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Abstract 

Accurate path loss prediction is vital for efficient resource allocation, 

interference reduction, and overall network reliability in 5G networks, 

particularly in the widely deployed mid-band frequency spectrum (such as 3.5 

GHz). This study evaluates the effectiveness of machine learning models for path 

loss prediction at 3.5 GHz with a focus on feature prioritization. A feature 

selection method, recursive feature elimination, was used to identify significant 

features from datasets obtained through measurement campaigns, weather 

stations, 3-D ray tracing, geographical data, and simulations. Out of eighteen 

features, eleven, including new environmental features, were identified as 

significant features contributing to path loss. These selected variables were then 

utilized to optimize and train four common machine learning models (ANN, 

XGBoost, RF, and k-NN) to evaluate their performance in predicting path loss 

in a specific urban area called an irregular urban environment. The 

performance of these models was assessed by comparing their predictions with 

the measured path loss. The Random Forest model closely matched the 

measured path loss over the entire path length in both LoS and NLoS scenarios, 

achieving the lowest MAE of 0.15 dB and RMSE of 0.57 dB in the LoS scenario 

and 0.62 dB and 1.42 dB in the NLoS scenario, with R2 scores of 0.999995437 

and 0.999996828, respectively. This indicates its superior performance in 

predicting path loss in the urban environment. 
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1.0  INTRODUCTION 

The academic and industrial sectors have recently 

shown a growing interest in fifth-generation (5G) 

wireless systems. This heightened attention is driven 

by 5G's potential to greatly increase data speeds, 

reduce latency, and accommodate various connected 

devices, as depicted in Figure 1. According to the 

consensus reached at the World Radiocommunication 

Conferences (WRC) and the International Telecomm-

unication Union (ITU), the mid-band frequency 

spectrum, ranging from 1 to 6 GHz, should be 

prioritized and adopted for 5G communications [1]. 

This designation underscores the mid-band's crucial 

role in balancing coverage and capacity, making it 

essential for the widespread implementation of 5G 

technology [2]. 

 

The Nigerian Communications Commission (NCC) 

has designated the mid-band frequency of 3.4-3.8 

GHz for the deployment of 5G communication 

networks, aligning with the globally agreed frequency 

spectrum for 5G adoption [3]. However, the commun-
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ication network faces several challenges on its mid-

band channel, such as path loss. 

 

 
Figure 1:  5G to transform lives 

 

Path loss refers to the reduction in power density of an 

electromagnetic wave as it travels through a medium 

or propagates through space. This phenomenon occurs 

because the energy carried by the electromagnetic 

wave spreads out as it moves away from its source. 

Propagation loss is a fundamental concept in the field 

of wireless communications and is influenced by 

several factors, including distance, frequency, and the 

characteristics of the medium through which the wave 

propagates. Figure 2 illustrates how signal propag-

ation through space causes a reduction in power 

density and results in propagation loss. 

 

  
Figure 2:  Illustration of signal propagation through 

space 

 

Propagation path loss is usually mathematically 

expressed as a function of frequency, speed of wave 

in free space, and distance, as illustrated in Equation 

(1) [4]: 

𝑃𝑙 = 10 log10 ((
4𝜋𝑑𝑓

𝑐
)

2
)            (1) 

Where, 𝑃𝑙, 𝑑, f, and 𝑐 represent the free-space path loss, 

the distance between the receiver, Rx, and the 

transmitter, Tx, the frequency of operation, and the 

speed of the wave in free-space [4]. 

 

The equation 1 can be reduced to (2), as; 

𝑃𝐿(𝑓) = 20 log10(𝑑) + 20 log10(𝑓) + 92.45         (2) 

Where, 𝑑 and 𝑓 are are the path length in km and the 

frequency in GHz. Equation (2) can also be presented 

as in (3).  

 

𝑃𝑎𝑡ℎ 𝑙𝑜𝑠𝑠, 𝑃𝑙  𝑖𝑛 𝑑𝐵 = 𝐸𝐼𝑅𝑃 − 𝑅𝑝         (3) 

Where, 𝐸𝐼𝑅𝑃 and 𝑅𝑝 denote the effective isotropic 

radiated power and the received power [5] in 𝑑𝐵𝑚, of 

which 𝐸𝐼𝑅𝑃 is given as; 

 

𝐸𝐼𝑅𝑃 = 𝑃𝑇 + 𝐺𝑇 + 𝐺𝑅 − 𝐶𝑙 − 𝑓𝑐𝑙 − 𝐴𝑙 − 𝐴𝑓𝑙      (4) 

Where, 𝐺𝑇, 𝐺𝑅, and 𝑃𝑇 indicate the antenna gains for 

the transmitter and receiver, the transmitting power in 

dBm, while 𝐴𝑙 , 𝑓𝑐𝑙, 𝐴𝑓𝑙 , and 𝐶𝑙 denote the losses related 

to the antenna, feeder cable, antenna filter, connector, 

respectively [6]. 

 

Researchers have shifted from deterministic models to 

machine learning techniques for wireless channel 

modeling and path loss prediction. This transition has 

led to a deeper exploration of machine learning 

methods, revealing their ability to provide more 

accurate predictions than traditional deterministic and 

empirical models. These advancements are particu-

larly notable in complex environments, such as urban 

areas, where the intricate nature of the surroundings 

makes precise prediction challenging. Consequently, 

machine learning models have proven to be highly 

effective in these scenarios, offering significant 

improvements in prediction accuracy [7]. 

 

This study seeks to assess and compare the accuracy 

of four widely used machine learning path loss models 

in predicting path loss in a complex urban 

environment [6] with irregular street layouts. The 

main objective is to improve each model's predictive 

performance by employing the most relevant features, 

identified through the recursive feature elimination 

(RFE) method. 

 

Consequently, the key contributions of this paper are 

as follows: 

i. Enhancement of path loss prediction accuracy at 

3.5 GHz by identifying and prioritizing key 

features, leading to more reliable communication 

performance.  

ii. Comparative analysis of four widely used machine 

learning models, highlighting their strengths and 

weaknesses in predicting path loss, and offering 

valuable insights for model selection. 

iii. Providing practical guidelines for deploying 

machine learning models in 5G networks at 3.5 

GHz. 

 

The structure of the paper is organized as follows: 

Section 2 outlines the methodology employed, 

including the materials used, the measurement 

campaign architecture, and the data sources for 

training and testing the models. This section also 
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elaborates on the machine learning models based on 

feature selection. Section 3 provides a comprehensive 

presentation of the results and their discussion. 

Finally, Section 4 offers the concluding remarks. 

 

Numerous studies have sought to determine the most 

effective approach for path loss prediction, 

particularly for 5G communications across different 

scenarios. One such effort involves developing a path 

loss model derived from measurements collected in 

the millimeter-wave frequency band in an urban 

environment [8]. However, to ensure the model's 

reliability and robustness, it is necessary to test it in 

more complex settings, such as urban areas. This 

testing will account for additional factors that 

contribute to path loss, providing a comprehensive 

evaluation of the model's stability and accuracy in 

diverse environments. In another study [9], 

hyperparameter tuning was adopted to improve the 

accuracy of a Random Forest (RF) model for 

predicting path loss using seven features from a 

measurement campaign dataset. Similarly, a study 

[10] presented an effective method for improving path 

loss prediction, comparing the results with two other 

machine learning models, and revealing the superior 

performance of the random forest model in path loss 

prediction. 

 

In [11], an ensemble neural network was used to 

achieve accurate path loss prediction, with similar 

methods in [12-14]. In another study [15], data were 

used from OpenStreetMap to train a machine-learning 

model focused on enhancing the prediction of cellular 

coverage in urban areas. Previous studies in [10, 16], 

however, did not explore the performance of these 

models in specific scenarios within urban 

environments, such as irregular urban environments 

characterized by less organized layouts and 

infrastructure, featuring a mix of old and modern 

buildings, and streets arranged more chaotically, as 

illustrated in Figure 3. The emphasis on this urban 

environment arises from the unique attenuation 

characteristics observed between older and modern 

buildings, as documented in [17] and elaborated on in 

[18], which highlight higher attenuation levels in 

modern structures compared to older ones. However, 

given the unique characteristics of buildings and 

streets in each urban area, researchers need to focus on 

improving and assessing the models' suitability for 

complex and irregular urban environments. 

 

This paper aims to address this gap by employing a 

feature prioritization technique to identify the most 

significant features from a pool of over fifteen input 

features, including those previously considered in [9, 

16] along with additional new features that 

significantly influence path loss. By focusing on the 

most impactful predictors, this approach seeks to 

enhance the accuracy and reliability of path loss 

models in complex urban environments. 

 

2.0  MATERIALS AND METHOD 

2.1  Study Area 

The measurement campaign's study area aimed to 

capture the received signal strength from a mobile 

station located in the urban environment of Maitama, 

a district in the Federal Capital Territory of Nigeria. 

The mobile site designated as ID FC0125 is in a part 

of Maitama characterized by a well-planned and 

modern urban landscape. The architecture here 

primarily consists of both old and new buildings, with 

modern materials designed to emphasize vertical 

expansion. The streets in the vicinity are 

unsystematically laid out, offering a grid-like pattern 

that facilitates efficient navigation and urban mobility. 

These streets are wide, well-maintained, and equipped 

with modern amenities, including traffic management 

systems, pedestrian walkways, and landscaping 

elements such as trees and green spaces, as shown in 

Figure 3. 

 

 
Figure 3:  Study area of the urban environment 

showing the LoS and NLoS scenarios 

 

Table 1 provides the comprehensive technical and 

geographic parameters of the transmitting base station 

used in this study.  

 

Table 1: Technical and geographical parameters of 

the transmitting station 
Key Parameters Cell ID 

FC0125 

 

 

 

 

 

 

 

Technical Parameters 

Transmission power (dBm) 10 

Frequency (GHz) 3.5 
Transmitter height (m) 35 

Coverage area (km) 0.71 

Cell radius (mm) 1.2 
Modulation types 16-QAM 

Channel coding techniques LDPC 

Duplexing method FDD 
Multiple access method CDMA 
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Handover method Soft 
handover 

Antenna type Sectorial 

Antenna gain (dBi) 20 
Number of antenna ports 16 ports 

 

 

Geographic 

Parameters 

Environment Regular 

urban 
Latitude (o) 9.0853 

Longitude (o) 7.4724 

 

2.2  Data Collection 

This section presents the data collection source for the 

selected models' training and testing. 

 

2.2.1 Measurement Campaign 

The measurement campaign was conducted in a 

unique urban environment using a handheld spectrum 

analyzer (N9344C, 1 MHz-24 GHz) paired with a 

HE200 directional antenna. The mobile station with 

ID FC0125 served as the transmitter, from which 

measurements were initiated at a reference distance of 

10 meters. Subsequent measurements were taken at 

50-meter intervals up to 500 meters, moving away 

from the transmitter, for a total of eleven data points 

for the purpose of testing the models. Data were 

collected along two distinct paths: line-of-sight (LoS) 

and non-line-of-sight (NLoS). The designated paths 

are visually represented in Figure 3, where the LoS 

path is marked with a circular shape filled in white and 

outlined in red, and the NLoS path is marked with a 

circular shape filled in black and outlined in yellow. 

The measurements were taken under specific 

conditions, including varying environmental factors 

such as temperature and relative humidity, as well as 

terrain characteristics like building density, street 

width, and urban infrastructure. Effective isotropic 

radiated power (EIRP) was calculated using Equation 

(4) to determine the measured path loss, as outlined in 

Equation (3). This approach allowed us to gather 

comprehensive data on signal propagation 

characteristics in an urban environment, considering 

varying conditions and distances from the transmitter. 

Figure 4 provides an illustration of the measurement 

campaign. 

 

 
Figure 4:  Illustration of the measurement 

campaign 

 

2.2.2 Weather Station 

Weather station data, including temperature and 

humidity, which affect path loss in radio propagation, 

were sourced from the Nigerian Meteorological 

Agency (NiMet) over a span of two years. These 

parameters are taken into account due to their potential 

effects on signal propagation, considering environm-

ental changes, possible interference, and local 

variations. 

 

2.2.3 Geographic Data 

To obtain geographical data for path loss, the PL5 

software tool was utilized to extract information about 

the study area, including the terrain profile, path 

length, elevation, and inclination. The process began 

by launching the PL5 software and importing the 

geographical map data of the study area from 

OpenStreetMap. 

 

2.2.4 3D Ray Tracing 

WinProp (Altair HyperWorksTM) conducted 3D ray 

tracing to generate a dataset detailing path loss at 

specific locations, accounting for both transmitted 

signal effects and environmental factors. This dataset, 

along with data from the weather station and 

geographic information, was combined with 

measurements from the campaign tests to create a 

dataset comprising eighteen essential features. 

Additionally, new features were introduced, including 

the indoor and outdoor distances covered by a direct 

line connecting the transmitter (Tx) and receiver (Rx), 

as well as counts of trees and buildings intersected by 

this line, along with street widths for both Tx and Rx 

locations. This is depicted in Figure 5. 

 

 
Figure 5:  Graphical illustration of supplementary 

features 

 

The data collected from the measurement campaign, 

along with the dataset generated from 3D ray tracing, 

weather station records, and geographic data, were 

integrated with the newly added novel features to form 

a dataset containing eighteen significant features. 
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2.3  Machine Learning Models Based on Feature 

Selection 

The Recursive Feature Elimination (RFE) technique 

[19, 20], used for feature selection to identify the most 

crucial features in a dataset, was applied to analyze the 

eighteen features across 5,310 data points. This 

process prioritized features that have the greatest 

impact on path loss within the specific urban 

environment studied. RFE involves iteratively 

building models and removing the least significant 

features until the desired number of key features, 

based on their importance scores, is attained [20]. A 

similar methodology was employed in [16] and 

adopted in [10], although not specifically for the type 

of environment addressed in this paper. 

 

As a result of this procedure, eleven features were 

recognized as influential factors affecting path loss, 

while the remaining seven were systematically 

removed. These eleven features of the dataset were 

then used to train the four selected machine learning 

models, such as the Random Forest (RF) [21], ANN, 

XGBoost, and k-NN [22]. Following the successful 

training and testing of the models, their performances 

were assessed, as depicted in the flowchart in Figure 

6. 

 

 
Figure 6:  Flowchart of the models’ training and testing 

 

2.4  Model Validation  

Performance metrics, including mean absolute error 

(MAE), R2 score, and root mean square error (RMSE) 

[22, 23], as detailed in equations (5) to (8), were 

utilized to compare the predicted path loss of the 

chosen machine learning models with the measured 

path loss, thereby validating the models' performance. 

 

𝑀𝐴𝐸 =
1

𝑁𝑡𝑒𝑠𝑡
∑ |𝑃𝐿𝑖

𝑚𝑠𝑑 − 𝑃𝐿𝑖
𝑝𝑟𝑒𝑑

|
𝑁𝑡𝑒𝑠𝑡
𝑖=1                  (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑡𝑒𝑠𝑡
∑ (𝑃𝐿𝑖

𝑚𝑠𝑑 − 𝑃𝐿𝑖
𝑝𝑟𝑒𝑑

)
2

 
𝑁𝑡𝑒𝑠𝑡
𝑖=1            (6) 

𝑅2 = 1 −
∑ (𝑃𝐿𝑖

𝑚𝑠𝑑−𝑃𝐿𝑖
𝑝𝑟𝑒𝑑

)
2𝑁𝑡𝑒𝑠𝑡

𝑖=1

∑ (𝑃𝐿𝑖
𝑚𝑠𝑑−𝑃𝐿̅̅̅̅ )

2𝑁𝑡𝑒𝑠𝑡
𝑖=1

           (7) 

𝑃𝐿̅̅̅̅ =
1

𝑁𝑡𝑒𝑠𝑡
∑ 𝑃𝐿𝑖

𝑚𝑠𝑑𝑁𝑡𝑒𝑠𝑡
𝑖=1                  (8) 

Where, 𝑃𝐿𝑖
𝑚𝑠𝑑 denotes the measured value of path loss 

, 𝑃𝐿𝑖
𝑝𝑟𝑒𝑑

 denotes the value, and 𝑁𝑡𝑒𝑠𝑡 denotes the total 

number of samples. 

 

3.0  RESULTS AND DISCUSSION 

3.1  Measured Received Signal Strength 

In the LoS scenario, the RSS exhibited significant 

fluctuations between 150 and 400 meters, as shown in 

Figure 7. This fluctuation is primarily attributed to 

multipath fading, a common issue in urban 

environments where signals reflect off buildings, 

vehicles, and other obstacles. These reflections cause 

multiple copies of the signal to arrive at the receiver 

with varying delays and phases, leading to 

constructive and destructive interference.  

 

 
Figure 7:  Measured received signal strength 
 

Additionally, the Fresnel zone effect is likely 

contributing to these fluctuations. The Fresnel zone is 

the area around the direct path between the transmitter 

and receiver that must remain relatively clear of 

obstructions to minimize diffraction and interference. 

https://doi.org/10.4314/njt.v43i4.15
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Given the transmitting antenna height of 30 meters 

and the complex urban terrain, objects intruding into 

the Fresnel zone can cause further signal variability. 
 

3.2  Feature Importance 

After employing the Recursive Feature Elimination 

(RFE) technique on the dataset to determine the 

significance of training features for predicting path 

loss, eleven features out of the initial eighteen were 

selected as the most important features for path loss in 

the examined environment. The other features were 

systematically removed through iterative processes. 

Figure 8 displays the importance of these features 

following the application of RFE. 

 

 

Figure 8:  Feature importance map 

 

 

Figure 9:  Comparison of path loss predictions in 

the LoS scenario 

 

3.3  Path Loss Prediction 

As seen in Figure 9, the Random Forest (RF) model 

stands out, closely matching the measured path loss in 

the LoS scenario across the entire path length. The 

XGBoost model also performs well, though not as 

precisely as the RF model, with a noticeable tendency 

to overpredict path loss around the 410-meter mark. 

Conversely, the Artificial Neural Network (ANN) 

model consistently overestimates path loss throughout 

the entire path. The k-Nearest Neighbors (k-NN) 

model exhibits a unique pattern, initially underest-

imating path loss up to about 300 meters before 

beginning to overpredict. Despite this variability, the 

k-NN model shows relatively good accuracy over 

shorter distances, especially up to 150 meters. 

 

As shown in Figure 10, the Random Forest (RF) 

model [24] model demonstrates remarkable perfor-

mance. However, there are some inconsistencies in its 

predictions, highlighting areas for potential improve-

ement. The next best-performing model in this 

scenario is the XGBoost model, although it is not as 

consistent as it is in the line-of-sight (LoS) scenario. 

In contrast, the ANN model consistently 

overestimates in this scenario. Similarly, the kNN 

model exhibits a pattern similar to that of the ANN 

model. 

 

 

Figure 10: Comparison of path loss predictions in 

the NLoS scenario 

 

 
Figure 11: Models’ performances in the LoS 

scenario 

 

3.4  Validation of the Models 

The validation results reveal that the Random Forest 

(RF) model exhibits the lowest MAE and RMSE 

values of 0.15 dB and 0.57 dB, along with an R2 score 

closer to 1 (0.999995475), as presented in Figure 11. 

These metrics indicate the RF model's superior 

accuracy compared to the other models, underscoring 

its effectiveness in predicting path loss in the LoS 

scenario. This superior performance highlights the RF 

model's robustness and reliability, making it the most 

https://doi.org/10.4314/njt.v43i4.15
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effective among the models evaluated for accurate 

path loss prediction in LoS conditions. 

 

As shown in Figure 12, the results indicate that the 

Random Forest (RF) model consistently outperforms 

other machine learning models in non-line-of-sight 

(NLoS) scenarios, reinforcing findings in existing 

literature that highlight RF’s strength in handling 

complex datasets. While the differences in mean 

absolute error (MAE) and root mean square error 

(RMSE) are less significant in NLoS conditions 

compared to line-of-sight (LoS) scenarios, the RF 

model still achieves the highest accuracy overall. This 

aligns with prior studies that emphasize the robustness 

and reliability of RF in predicting path loss, 

particularly in challenging environments character-

rized by obstructions and variable signal conditions. 

 

The RF model’s effectiveness in both LoS and NLoS 

scenarios suggests its versatility and adaptability to 

different urban environments, making it a compelling 

choice for practical applications in 5G network 

planning and optimization. Such consistent 

performance is crucial in real-world implementations, 

where signal conditions can vary widely due to factors 

like urban density, building materials, and environm-

ental elements. Overall, these results contribute to the 

growing body of literature that advocates for the use 

of RF in telecommunications, particularly in 

developing reliable path loss models that enhance 

network performance and coverage. 

 

 
Figure 12: Models’ performances in the NLoS 

scenario 

 

Potential biases in the data collection process may 

affect the model’s predictive accuracy due to 

variability in factors such as building density, terrain 

types, and urban infrastructure. Limited diversity in 

data collection locations could restrict the 

generalizability of the findings. Additionally, while 

the Random Forest model performed well in both LoS 

and NLoS scenarios, its effectiveness may vary in 

urban environments that differ significantly from the 

study area, particularly in regions with unique 

geographical features. These limitations suggest that 

caution should be exercised when applying the model 

to new areas without further validation. 

 

4.0  CONCLUSION 

This paper presents a comprehensive performance 

evaluation of four widely used machine learning 

models—k-NN, ANN, RF, and XGBoost—for path 

loss prediction at 3.5 GHz in a complex urban 

environment with irregular street layouts. The primary 

objective was to enhance the predictive accuracy of 

each model by employing the most relevant features 

identified through the recursive feature elimination 

(RFE) method. Among the models assessed, the 

Random Forest model demonstrated the highest 

accuracy, closely matching the measured path loss 

across the entire path length in both line-of-sight 

(LoS) and non-line-of-sight (NLoS) scenarios. 

Specifically, the Random Forest model achieved the 

lowest mean absolute error (MAE) of 0.15 dB and root 

mean square error (RMSE) of 0.57 dB in the LoS 

scenario, and 0.62 dB and 1.42 dB in the NLoS 

scenario, with R2 scores of 0.999995437 and 

0.999996828, respectively.  

 

These results underscore the effectiveness of the 

Random Forest model, particularly when feature 

prioritization is applied, in predicting path loss in 

challenging urban environments. This study's 

findings, particularly the superior performance of the 

Random Forest (RF) model, can significantly 

influence future 5G deployment strategies in urban 

environments. By demonstrating the RF model’s 

reliability and accuracy, network operators can utilize 

this model to optimize the placement of infrastructure 

such as base stations, small cells, and repeaters. This 

ensures better coverage and signal quality, even in 

challenging environments with high building density 

or obstructed signal paths. Future research could 

benefit from expanding the dataset, incorporating 

more diverse urban environments, and evaluating a 

broader range of machine learning techniques to 

enhance the robustness and applicability of the 

findings. 
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