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Abstract 

A pain assessment is necessary in order to identify and manage pain. Self-report 

has been the prime method of measuring intensity of pain. To address this, an 

impartial methodology to recognizing pain that is both scalable and inexpensive 

must be developed. In this study, a Bio-Vid Heat Pain Database (Part A) dataset 

containing 86 individuals in good health condition who experience extreme pain 

was utilized to develop algorithms for pain recognition. Two physiological 

indicators, electrocardiogram and electrodermal activity were utilized. 

Different kinds of machine learning algorithms were implemented to establish 

the framework for more advances in the development of complex pain 

classification algorithms. CatBoost and AdaBoost performed significantly better 

than other methods, with average performance accuracy of 83.68% and 82.68% 

respectively for fusion of electrocardiogram and electrodermal activity signals. 

The binary classification experiment discriminates between the baseline and the 

pain tolerance level (T0 vs. T4). 
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1.0  INTRODUCTION 

Numerous studies suggested that it could be feasible 

to develop a reliable and efficient system that 

distinguishes between various pain levels, even if 

achieving so could lead to a very complicated 

classification (or regression) circumstance and result 

in poor recognition rates [1-10]. The significance of 

this is that, even while it is feasible to exceed the 

chance level by a large amount, the conclusions built 

in the literature and the ground actuality still vary 

significantly. In addition to the significant increase in 

demand and technological advancements in domains 

such as data continuity and sensor-based systems, 

many approaches incorporate several types of 

machine learning methods developed using various 

types of acquired physiological and video data. These 

methods can then be improved and utilized in both 

experimental and clinical situations. A variety of 

signals have been explored and validated in different 

contexts to develop pain assessment systems, 

depending on the number and types of sensors used 

during data collection. Commonly used signals 

include; audio (e.g. vocalizations on linguistic 

paralinguistic) [1-3], facial expression via video 

signals [4-7], physiological signals such as respiration 

signals (RSP), electrodermal activity (EDA), 

electromyography (EMG) and electrocardiogram 

(ECG) [8-10]. 
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Numerous machine learning base methods have been 

analyzed by the variety of data collected to 

successfully carry out a precise, active pain 

assessment task. The methods that have been 

suggested variety from single model approaches, 

which trust upon a single modality to solve the 

essential inference issue, to multi-modal approaches, 

which utilize an ensemble of numerous modalities to 

complete the essential pain evaluation assignment [11, 

12]. Whereas, multi-modal approaches attempt to 

improve the robustness and performance of an 

implication system by relating a explicit knowledge 

merging method to combine a set of data from various 

and diverse modalities [13, 14]. The following 

research presents a multimodal information collection 

approach to the evaluation of pain level intensities 

based on bio physiological indicator which are 

established on multiple machine learning approaches 

[25- 27]. 

 

The BioVid database addresses the problem of 

subjective pain perception by using objective 

biological signals to classify pain intensity. This 

method uses physiological data, such as EEG, ECG, 

and skin conductance, recorded from individuals 

undergoing heat pain stimuli. By using these signals, 

the study provides a more reliable and standardized 

method for pain classification. The variability in pain 

experience also introduces noise into the data, making 

it difficult to develop robust models based solely on 

subjective pain scales. The system is trained to 

classify pain levels based on patterns in the BioVid 

signals, making it a more accurate and reliable method 

for pain assessment. 

 

The work presents a multi-classifier for pain 

classification using simple machine learning 

algorithms instead of deep learning. It improves 

classification accuracy by including multiple 

physiological signals and extracting significant 

features from the Bio-Vid dataset. The framework also 

extracts significant features for pain classification, 

making it simpler in real-life situations and consuming 

less time and resources. This novel approach 

outperforms previous methods and offers state-of-the-

art results. 

 

The rest of this work is prepared as follows: The 

related research work segment provides a brief 

overview of a few relevant research on multimodal 

techniques for bio-physiological signal based pain 

evaluation. This includes deep learning and machine 

learning techniques. The proposed method section 

covers data that has been used to evaluate proposed 

machine learning approaches. The outcomes of the 

study are depicted in the result and discussion section 

finally, concludes with a discussion of the results that 

were obtained. Final perceptions are presented in the 

conclusion section. 

 

2.0  RELATED WORK 

The amalgamation of multi-modal information, 

combining biological signals created on the Bio-Vid 

Heat Pain Database (BVDB) and facial expression, 

became the key objective of early pain assessment   

research. Complicated datasets can be utilized by 

machine learning approaches to perform predictive 

modeling tasks, which have applications in the area of 

pain intensity research. More specifically, the 

limitations of subjective pain evaluation can be 

addressed by employing data driven algorithms. The 

primary purpose is to develop effective pain 

assessment techniques that are based on globally 

suitable, standardized, and objective elements. All of 

the approaches are referred to as automatic pain 

assessment [21-23]. 

 

 
Figure 1:  Schematic summary of the related work 

structure (Modified from Albahdal et al. [45]) 

 

Figure 1 summarizes the structure of related works. 

Previous studies on pain detection are initially 

categorized into two main groups: behavioral 

approaches and physiological approaches. The 

behavioral approaches include linguistic analysis, 

body language, and nonverbal cues such as bodily 

movements, while the physiological approaches 

consist of unimodal and multimodal methods. Despite 

this separation assists in narrative clarity, it's essential 

to retain in attention that assured methods use multi-

modal strategies, fusing behavioral and 

neurophysiological methodologies. Kachele et al. [13] 

utilized a random forest classifier to continuously 

estimate the level of pain. Expressions of pain 

frequently cause unexpected facial expressions.  

 

Chambers et al. [15] discovered that these phrases 

remain valid for all pain categories, genders, and age 

groups. The facial expression or action coding 
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structure (FACS) is a systematic tool utilized to 

distinguish and estimate detected facial activities. 

Facial actions are separated into different action units 

(AUs) by FACS. Thiam et al. [16] developed a hybrid 

data consolidation method for pain evaluation on 

different dataset of pain, including the Bio-Vid heat 

pain database, based on deep de-noising CNN auto-

encoders. FACS has been utilized to investigate the 

way individuals with various populations healthy, 

those with chronic pain, and those with mental 

syndromes express their pain [17]. The capacity to 

recognize the intensity of pain from facial expressions 

utilizing machine learning and deep learning methods 

has advanced significantly in recent research. Re-

cently [18-19] designed methods for deep learning, 

with the latter exceeding current algorithms to 

evaluate pain intensity across seven levels and the 

former getting high accuracy in recognizing four pain 

intensity levels. Sri et al. [20] presented an algorithm 

for automatically monitoring and notifying patients 

that assists with ongoing evaluation and detection of 

pain levels through facial reaction. Werner et al. [24] 

utilized multi-model signals (Part-A) and a random 

forest method to recognize the intensity of pain. Still, 

analyzing the various facial regions is necessary for 

face expression based pain identification, which can 

be difficult and time-consuming in clinical 

environments.  

 

Dhananjay and Sivaraman [43] constructed three 

machine learning algorithms to classify signals from 

an ECG signal dataset for sinus rhythm (SR), sinus 

tachycardia (ST), and atrial tachycardia (AT). In terms 

of sensitivity and precision, the CatBoost (CB) 

approach outperformed the Extra Trees (ET) and 

Ridge Classifier (RC) algorithms. The CB-based 

machine learning algorithm has the following 

benefits: It requires very little processing effort, 

produces conclusions quickly because it employs the 

symmetric tree technique, and reduces overfitting of 

the prediction owing to an integrated boosting 

algorithm. Khan et al. [44] developed an effective 

algorithm for evaluating pain intensity based on Blood 

Volume Pulse (BVP) data. Achieved classification 

accuracy of no pain vs highest pain BVP signals 

79.48% using a morphological features and 

amalgamation of period with the support vector 

machine classifier. Aljebreen et al. [45] used the Bio-

Vid Heat Pain dataset, containing 86 healthy 

individuals in acute pain, was used to develop 

techniques for pain recognition. Three physiological 

signals EGG, GSR, and EMG are combined. 

 

3.0  METHODOLOGY 

3.1  Data Set 

The Bio-Vid Heat Pain Database, Part A, was used as 

the investigation's dataset. Philipp Werner, the head of 

the Bio-Vid research team, was contacted in order to 

obtain the data [32]. They were tested with a total of 

four stages of separately validated thermal pain 

stimulation (T1, T2, T3, and T4). There are five 

classes based on the pain levels, and 20 subjects in 

each class imply that there are 8600 samples identified 

for each signal. A 5.5-second time frame existed for 

each pain intensity. Figure 2 shows all corresponding 

signals available in the dataset. 

 

3.2  Feature Extraction 

The method of extracting significant characteristics 

from an increased data element to increase 

information density is called feature extraction [26]. 

Models that can predict the class of information 

gathered are constructed using these features [33-34]. 

In this particular case, features were determined from 

physiological data within the window of 5.5 seconds 

following the start of the painful stimuli. The time and 

frequency domains, which are the content from which 

feature domains were computed, are the main 

classifications for feature domains. Time domain 

features, following pre-processing, effectively retrie-

ve information from the time stream sampled. In 

arousal quantification, where reactions to stimuli were 

demonstrated to be mainly time-invariant, Skin 

Conductance Level (SCL) time domain properties 

were found to be beneficial [35]. Non-stationary is 

demonstrated by EMG time domain analysis [36-38]. 

 

 
Figure 2: Recorded physiological data and video 

signal 

 

3.3  Machine Learning Models 

Applying a variety of classification approaches that 

come under the general category of supervised 

machine learning, we successfully managed to predict 

patients’ pain levels based on their physiological 

signals [28, 29]. To anticipate pain intensity, we 
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implemented four popular classification approaches: 

CatBoost (CB), Random Forest (RF), AdaBoost 

Classifier, and Support Vector Machine (SVM) [30, 

31]: CatBoost and AdaBoost Classifier indicated to 

have better accuracy in intensity level accuracy in 

intensity level prediction. The four algorithms 

represent the majority of commonly utilized machine 

learning level in the healthcare sector. The proposed 

pain level classification method is shown in Figure 3. 

CatBoost, AdaBoost, Random Forest, and Support 

Vector Machine (SVM) are chosen for pain 

classification due to their strengths in handling 

categorical data, reducing overfitting, and handling 

complex physiological signals. These algorithms 

contribute to a robust pain classification framework. 

 

 
Figure 3:  Proposed method for pain level classification using various classifier 

 

3.3.1 Support vector machine 

The supervised machine learning approach SVM has 

been widely utilized [39]. An SVM model decides an 

option boundary between classes based on the 

maximum distance to each data point after mapping 

data points from input space to feature space in a 

classification issue. Subsequently, new data points 

may be included in the identical feature space, 

providing the prediction of their groups corresponding 

to their placement on the decision surface. SVM 

would efficiently do nonlinear classification by 

mapping inputs into higher-dimensional feature 

spaces, in addition to performing linear classification 

like Pain, which implies the decision surface is a hyper 

plane. 

 

3.3.2 Random forest 

The first model for prediction that we applied was 

Random Forest (RF) has an overall excellent 

performance in many machine learning tasks [33]. 

Initially, random forest was introduced by [40] as are 

simplest and capable tool that has been utilized for 

machine learning in a variety of applications. The 

methodology built on an amalgamation of several 

Decision Trees (DTs) created from each trained on a 

different subset of the original training set of data is 

used in bootstrap aggregating or bagging.  

 

The ensemble method’s classification result is 

obtained by regression (aggregate) and can be 

accomplished by averaging the output of the different 

classifiers or by majority vote for categorization 

Random forests were implemented using python 

sklearn v1.1.3 in amalgamation with 100 DTs, with 

the samples essential to divide an inner node set to 2, 

and no output nodes is selected as the output for 

classification. Equation 1 was used to calculate the 

mean squared error, which indicates the impurity of 

the utilized RF repressors. Limitation on the 

maximum depth of the specific trees. In addition, in 

the binary configurations, RFs were trained for 

regression tasks which included two outputs, one for 

each class. The class that has the highest prediction 

among the output nodes is selected as the output for 

classification. Equation 1 was used to calculate the 

mean squared error, which indicates the impurity of 

the utilized RF repressors. 

 

Cj =
1

N
∑ (yi  − μ)2N

i=1             (1) 

 

3.3.3 CatBoost 

The CatBoost predictive modelling approach is a 

specific kind of gradient enhancement on decision 

trees since it is capable of handling instructed, 

categorical information and uses Bayesian estimation 

methods to prevent overfitting of the predictive 

model. The developed model's features are evaluated 

using either loss function variation or predicted 

parameter changes by the CatBoost automated 

learning method. The predicted parameter change 

function computes the shift in predicted values that 

occurs when a feature corresponding value varies. 

Predicted parameter changes are typically utilized to 

order a certain model within a group of algorithms. In 
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this work we developed CatBoost machine learning 

based on predicted parameter changes model. 

 

𝐹 = {𝑓1 , 𝑓2 , … … … … … … 𝑓𝑛}               (2) 

𝑃𝑖 = 𝛽𝑖 𝐹𝑖                   (3)  
 

F is a set to provide input characteristics, P is a 

prediction for that specific step, and β is the numerical 

factor allocated to the input features. Equation 2 

indicates the collection of features that the machine 

learning model has been provided. Fi is the specific 

feature chosen from the provided feature set, Pi is the 

prediction value at a substituted numeric factor, and βi 

is the quantitative element represent in Equation 3 

[41]. 

 

For pain classification, this algorithm offers novelty 

by handling categorical and continuous data 

effectively (important for multimodal data), 

dynamically creating features from target statistics, 

and ensuring a robust classification process through 

iterative refinement. This is particularly beneficial in 

the medical domain where feature diversity, 

interpretability, and accuracy are critical. The process 

involves assigning initial weights to each training 

example, combining features, and training a weak 

learner on the modified feature set. The weighted error 

rate is computed based on the difference between 

predictions and actual labels. The classifier weight is 

updated by increasing the weights of misclassified 

samples and decreasing the weights of correctly 

classified samples. The final output is a weighted 

average of predictions across all iterations, where each 

classifier's prediction is weighted by its accuracy. The 

process is repeated for a total of T iterations, with each 

classifier's prediction weighted by its accuracy. 

 

3.3.4 AdaBoost 

The objective of the adaptive boosting approach is to 

execute binary classification. The boosting concept is 

implemented by the AdaBoost technique to develop 

an effective classifier from a weak classifier. 

AdaBoost could boost the overall performance of 

machine learning classifiers by combining ineffectual 

classifiers and obtaining the prediction value to 

produce an ensemble classifier, which is a better 

classifier than an individual classifier. The AdaBoost 

algorithm reduces over fitting related issues and 

improves performance. It considered into account 

each classifier's superior values and chose the best 

values using a voting method. The AdaBoost 

approach takes into account two methods: selecting a 

random subset for training the complete group and 

training the subset with a weak classifier, along with 

giving the subset a weight factor [42]. 

4.0  RESULTS AND DISCUSSION  

The study investigation indicated that the accuracies 

of every approach tested significantly. In the initial 

stages, the base level was identified from other levels 

(T1 to T4) using a binary classification. Table 1, Table 

2, Table 3, and Table 4 show the classification 

accuracy of pain vs non-pain (To vs T4) for single 

modality and multimodality (fused single) to 

CatBoost, AdaBoost, Random Forest and Support 

Vector Machine Classifier. 

 

Table 1: Pain classification accuracy with CatBoost 

classifier 
Task  ECG EMG  EDA  EDA + ECG 

T0 vs. T1 48.22 48.83 60.16 62.36 
T0 vs. T2 49.74 49.86 65.72 67.76 

T0 vs. T3 51.26 54.38 75.79 77.29 

T0 vs. T4 66.57 67.89 81.68 83.68 

 

Table 2: Pain classification accuracy with AdaBoost 

classifier  
Task  ECG EMG EDA EDA + ECG 

T0 vs. T1 48.24 47.13 60.32 56.25 
T0 vs. T2 48.32 46.56 58.32 64.12 

T0 vs. T3 53.58 54.23 74.57 74.66 

T0 vs. T4 67.42 68.59 81.86 82.68 

 

Table 3: Pain classification accuracy with Random 

Forest classifier 
Task  ECG EMG EDA EDA + ECG 

T0 vs. T1 45.65 43.54 78.18 52.44 
T0 vs. T2 48.32 46.56 58.32 60.32 

T0 vs. T3 50.65 51.85 71.78 70.36 

T0 vs. T4 63.46 62.55 77.78 79.86 

 

Table 4: Pain classification accuracy with Support 

Vector Machine 
Task  ECG EMG EDA EDA + ECG 

T0 vs. T1 44.32 43.22 77.18 51.38 

T0 vs. T2 46.44 45.58 57.21 59.66 
T0 vs. T3 52.71 50.74 70.57 69.88 

T0 vs. T4 60.25 61.45 76.76 79.46 

 

Figure 4 shows the graphical representation of the 

classification accuracy for each classifier. The highest 

level of accuracy is continuously achieved using the 

CatBoost and AdaBoost classifiers in all classes. The 

intensity level T0 (baseline) versus T4 (highest pain) 

classification indicated the highest accuracy, with 

83.68 and 82.68, respectively. The results of the 

binary classification of all methods are summarized in 

Table 5 and also its graphical representation is shown 

in Figure 4. The current research’s results of pain 

levels T0 vs T4, were compared to studies that used a 

binary categorization and its graphical representation 

shown in Figure 5. The various accuracy levels of pain 

intensity from the earlier research in comparison to the 

present research are presented in Table 6. The 

CatBoost classifier approach proved to be the highest 

performing model among all approaches. Figure 6 

https://doi.org/10.4314/njt.v43i4.16
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shows that comparison of classification accuracy with 

various previous methods. 

 

Table 5: Accuracy of various machine learning 

method for pain vs. non pain 

Classifier  ECG EMG EDA EDA + ECG 

SVM 60.25 61.45 76.76 79.46 

RF 63.46 62.55 77.78 79.86 

AdaBoost 67.42 68.59 81.86 82.68 

CatBoost 66.57 67.89 81.68 83.68 

 

 

 
Figure 4:  Graphical representation of pain level classification accuracy of each classifier 

1 

 
Figure 5:  Comparison of pain level classification 

accuracy of among the various ML classifier 

 

Overall our approach achieves identical outcomes for 

pain recognition by utilizing the available signals in 

the dataset. We conclude that the recommended 

approach of pain evaluation gains significant 

advantages from the fuse (EDA+ECG) signal. The 

fusion of physiological signals often per-forms well 

for pain categorization tasks. 

 

Table 6: Result comparison of previous studies with 

accuracy metric. 
Method Classifier Modality Accuracy 

Winslow et al. [43] LR ECG 79.40% 

Khan et al. [44] SVM PPG 79.48% 

Aljebreen et al. [45] KNN 
Fusion of EDA, 

ECG and EMG 
70.10% 

Aljebreen et al. [45] NB 
Fusion of EDA, 
ECG and EMG 

72.04% 

Proposed Method CB 
Fusion of EDA and 

EMG 
83.68% 

 

For pain classification, AdaBoost and CatBoost can 

offer superior performance compared to deep learning 

models when dealing with relatively small datasets or 

those structured with categorical features. AdaBoost, 

by boosting weak classifiers, enhances accuracy, 

while CatBoost excels in efficiently handling 

categorical data. Both methods can achieve high 

classification accuracy with reduced computational 

cost and complexity, making them more suitable than 

deep learning models for such data scenarios. 
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Figure 6:  Result comparison of previous studies 

with accuracy metric 

 

5.0  CONCLUSIONS 

Various factors influence pain perception and 

response, making it challenging to recognize pain 

instantly and accurately. This research integrates 

physiological data from galvanic skin response, 

electrodermal activity, and electrocardiograms to 

enhance pain detection methods. Using machine 

learning classifiers like CatBoost and AdaBoost, 

feature extraction is done from these signals, with 

CatBoost showing superior performance in binary 

classification tasks. CatBoost and AdaBoost 

consistently achieved the highest accuracy levels 

across all classes, particularly in classifying intensity 

levels from baseline to high pain. The intensity 

baseline versus highest pain classification indicated 

the highest accuracy, with 83.68 and 82.68, 

respectively, for CatBoost and AdaBoost. These 

results show how well advanced classifiers, CatBoost 

and AdaBoost in particular, work together to combine 

multiple physiological signals to improve pain 

detection accuracy, especially when it comes to 

differentiating between baseline and high pain levels. 
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