which was used to measure the gradient 

loss which occurs during the training process. The 

model Equations 2 - 5 were also engaged to measure 

the ability of the model to detect healthy and 

unhealthy plant correctly. The results were reported in 

the Figure 4;   

 

Figure 4:  Result of the YOLOV-5 Training 

performance   

 

From the Figure 4, the training and validation 

performance of the model were reported as shown 

considering the loss function during the training (a) 

and also validation (d). From the result it was observed 

that at both evaluations, the loss depreciated from each 

epoch until it converges after epoch 100. What this 

means is the SGDO was also able to optimally adjust 

the hyper-parameters while the YOLOV-5 model 

learn the plant diseases features correctly. The 

precision evaluation of the model was reported in (b) 

and it was observed that at each epoch the probability 

Items  Specification 

CPU  AMD-8-Core processor 

RAM 8GB 

Python 3.7.11 
Pytorch 1.7 

Mobile phone Samsung Galaxy A12 

GPU RTX3070-Ti 
Operating system Windows 10; Android 

Video Memory  8G 

https://doi.org/10.4314/njt.v43i4.21
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to correctly predict the true class for each disease 

increases. Similarly, the mean average precision was 

measured using figure (e) and the overall mAP for the 

model is 0.95 as reported in figure (f), while the recall 

in figure (c) also reported an average of 0.963. In 

addition, confusion matrix was used to evaluate the 

performance of the model, showing the relationship 

between the true class and the predicted using the 

Figure 5. 

 

 
Figure 5:  Confusion Matrix analysis of the plant 

disease detection model 

 

 
Figure 6:  Testing Result of the plant disease 

detection model 

 

From the result in Figure 5, it was observed that 

bacterial spot class testing reported a positive 

predicted value of 0.92, what this means is that when 

the bacterial spot was used to test the YOLO-5 trained 

model for plant disease detection, it was able to 

correctly classify 92% of the plants with the disease 

successfully. Similarly, early light reported 0.86, 

healthy plant reported 0.80, molds reported 0.98, late 

blight reported 0.95, septoria reported 0.82 and yellow 

curl virus reported 0.93. Overall, it was observed that 

the plant disease detection model was good, because 

the prediction of diseases for all classes reported an 

average of 0.90 positive prediction values. The Figure 

6, reported the testing result of the model on various 

plants. 

 

The Figure 6 presented the evaluation of the plant 

disease detection model considering some of the test 

plant disease samples. From the result, it was observed 

that the trained YOLOV-5 model was able to correctly 

classify the diseases on the plants, and assign 

annotations and confidence score for the disease 

detection. 

 

6.1  Experimental Results on Different Plants to 

Show Application Diversity  

This section showed the performance of the model 

when evaluated on different plant types considering 

maize and water leaf at two separate farms. The Figure 

7 showed the mobile interface where user can set the 

notification frequency and email address to received 

information on the farm status. In the Figure 8, the 

result of the model when tested on a waterleaf farm 

infected with various disease was reported.  

 

 
Figure 7:  Mobile interface of the system 

 

 
Figure 8:  Experimental validaiton on water leaf 

 

The Figure 7 showed the user interface for the 

configuration of the system to the farmers 
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requirements, while the Figure 8 demonstrated the 

practical testing of the model in a waterleaf farm. The 

classificaiton results as served in the Figure 8 showed 

the ability of the model to correctly classify different 

waterleaf diseases in real-time. From the results, it was 

osberved that while the traiend YOLOV-5 was able to 

classify the disease, the farmer did no receive any 

notificaiton, which is why no email results was 

reported for this case. The reason was because, the 

notifcaiton algorithm which makes the decision for 

farm disease was not able to classify disease in the 

farm. This mean that the portion of the waterleaf farm 

with disease is tolerable (less then 10% infeacted) 

compared to the entire farm size, hence, no email 

notificaiton was sent to the farmer. Nevertheless, 

when applied to another maize farm as shown in 

Figure 9, the model was able to detect disease in the 

major portion of the farm and when overall disease 

percentage compared to the area of the farm is over 

10%, the farmer was notified of the problem through 

email as reported in the Figure 10;  

 

 
Figure 9:  Experimental validatin on maize farm 

 

 
Figure 10: Result of email notification 

 

The Figure 9 demonstarted the performance of the 

farm disease detection system on small maize farm. 

From the result it was observed that the YOLOV-5 

was able to detect the disease on the farm in real time, 

while the percentage of disease detected was 

determined considering the area of the farm, and when 

the decision outputs diasese, an email notification is 

sent to te farmer as in Figure 10, reporting the 

problem. In addition a comparative model validation 

with existing algorithms was performance and reporte 

in Table 3; 

 

Table 3: Comparative analysis 

Reerence Technique mAP 

[4] YOLOV-4 81.28 

[9] YOLOV-5 93.74 

[14] YOLOV-4 90.80 

[10] YOLOV-5 94.70 

[12] YOLOV-5 95.80 

[15] YOLOV-5 98.40 

New system YOLOV-5 95.00 

 

From the comparative analysis in Table 3, it was 

observed that YOLOV-5 reported an average mAP of 

over 94% or all models, however while [12, 13] 

reported the best mAP, the lack of clear definition of 

farm disease detection success affects the 

trustworthiness of the model. in addition, the new 

mode which reported a good mAP score of 95%, is 

also the most reliable, as the modeling considered and 

addresses the issue of false positive which is a major 

challenge in the existing system.  

 

 
Figure 11: Results with low light 

 

 
Figure 12: Result with light 

 

6.2  Experimental validaiton considering diverse 

lightening condition  

In the Figure 11 and Figure 12, the result of the model 

was validated in diverse lightening condition 

considering the water leaf farm was presented. The 

Figure 11 presented the model perormance at low light 
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condition, while the Figure 12 presented the 

performance during the day with normal sun rays. 

 

From the result in 11, it was observed that desptie the 

low light in the environment, the model was able to 

correctly classify the disease on each farm and also 

classify the health plants. The reason was because the 

YOLO-V5 model was able to extract inticate feaures 

of the plant diseases using the SPP which facilitates 

multi-scale informaiton extraction and improve 

classificaiton accuracy. In the Figure 12, with normal 

light condition, it was observed that the model was 

also able to function effectively with correct 

classificaiton of disease in the farm.  

 

7.0  CONCLUSION 

This paper has successfully presented a model which 

in real-time, monitors disease in a farm and then uses 

the information obtained during the monitoring to 

determine when the farm is infected with diseases. 

This was achieved using the YOLOV-5 algorithm, 

trained with the dataset containing multiple plant 

diseases. The farm disease detection model generated 

was converted to a mobile application and 

experimentally validated considering watermelon and 

maize farms respectively. The result demonstrated the 

ability of the model to detect disease in a farm and then 

notify the farmer of the problem for rapid response. 

The benefits include increased crop yield, increased 

food production, food supply sustainability due to 

better farm performance, and more effective response 

to issue of diseases on the farm. The broader effects of 

FDD extend to agricultural productivity, food 

security, and economic stability. This leads to 

increased yields, healthier crops, and more efficient 

use of resources. Improved disease control ensures a 

consistent supply of agricultural products, which helps 

farmers maintain their livelihoods and reduces the 

possibility of food shortages. This contributes to 

greater food security overall. In terms of economics, it 

raises the sustainability and profitability of 

agricultural methods by lowering the costs associated 

with pest control and crop failure. Moreover, these 

systems support the global clamor for climate change 

through increase and sustainable farm practices to 

help reduce flood and erosion. The system is limited 

to farmers who have internet-enabled mobile phones, 

only, this is because the email notification of the farm 

diseases requires internet for access.  

 

APPENDIX A (SECONDARY DATA SOURCE) 

https://www.kaggle.com/datasets/abdallahalidev/plan

tvillage-dataset 
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